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Abstract: We study linear periodic control systems with a bounded total impulse of control. The main result is an asymp-
totic formula for the reachable set, which, at the same time, reveals the structure of the attractor — the set of
all limit shapes of the reachable sets. The attractor is shown to be parameterized by a (finite-dimensional) toric
fibre bundle over a circle. The fibre of the bundle can be described via the Floquet multipliers (monodromy
matrix) of the linear system. Moreover, the limit dynamics of shapes of reachable sets can be parametrized by
an explicit curve on the toric bundle.

1 INTRODUCTION

One of the fundamental notions of control theory is
that of reachable sets which provide a visible bound
for control capabilities. In general, these sets have a
complicated shape and dynamics. There is, however,
a kind of problems where the behavior of reachable
sets is well-understood.

Namely, it turns out that the reachable sets of lin-
ear control systems have simple limit properties as
time evolves to infinity provided that a suitable time-
dependent matrix scaling is applied. This kind of re-
sults was found for the first time in (Ovseevich, 1991),
where time-invariant linear control systems with geo-
metric bounds on control were studied. It was shown
that in this setup there is a single limit shape of the
reachable sets, shape being the set regarded up to an
arbitrary nondegenerate linear transform.

At present the scope of this phenomena is not yet
clear cut. It is very likely that there is a natural exten-
sion of these results to general time-dependent linear
systems. Moreover, a similar phenomena was discov-
ered for some nonlinear stochastic dynamic systems
(Dolgopyat et al., 2004).

The purpose of the study is to develop the asymp-
totic theory of the reachable sets to linear impulsive

control systems. A motivation to address impulsive
control systems is also due to the perceived relevance
of the impulsive control theory for hybrid systems
whose state evolution is dictated by the interaction of
conventional time-driven dynamics and event-driven
dynamics (see, e.g., (Aubin, 2000; Branicky et al.,
1998; Miller and Rubinovich, 2003)).

In this paper, we study the periodic linear control
systems with a bounded total impulse of control. The
main result is an asymptotic formula for the reachable
sets (see (3)), that, in particular, reveals the structure
of attractor — the set of all limit shapes of the reach-
able sets.

It would be extremely interesting to understand
the limit behavior of reachable sets for a general lin-
ear system. Unfortunately, the nature of the present
methods is computational and it looks like new ideas
are needed in order to grasp the limit dynamics of the
reachable sets.

2 PROBLEM STATEMENT

Consider a linear control system on the time interval
[0,T ]

ẋ(t) = A(t)x(t)+ B(t)u(t), x(0) = 0, (1)

131
V. Goncharova E. and I. Ovseevich A. (2008).
ASYMPTOTIC THEORY OF THE REACHABLE SETS TO LINEAR PERIODIC IMPULSIVE CONTROL SYSTEMS.
In Proceedings of the Fifth International Conference on Informatics in Control, Automation and Robotics - SPSMC, pages 131-136
DOI: 10.5220/0001490001310136
Copyright c© SciTePress



under the constraint on the total impulse of controlu:
∫ T

0
〈 f (t),u(t)dt〉 ≤ 1, (2)

wherex(t) ∈ V = R
n, u(t) ∈ W = R

m, A(t), B(t) are
matrices of appropriate dimensions,U(t) is a given
central symmetric convex body inW, f is an arbitrary
continuous function such thatf (t) ∈U◦(t), andU◦(t)
is the polar of setU(t).

Assume that the Kalman type condition of com-
plete controllability holds, namely, for any vector
u ∈ W and a time momentT , functionΦ(T,t)B(t)u
does not vanish identically in any interval of timet.
Under these assumptions the reachable setsD (T ) to
system (1), (2) are central symmetric convex bodies.

The problem addressed is to study the limit be-
havior of the reachable setsD (T ) as T → ∞. The
reachable sets are regarded as elements of the metric
spaceB of central symmetric convex bodies with the
Banach-Mazur distanceρ:

ρ(Ω1,Ω2) = log(t(Ω1,Ω2)t(Ω2,Ω1)),

wheret(Ω1,Ω2) = inf{t ≥ 1 : tΩ1 ⊃ Ω2}.

The general linear groupGL(V) naturally acts on the
spaceB by isometries. The factorspaceS is called the
space of shapes of central symmetric convex bodies,
where the shape ShΩ ∈ S of a convex bodyΩ ∈ B

is the orbit ShΩ = {CΩ : detC 6= 0} of the pointΩ
with respect to the action ofGL(V). The Banach-
Mazur factormetric makesS into a compact metric
space. The convergence of the reachable setsD (T )
and their shapes is understood in the sense of the
Banach-Mazur metric. For two asymptotically equal
functions with values in the space of convex bodies
or the space of their shapes, the following notations
are used:Ω1(T ) ∼ Ω2(T ), if ρ(Ω1(T ),Ω2(T )) → 0
as T → ∞, and similarly ShΩ1(T ) ∼ ShΩ2(T ), if
ρ(ShΩ1(T ),ShΩ2(T )) → 0 asT → ∞. The conver-
gence of convex bodies may be also understood in the
sense of convergence of their support functions. Re-
mind that the support function of a convex compact
set is given by formula:HΩ(ξ) = supx∈Ω〈x,ξ〉, where
ξ ∈ V∗, and uniquely defines the setΩ. The equiva-
lence of the two definitions of convergence of convex
bodies — in the terms of convergence of their support
functions and in the sense of the Banach-Mazur met-
ric — is established by the following lemma (Figurina
and Ovseevich, 1999):

Lemma 1. A sequence Ωi ∈ B converges to Ω ∈ B

in the sense of the Banach-Mazur metric if and only
if the corresponding sequence of the support func-
tions Hi(ξ) = HΩi(ξ) converges to the support func-
tion HΩ(ξ) pointwise and is uniformly bounded on the
unit sphere in the dual space V∗.

We address the periodic case, when the con-
stituentsA, B, andU of control system (1), (2) are
supposed to be continuous and periodic int. To fix
ideas, the period is assumed to be 1. It would be in-
teresting to understand the limit behavior of reach-
able sets for a general linear system. This prob-
lem, however, seems rather difficult, since already the
time-invariant case is nontrivial, and, say, for quasi-
periodic systems it is not clear how to prove the cor-
responding natural conjectures.

3 ASYMPTOTIC BEHAVIOR OF
SHAPES OF THE REACHABLE
SETS

We study the limit behavior asT → +∞ of the curve
T 7→ ShD (T ) under different assumptions on the
spectrum of the monodromy matrix. At the heart of
the considerations below there is an explicit formula
for the support function of the reachable set:

Lemma 2. The support function of the reachable set
D (T ) to system (1), (2) is given by

HD (T )(ξ) = sup
t∈[0,T ]

HU(t) (B(t)∗Φ(T,t)∗ξ) , (3)

where Φ(t,s) is the fundamental matrix of linear sys-
tem ẋ = A(t)x.

Stable Case. Let the system (1) be asymptotically
stable, i.e.

Φ(T,t) = o(1) asT − t → +∞,

and o(1) is uniformly small. It is easy to estab-
lish the stability criterion: system (1) is asymptoti-
cally stable iff the spectrum of the monodromy matrix
M = Φ(1,0) is contained in the open unit disk of the
complex plane.

Let us show that the curveT 7→D (T ) is asymptot-
ically periodic asT → ∞. In other words, there exists
such a continuous periodic curvef : R/Z → B that
D (T ) ∼ f (T ) asT → +∞. Informally speaking, the
curveT 7→ D (T ) is reeled on a limit cycle.

The curvef can be given by an explicit formula.
Define function

F (T ) = F (T,ξ) = sup
t∈(−∞,T ]

HU (B∗Φ(T,t)∗ξ) , (4)

where the argumentt of periodic functionsB andU
is omitted. Due to the stability condition,F (T ) is a
continuous periodic function ofT . The periodicity of
F follows from the equality

Φ(T +1,t +1) = Φ(T,t)
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for the fundamental matrix of a 1-periodic system.
Furthermore, for eachT , functionξ 7→ F (T,ξ) is ho-
mogeneous and convex, and therefore it is the support
function of a bodyf (T ). Thus, the curvef is defined.
On the other hand, from (3), (4) it follows that

H f (T )(ξ) = HD (T)(ξ) for large enoughT, (5)

sinceΦ(T,t) = O
(

e−β(T−t)
)

, whereβ > 0 owing to

the assumed stability property. The asymptotic equal-
ity D (T ) ∼ f (T ) follows from (5).

Unstable Case. Assume that the system (1) is strictly
unstable, i.e.

Φ(T,s) = o(1) asT − s →−∞,

whereo(1) is uniformly small. System (1) is strictly
unstable iff the spectrum of the monodromy matrix
M = Φ(1,0) is contained in the complement of the
closed unit disk of the complex plane.

Define the matrix multiplierC(T ) = Φ(0,T ) and
consider the set

D̃ (T )
def
= C(T )D (T ).

It is easy to see that

H
D̃ (T )

(ξ) = sup
t∈[0,T ]

HU (B∗Φ(0,t)∗ξ) ,

and from the instability criterion it follows thatΦ(0,t)
decreases exponentially fast ast → ∞. Therefore, the
values sup

t∈[0,T ]

HU (B∗Φ(0,t)∗ξ) converge asT → ∞,

and the convergence of bodies̃D (T ) → D∞, takes
place, where

HD∞(ξ) = sup
t∈[0,∞]

HU (B∗Φ(0,t)∗ξ) .

Thus, we have the asymptotical equality:

D (T ) ∼ Φ(T,0)D∞.

In the view of the behavior of shapes of the reach-
able sets, there is an essential difference between sta-
ble and unstable cases. In the unstable case, shapes
ShD (T ) converge asT →∞, while, for stable system,
the curveT → ShD (T ) is reeled on a limit cycle.

Note that the above considerations admit an exten-
sion to almost periodic systems.

Yet another choiceC(T ) = Φ({T},T ), where{T}
is the fractional part ofT , of a normalizing matrix fac-
tor seems also reasonable. It is easy to see at that rate,
that the limit normalized bodyD∞ = D∞(T ) depends
on time periodically. This choice of the matrix factor
fits better the general case, when stable, unstable and
neutral components are present.

Neutral Case. Assume that system (1) is neutral,
meaning that the spectrum of the monodromy matrix
M = Φ(1,0) rests on the unit circle. Consider the Jor-
dan decomposition

M = UD = eN+D,

whereD is a diagonalizable matrix of the same spec-
trum that the matrixM has,D is such a diagonalizable
real matrix thatD = eD, N is a nilpotent matrix, and
ND = DN. As is well known, there exists a matrix
F = F(N,T ) with the following properties:

FNF−1 = T−1N, FD = DF,

andF∞ = F∞(N) = lim
T→+∞

F(N,T ) is defined.

Put

N(T ) = Φ(T,0)NΦ(0,T ), D(T ) = Φ(T,0)DΦ(0,T ).

It is easy to see thatN(T ) andD(T ) are periodic func-
tions of T , since matricesN and D commute with
M = Φ(1,0). Matrix function

F∞(N(T )) = Φ(T,0)F∞(N)Φ(0,T )

is also continuous and periodic. Functionφ given by
formula

φ(T,t) = e(t−T )[N(T )+D(T )]Φ(T,t), (6)

is periodic inT andt. Define the matrix factor

C(T ) = F(N(T ),T )eT [N(T )+D(T)]

and consider the normalized set

D̃ (T )
def
= C(T )D (T ).

It is easy to see that

H
D̃ (T)

(ξ) = supH
(
g1

T (t)
)

= supH
(
g2

T (t)
)

= supH (gT (t))+ o(1),
(7)

where sup is taken overt ∈ [0,T ], H = HU and

g1
T (t) = B∗φ(T,t)∗et(N∗(T )+D∗(T))F(N(T ),T )∗ξ,

g2
T (t) = B∗φ(T,t)∗F(N(T ),T )∗e

t
T N∗(T)+tD∗(T )ξ,

gT (t) = B∗φ(T,t)∗F∞(N(T ))∗e
t
T N∗(T )+tD∗(T )ξ.

The last termo(1) in (7) appears on account of the
difference betweenF(T ) andF∞(N(T )). Since other
matrices involved ing2

T (t) are uniformly bounded, the
difference of the arguments comes too(1).

Consider the following function of two arguments
T andL:

I(L,T ) = sup
t∈[0,L]

fT (t, t,τ) =

= sup
t∈[0,L]

HU

(
B∗φ(T,t)∗F∞(N(T ))∗e

t
L N∗(T )+tD∗(T )ξ

)
.
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Function fT (t, t,τ), wheret = etD(T ), τ = t/L, is pe-
riodic in t and depends on the parameterT periodi-
cally as well. By using the Hermann Weyl averaging
method (Weyl, 1938; Weyl, 1939; Arnold, 1989), like
in (Goncharova and Ovseevich, 2007), we obtain the
asymptotic representation

I(L,T ) = sup
T ×J

fT (t, t,τ)+ o(1) (8)

as L → ∞, whereo(1) is small uniformly inT . In
formula (8), the intervalJ = [0,1] and a torusT =
T (T ) are involved. The torus is the closure of the
one-parameter subgroup{(e2πit ,etD(T ))} in the group
S1×GL(V). Notice that the torus

T (T ) = Φ(T,0)T (0)Φ(0,T )

depends onT continuously and periodically. The
torus can be naturally represented as a fibre bundle
over the circle, at that the fibre overe2πiT ∈ S1 is
the closure of the cyclic group generated by matrix
eD(T ) ∈ GL(V).

It is clear that

I(T ) = sup
T ×J

fT (t, t,τ)

is a periodic function of parameterT . Hence, for large
L,

I(L,T ) = I(T )+ o(1)

is a periodic function ofT up to o(1). In particular,
this is true forL = T and largeT . From this we con-
clude that the curveT 7→ ShD (T ) is periodic up to
o(1), i.e. it is reeled on a limit cycle.

Stable-neutral Case. Suppose that system (1) is
stable-neutral. This means that fundamental matrix
admits a polynomial estimate:

|Φ(T,t)| = O(1+ |T − t|n) asT − t → +∞.

It is not difficult to obtain the criterion of stable-
neutrality: system (1) is stable-neutral iff the spec-
trum of the monodromy matrixM = Φ(1,0) is con-
tained in the closed unit disk of the complex plane.

Consider the canonical decomposition of the mon-
odromy matrixM = Φ(1,0)

M = M0⊕M−

into the stable and neutral components (in accordance
with the relations|λ| < 1, |λ| = 1 for eigenvalues),
and the corresponding decomposition of phase space:

V = V0⊕V−.

For an arbitrary time momentT , the monodromy ma-
trix

M(T ) = Φ(T +1,T ) = Φ(T,0)MΦ(0,T )

depends onT periodically. The corresponding de-
composition

V(T ) = V0(T )⊕V−(T ).

is also periodic inT .
The scaling matric factorC(T ) can be taken in the

block-diagonal form

C(T ) = C0(T )⊕C−(T ),

whereCi(T ) : Vi(T ) → Vi(T ) are given by formulas

C0(T ) = F(N(T ),T ), C−(T ) = I.

The support functionH
D̃ (T )

(ξ) of the normalized

bodyD̃ (T )
def
= C(T )D (T ) is as follows

H
D̃ (T )

(ξ) = sup
t∈[0,T ]

fT (t) = sup
t∈[0,T ]

HU(gT (t)), (9)

gT (t) = B∗Φ(T,t)∗ξ−+

B∗φ(T,t)∗e(T−t)(N∗(T )+D∗(T ))F(N(T ),T )∗ξ0,

ξi = ξi(T )∈Vi(T )∗, i∈ {−,0} are components of the
canonical decomposition of a vectorξ ∈ V∗, and the
periodic in both arguments functionφ(T,t) is defined
in (6). Notice that in the generic case, matrixF is the
identity one, and therefore, the formula for the sup-
port function is just as simple as (3):

H
D̃ (T )

(ξ) = sup
t∈[0,T ]

HU (B∗Φ(T,t)∗ξ) .

To studyH
D̃ (T )

(ξ) asT → ∞ let us apply the decom-
position method like in the autonomous case (Gon-
charova and Ovseevich, 2007). Owing to the basic
commutativity relations for matricesF , N, andD, we
have

e(T−t)(N∗(T )+D∗(T ))F(N(T ),T )∗ξ0 =

= F(N(T ),T )∗e
T−t

T N∗(T )+(T−t)D∗(T )ξ0,

and, thus, we have the uniform asymptotic equality

Φ(T,t)∗F(N(T ),T )∗ξ0 =

φ(T,t)∗F∞(N(T ))∗e
T−t

T N∗(T )+(T−t)D∗(T )ξ0 + o(1)

as T → ∞. Like in (Goncharova and Ovseevich,
2007), we divide the time intervalI = [0,T ] into the
two subintervals

I = I0∪ I− = [0,(1− ε)T ]∪ [(1− ε)T,T ],

where ε = ε(T ) is such thatε(T ) = o(1), while
ε(T )T → ∞ asT → ∞. By adopting arguments from
(Goncharova and Ovseevich, 2007), we obtain the
asymptotic equality

H
D̃ (T )

(ξ) = max{H−0(T,ξ),H0(T,ξ)}+ o(1), (10)
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where in accordance with notations (9)

H−0 = sup
t∈I−

fT (t)+ o(1) = sup
t∈(−∞,T ]

HU(g−0T (t)),

whereg−0T (t) stands for

B∗Φ(T,t)∗ξ− + B∗φ(T,t)∗F∞(N(T ))∗e(T−t)D∗(T )ξ0,

while

H0 = sup
t∈I0

fT (t)+ o(1) = sup
t∈R,τ∈[0,1]

HU(g0T ),

whereg0T (t,τ) stands for

B∗φ(T,t)∗F∞(N(T ))∗eτN∗(T )+(T−t)D∗(T )ξ0.

FunctionsH−0(T,ξ) andH0(T,ξ) are periodic inT ,
and convex, homogeneous inξ. From this it fol-
lows thatHi(T,ξ), i = −0,0, are the support func-
tions of some convex compact setsΩ−0(T ) ⊂ V(T )
and Ω0(T ) ⊂ V0(T ), which periodically depend on
T . Furthermore, the convex compact

Ω(T ) = Ω−0(T )∗Ω0(T ) ⊂ V(T ),

andΩ0(T )) is a body with the support function

max{H−0(T,ξ),H0(T,ξ)},

and also periodically depends onT . Here, we use the
join notation:

Ω = Ω′ ∗Ω′′,

meaning thatΩ is the convex hull of the union
Ω′⋃Ω′′, or what is the sameHΩ = max{HΩ′ ,HΩ′′}.
Thus, the curveT 7→ D̃ (T ) is reeled on the limit cycle
T 7→ Ω(T ).

Unstable-neutral Case. Similarly to stable-neutral
case, fundamental matrix admits a polynomial esti-
mate

|Φ(T,t)| = O(1+ |T − t|n) as T − t →−∞.

System (1) is unstable-neutral iff the spectrum of the
monodromy matrixM = Φ(1,0) is contained in the
closed complement of the unit disk of the complex
plane. In this case, the normalizing matrix factor
C(T ) can be taken in the block-diagonal form:

C(T ) = C0(T )⊕C+(T ),

whereCi(T ) : Vi(T )→Vi(T ) are defined by formulas

C0(T ) = F(N(T ),T ), C+(T ) = Φ({T},T ).

We note in passing that if we putC+(T ) = Φ(0,T ),
then the block-diagonal structure of the normalizing
matrix would be lost, since, in general,Φ(0,T ) do
not mapV+(T ) into itself.

The support functionH
D̃ (T )

(ξ) of the normalized

bodyD̃ (T )
def
= C(T )D (T ) is similar to (9):

sup
t∈[0,T ]

HU(B∗Φ({T},t)∗ξ+ + B∗φ(T,t)∗×

×e(T−t)(N∗(T )+D∗(T ))F(N(T ),T )∗ξ0),

and like in (10) we have the asymptotics

H
D̃ (T )

(ξ) = max{H+0(T,ξ),H0(T,ξ)}+ o(1),

whereH+0(T,ξ) = sup
t∈[0,∞)

HU(g+0T (t)), and

g+0T (t) = B∗Φ({T},t)∗ξ++

+B∗φ(T,t)∗F∞(N(T ))∗eN(T )∗e(T−t)D∗(T )ξ0.

The essential difference, in contrast to stable-neutral
situation, consists of that, on this occasion, func-
tion H+0(T,ξ) is not periodic inT , however, it be-
comes periodic by the transformation of variable
ξ0 7→ eT D∗(T )ξ0. Geometrically, this means that the
asymptotic equality

D̃ (T ) ∼ p(tT )Ω+0(T )∗Ω0(T ) asT → ∞,

holds, wheretT = (e2πiT ,eT D(T )) is an element of the
torusT (T ), matrixp(tT ) = eTD(T ) is the second com-
ponent oftT , Ωα(T ) are periodically depending on
time convex compacts in spacesVα(T ), α ∈ {+0,0}.

Thus, the limit behavior of the normalized reach-
able sets̃D (T ) is the same as the behavior of the curve
T 7→ tT . The closure of the curve might have an ar-
bitrary large dimension so that the curve is reeled on
a multidimensional manifold. Still, the shapes of the
reachable sets ShD (T ) have a simpler behavior, since
ShD (T ) ∼ Sh(Ω+0(T )∗Ω0(T )), and, therefore, the
curveT 7→ ShD (T ) is reeled on a limit cycle of di-
mension not greater than 1.

General Case. The general result can be obtained
by using the decomposition method (see (Goncharova
and Ovseevich, 2007)) and the considered above
cases. Consider the canonical decomposition of the
monodromy matrixM = Φ(1,0)

M = M+ ⊕M0⊕M−

into the unstable, neutral, and stable components ( in
accordance with the relations|λ| < 1, |λ|> 1, |λ| = 1
for eigenvalues), and the corresponding decomposi-
tion of phase space

V = V+ ⊕V0⊕V−.

For an arbitrary time momentT , the monodromy ma-
trix

M(T ) = Φ(T +1,T) = Φ(T,0)MΦ(0,T )
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depends onT periodically, so does the corresponding
decomposition of phase space

V = V+(T )⊕V0(T )⊕V−(T ).

In the general case, the scaling matric factorC(T ) can
be chosen in the block-diagonal form

C(T ) = C+(T )⊕C0(T )⊕C−(T ),

whereCi(T ) : Vi(T ) → Vi(T ) are given by formulas

C+(T ) = Φ({T},T ),

C0(T ) = F(N(T ),T ), C−(T ) = I.

The normalized bodỹD (T ) = C(T )D (T ) has the fol-
lowing asymptotics

D̃ (T ) ∼ p(t)Ω+0(T )∗Ω0(T )∗Ω−0(T ) (11)

as T → ∞, wheret = (e2πiT ,eT D(T )) is an element
of the torusT (T ), matrix p(t) = eTD(T ) is the sec-
ond component oft, Ωα(T ) are periodically depend-
ing on time convex compacts inVα(T ), α ∈ {+0,0}.
Asymptotic equality (11) can be naturally interpreted
in the terms of attractors in spaceS of shapes of con-
vex bodies. Define a fibre bundle over circleP → S1

as follows:

P = {(e2πiT ,eT D(T )z) ∈ S1×GL(V) : z ∈ Z (T )},

(e2πiT ,eT D(T )z) 7→ e2πiT ,

whereZ (T ) is the closure in GL(V) of a cyclic group
generated by matrixeD(T ). Then, the relation (11) as-
serts that the totalityA of all the limit shapes of the
reachable sets (attractor) is parameterized by the set
P : there is a continuous mapσ from P ontoA . At
that, in the limit, the curveT 7→ ShD (T ) is parame-
terized by the curveT 7→ tT = (e2πiT ,eT D(T )) in P in
the sense that

ShD (T ) ∼ σ(tT )

asT → ∞.
This asymptotic equality is an incarnation of (11)

and the main result of the paper. It says that the limit
dynamics of the shapes ShD (T ) can be described via
the “straight winding”T 7→ tT in the toric bundleP .

4 CONCLUSIONS

In this paper we determined completely the asymp-
totic behavior of reachable sets to periodic linear dy-
namic systems with impulsive control. This is just a
single step in the long road directed to understanding
the limit behavior of reachable sets for general linear
systems. Still, our results for the periodic case suggest
a reasonable conjectural description of this behavior.
In fact, it is possible to state a precise conjecture per-
taining to the quasi-periodic case.
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