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Abstract: Resource allocation problems are concerned with the allocation of limited resources among competing ac-
tivities so as to achieve the best performances. In systems which serve many usersthere is a need to respect
some fairness rules while looking for the overall efficiency. The so-called Max-Min Fairness is widely used to
meet these goals. However, allocating the resource to optimize the worst performance may cause a dramatic
worsening of the overall system efficiency. Therefore, several other fair allocation schemes are searched and
analyzed. In this paper we focus on mean-equity approaches which quantify the problem in a lucid form of two
criteria: the mean outcome representing the overall efficiency and a scalar measure of inequality of outcomes
to represent the equity (fairness) aspects. The mean-equity model is appealing to decision makers and allows
a simple trade-off analysis. On the other hand, for typical dispersion indices used as inequality measures, the
mean-equity approach may lead to inferior conclusions with respect to the outcomes maximization (system
efficiency). Some inequality measures, however, can be combined with the mean itself into optimization cri-
teria that remain in harmony with both inequality minimization and maximization of outcomes. In this paper
we introduce general conditions for inequality measures sufficient to provide such an equitable consistency.
We verify the conditions for the basic inequality measures thus showing how they can be used not leading to
inferior distributions of system outcomes.

1 INTRODUCTION

Resource allocation problems are concerned with the
allocation of limited resources among competing ac-
tivities (Ibaraki and Katoh, 1988). In this paper, we
focus on approaches that, while allocating resources
to maximize the system efficiency, they also attempt
to provide a fair treatment of all the competing ac-
tivities (Luss, 1999). The problems of efficient and
fair resource allocation arise in various systems which
serve many users, like in telecommunication systems
among others. In networking a central issue is how
to allocate bandwidth to flows efficiently and fairly
(Bonald and Massoulie, 2001; Denda et al., 2000;
Kleinberg et al., 2001; Pióro and Medhi, 2004). In
location analysis of public services, the decisions of-
ten concern the placement of a service center or an-
other facility in a position so that the users are treated
fairly in an equitable way, relative to certain criteria
(Ogryczak, 2000). Recently, several research publica-
tions relating the fairness and equity concepts to the
multiple criteria optimization methodology have ap-

peared (Kostreva et al., 2004; Luss, 1999).
The generic resource allocation problem may be

stated as follows. Each activity is measured by an
individual performance function that depends on the
corresponding resource level assigned to that activ-
ity. A larger function value is considered better, like
the performance measured in terms of quality level,
capacity, service amount available, etc. Models with
an (aggregated) objective function that maximizes the
mean (or simply the sum) of individual performances
are widely used to formulate resource allocation prob-
lems, thus defining the so-called mean solution con-
cept. This solution concept is primarily concerned
with the overall system efficiency. As based on aver-
aging, it often provides solution where some smaller
services are discriminated in terms of allocated re-
sources. An alternative approach depends on the so-
called Max-Min solution concept, where the worst
performance is maximized. The Max-Min approach
is consistent with Rawlsian (Rawls, 1971) theory of
justice, especially when additionally regularized with
the lexicographic order. The latter is called the Max-
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Min Fairness (MMF) and commonly used in network-
ing (Pióro and Medhi, 2004; Ogryczak et al., 2005).
Allocating the resources to optimize the worst perfor-
mances may cause, however, a large worsening of the
overall (mean) performances. Therefore, there is a
need to seek a compromise between the two extreme
approaches discussed above.

Fairness is, essentially, an abstract socio-political
concept that implies impartiality, justice and equity
(Rawls and Kelly, 2001; Young, 1994), Neverthe-
less, fairness was frequently quantified with the so-
called inequality measures to be minimized (Atkin-
son, 1970; Rothschild and Stiglitz, 1973). Unfortu-
nately, direct minimization of typical inequality mea-
sures contradicts the maximization of individual out-
comes and it may lead to inferior decisions. In or-
der to ensure fairness in a system, all system entities
have to be equally well provided with the system’s
services. This leads to concepts of fairness expressed
by the equitable efficiency (Kostreva and Ogryczak,
1999; Luss, 1999). The concept of equitably effi-
cient solution is a specific refinement of the Pareto-
optimality taking into account the inequality mini-
mization according to the Pigou-Dalton approach. In
this paper the use of scalar inequality measures in bi-
criteria models to search for fair and efficient allo-
cations is analyzed. There is shown that properties
of convexity and positive homogeneity together with
some boundedness condition are sufficient for a typi-
cal inequality measure to guarantee that it can be used
consistently with the equitable optimization rules.

2 EQUITY AND FAIRNESS

The generic resource allocation problem may be
stated as follows. There is a system dealing with a set
I of m services. There is given a measure of ser-
vices realization within a system. In applications we
consider, the measure usually expresses the service
quality. In general, outcomes can be measured (mod-
eled) as service time, service costs, service delays as
well as in a more subjective way. There is also given
a setQ of allocation patterns (allocation decisions).
For each servicei ∈ I a function fi(x) of the alloca-
tion patternx ∈ Q has been defined. This function,
called the individual objective function, measures the
outcome (effect)yi = fi(x) of allocationx pattern for
servicei. In typical formulations a larger value of the
outcome means a better effect (higher service qual-
ity or client satisfaction). Otherwise, the outcomes
can be replaced with their complements to some large
number. Therefore, without loss of generality, we can
assume that each individual outcomeyi is to be max-

imized which allows us to view the generic resource
allocation problem as a vector maximization model:

max{f(x) : x ∈ Q} (1)

wheref(x) is a vector-function that maps the decision
spaceX = Rn into the criterion spaceY = Rm, and
Q⊂ X denotes the feasible set.

Model (1) only specifies that we are interested in
maximization of all objective functionsfi for i ∈ I =
{1,2, . . . ,m}. In order to make it operational, one
needs to assume some solution concept specifying
what it means to maximize multiple objective func-
tions. The solution concepts may be defined by prop-
erties of the corresponding preference model. The
preference model is completely characterized by the
relation of weak preference, denoted hereafter with
�. Namely, the corresponding relations of strict pref-
erence≻ and indifference∼= are defined by the fol-
lowing formulas:

y′ ≻ y′′ ⇔ (y′ � y′′ and y′′ 6� y′),

y′ ∼= y′′ ⇔ (y′ � y′′ and y′′ � y′).

The standard preference model related to the Pareto-
optimal (efficient) solution concept assumes that the
preference relation� is reflexive:

y � y, (2)

transitive:

(y′ � y′′ and y′′ � y′′′) ⇒ y′ � y′′′, (3)

andstrictly monotonic:

y+ εei ≻ y for ε > 0; i = 1, . . . ,m, (4)

whereei denotes thei–th unit vector in the criterion
space. The last assumption expresses that for each in-
dividual objective function more is better (maximiza-
tion). The preference relations satisfying axioms (2)–
(4) are called hereafterrational preference relations.
The rational preference relations allow us to formal-
ize the Pareto-optimality (efficiency) concept with the
following definitions. We say that outcome vectory′

rationally dominatesy′′ (y′ ≻r y′′), iff y′ ≻ y′′ for all
rational preference relations�. We say that feasible
solutionx ∈ Q is aPareto-optimal (efficient)solution
of the multiple criteria problem (1), iffy = f(x) is ra-
tionally nondominated.

Simple solution concepts for multiple criteria
problems are defined by aggregation (or utility) func-
tionsg : Y → R to be maximized. Thus the multiple
criteria problem (1) is replaced with the maximization
problem

max{g(f(x)) : x ∈ Q} (5)
In order to guarantee the consistency of the aggre-
gated problem (5) with the maximization of all indi-
vidual objective functions in the original multiple cri-
teria problem (or Pareto-optimality of the solution),
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the aggregation function must be strictly increasing
with respect to every coordinate.

The simplest aggregation functions commonly
used for the multiple criteria problem (1) are defined
as the mean (average) outcome

µ(y) =
1
m

m

∑
i=1

yi (6)

or the worst outcome

M(y) = min
i=1,...,m

yi . (7)

The mean (6) is a strictly increasing function while
the minimum (7) is only nondecreasing. Therefore,
the aggregation (5) using the sum of outcomes always
generates a Pareto-optimal solution while the maxi-
mization of the worst outcome may need some addi-
tional refinement. The mean outcome maximization
is primarily concerned with the overall system effi-
ciency. As based on averaging, it often provides a so-
lution where some services are discriminated in terms
of performances. On the other hand, the worst out-
come maximization, ie, the so-called Max-Min solu-
tion concept is regarded as maintaining equity. In-
deed, in the case of a simplified resource allocation
problem with the knapsack constraints, the Max-Min
solution meets the perfect equity requirement. In the
general case, with possibly more complex feasible
set structure, this property is not fulfilled. Never-
theless, if the perfectly equilibrated outcome vector
ȳ1 = ȳ2 = . . . = ȳm is nondominated, then it is the
unique optimal solution of the corresponding Max-
Min optimization problem. In other words, the per-
fectly equilibrated outcome vector is a unique opti-
mal solution of the Max-Min problem if one cannot
find any (possibly not equilibrated) vector with im-
proved at least one individual outcome without wors-
ening any others. Unfortunately, it is not a common
case and, in general, the optimal set to the Max-Min
aggregation may contain numerous alternative solu-
tions including dominated ones. The Max-Min solu-
tion may be then regularized according to the Rawl-
sian principle of justice (Rawls, 1971) which leads
us to the lexicographic Max-Min concepts or the so-
called Max-Min Fairness (Marchi and Oviedo, 1992;
Ogryczak and́Sliwiński, 2006).

In order to ensure fairness in a system, all sys-
tem entities have to be equally well provided with
the system’s services. This leads to concepts of fair-
ness expressed by the equitable rational preferences
(Kostreva and Ogryczak, 1999). First of all, the fair-
ness requires impartiality of evaluation, thus focusing
on the distribution of outcome values while ignoring
their ordering. That means, in the multiple criteria

problem (1) we are interested in a set of outcome val-
ues without taking into account which outcome is tak-
ing a specific value. Hence, we assume that the pref-
erence model is impartial (anonymous, symmetric).
In terms of the preference relation it may be written
as the following axiom

(yπ(1), . . . ,yπ(m)) ∼= (y1, . . . ,ym) ∀π ∈ Π(I) (8)

where Π(I) denotes the set of all permutations of
I . This means that any permuted outcome vector is
indifferent in terms of the preference relation. Fur-
ther, fairness requires equitability of outcomes which
causes that the preference model should satisfy the
(Pigou–Dalton) principle of transfers. The principle
of transfers states that a transfer of any small amount
from an outcome to any other relatively worse–off
outcome results in a more preferred outcome vector.
As a property of the preference relation, the principle
of transfers takes the form of the following axiom

y− εei + εej ≻ y for 0 < ε < yi −y j (9)

The rational preference relations satisfying addition-
ally axioms (8) and (9) are called hereafterfair (equi-
table) rational preference relations. We say that out-
come vectory′ fairly (equitably) dominatesy′′ (y′ ≻e
y′′), iff y′ ≻ y′′ for all fair rational preference relations
�. In other words,y′ fairly dominatesy′′, if there
exists a finite sequence of vectorsy j ( j = 1,2, . . . ,s)
such thaty1 = y′′, ys = y′ andy j is constructed from
y j−1 by application of either permutation of coordi-
nates, equitable transfer, or increase of a coordinate.
An allocation patternx ∈Q is calledfairly (equitably)
efficientor simply fair if y = f(x) is fairly nondomi-
nated. Note that each fairly efficient solution is also
Pareto-optimal, but not vice verse.

In order to guarantee fairness of the solution con-
cept (5), additional requirements on the class of ag-
gregation (utility) functions must be introduced. In
particular, the aggregation function must be addition-
ally symmetric (impartial), i.e. for any permutationπ
of I ,

g(yπ(1),yπ(2), . . . ,yπ(m)) = g(y1,y2, . . . ,ym) (10)

as well as be equitable (to satisfy the principle of
transfers)

g(y1, . . . ,yi − ε, . . . ,y j + ε, . . . ,ym) > g(y1, . . . ,ym)
(11)

for any 0< ε < yi′ − yi′′ . In the case of a strictly
increasing function satisfying both the requirements
(10) and (11), we call the corresponding problem (5)
a fair (equitable) aggregationof problem (1). Every
optimal solution to the fair aggregation (5) of a multi-
ple criteria problem (1) defines some fair (equitable)
solution.

FAIR AND EFFICIENT RESOURCE ALLOCATION - Bicriteria Models for Equitable Optimization

151



Note that both the simplest aggregation functions,
the sum (6) and the minimum (7), are symmetric al-
though they do not satisfy the equitability require-
ment (11). To guarantee the fairness of solutions,
some enforcement of concave properties is required.
For any strictly concave, increasing utility function
u : R→ R, the functiong(y) = ∑m

i=1 u(yi) is a strictly
monotonic and equitable thus defining a family of the
fair aggregations. Various concave utility functions
u can be used to define such fair solution concepts.
In the case of the outcomes restricted to positive val-
ues, one may use logarithmic function thus resulting
in the Proportional Fairness(PF) solution concept
(Kelly et al., 1997). Actually, it corresponds to the
so-called Nash criterion which maximizes the product
of additional utilities compared to the status quo. For
a common case of upper bounded outcomesyi ≤ y∗

one may maximize power functions−∑m
i=1 (y∗−yi)

p

for 1 < p< ∞ which corresponds to the minimization
of the correspondingp-norm distances from the com-
mon upper boundy∗ (Kostreva et al., 2004).
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Figure 1: Structure of the fair dominance:D( ȳ) – the set
fairly dominated by ȳ, S( ȳ) – the set of outcomes fairly
dominating ȳ.

Fig. 1 presents the structure of fair dominance for
two-dimensional outcome vectors. For any outcome
vector ȳ, the fair dominance relation distinguishes set
D( ȳ) of dominated outcomes (obviously worse for all
fair rational preferences) and setS( ȳ) of dominating
outcomes (obviously better for all fair rational prefer-
ences). However, some outcome vectors are left (in
white areas) and they can be differently classified by
various specific fair rational preferences. The MMF
fairness assigns the entire interior of the inner white
triangle to the set of preferred outcomes while clas-
sifying the interior of the external open triangles as
worse outcomes. Isolines of various utility functions
split the white areas in different ways. One may no-

tice that the setD( ȳ) of directions leading to outcome
vectors being dominated by a given̄y is, in general,
not a cone and it is not convex. Although, when we
consider the setS( ȳ) of directions leading to outcome
vectors dominating given̄ywe get a convex set.

3 INEQUALITY MEASURES AND
FAIR CONSISTENCY

Inequality measures were primarily studied in eco-
nomics while recently they become very popular tools
in Operations Research. Typical inequality mea-
sures are some deviation type dispersion characteris-
tics. They aretranslation invariantin the sense that
ρ(y + νe) = ρ(y) for any outcome vectory and real
numberν (wheree vector of units(1, . . . ,1)), thus
being not affected by any shift of the outcome scale.
Moreover, the inequality measures are alsoinequality
relevantwhich means that they are equal to 0 in the
case of perfectly equal outcomes while taking positive
values for unequal ones.

The simplest inequality measures are based on the
absolute measurement of the spread of outcomes, like
themean absolute difference

Γ(y) =
1

2m2

m

∑
i=1

m

∑
j=1

|yi −y j | (12)

or themaximum absolute difference

d(y) = max
i, j=1,...,m

|yi −y j | (13)

In most application frameworks better intuitive appeal
may have inequality measures related to deviations
from the mean outcome like the mean absolute de-
viation

δ(y) =
1
m

m

∑
i=1

|yi −µ(y)| (14)

or themaximum absolute deviation

R(y) = max
i∈I

|yi −µ(y)| (15)

Note that thestandard deviationσ (or thevariance
σ2) represents both the deviations and the spread mea-
surement as

σ2(y) =

∑
i∈I

(yi −µ(y))2

m
=

∑
i∈I

∑
j∈I

(yi −y j)
2

2m2 (16)

Deviational measures may be focused on the down-
side semideviations as related to worsening of out-
come while ignoring upper semideviations related to
improvement of outcome. One may define themaxi-
mum (downside) semideviation

∆(y) = max
i∈I

(µ(y)−yi) (17)
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and themean (downside) semideviation

δ̄(y) =
1
m∑

i∈I
(µ(y)−yi)+ (18)

where(.)+ denotes the nonnegative part of a num-
ber. Similarly, thestandard (downside) semideviation
is given as

σ̄(y) =

√

1
m∑

i∈I
(µ(y)−yi)2

+ (19)

In economics one usually considers relative inequal-
ity measures normalized by mean outcome. Among
many inequality measures perhaps the most com-
monly accepted by economists is the Gini coefficient,
which is the relative mean difference. One can easily
notice that direct minimization of typical inequality
measures (especially the relative ones) may contra-
dict the optimization of individual outcomes resulting
in equal but very low outcomes. As some resolution
one may consider a bicriteria mean-equity model:

max{(µ(f(x)),−ρ(f(x))) : x ∈ Q} (20)

which takes into account both the efficiency with op-
timization of the mean outcomeµ(y) and the eq-
uity with minimization of an inequality measureρ(y).
For typical inequality measures bicriteria model (20)
is computationally very attractive since both the cri-
teria are concave and LP implementable for many
measures. Unfortunately, for any dispersion type in-
equality measures the bicriteria mean-equity model
is not consistent with the outcomes maximization,
and therefore is not consistent with the fair domi-
nance. When considering a simple discrete problem
with two allocation patterns P1 and P2 generating
outcome vectorsy′ = (0,0) andy′′ = (2,8), respec-
tively, for any dispersion type inequality measure one
getsρ(y′′) > 0 = ρ(y′) while µ(y′′) = 5 > 0 = µ(y′).
Hence,y′′ is not bicriteria dominated byy′ and vice
versa. Thus for any dispersion type inequality mea-
sureρ, allocation P1 with obviously worse outcome
vector than that for allocation P2 is a Pareto-optimal
solution in the corresponding bicriteria mean-equity
model (20).

Note that the lack of consistency of the mean-
equity model (20) with the outcomes maximization
applies also to the case of the maximum semidevia-
tion ∆(y) (17) used as an inequality measure whereas
subtracting this measure from the meanµ(y)−∆(y)=
M(y) results in the worst outcome and thereby the
first criterion of the MMF model. In other words, al-
though a direct use of the maximum semideviation in
the mean-equity model may contradict the outcome
maximization, the measure can be used complemen-

tary to the mean leading us to the worst outcome cri-
terion which does not contradict the outcome max-
imization. This construction can be generalized for
various (dispersion type) inequality measures. More-
over, we allow the measures to be scaled with any pos-
itive factor α > 0, in order to avoid creation of new
inequality measures as one could considerρα(X) =
αρ(X) as a different inequality measure. For any in-
equality measureρ we introduce the corresponding
underachievement function defined as the difference
of the mean outcome and the (scaled) inequality mea-
sure itself, i.e.

Mαρ(y) = µ(y)−αρ(y). (21)

This allows us to replace the original mean-equity bi-
criteria optimization (20) with the following bicriteria
problem:

max{(µ(f(x)),µ(f(x))−αρ(f(x))) : x ∈ Q} (22)

where the second objective represents the correspond-
ing underachievement measureMαρ(y) (21). Note
that for any inequality measureρ(y) ≥ 0 one gets
Mαρ(y) ≤ µ(y) thus really expressing underachieve-
ments (comparing to mean) from the perspective of
outcomes being maximized.

We will say that an inequality measureρ is fairly
α-consistentif

y′ �e y′′ ⇒ µ(y′)−αρ(y′) ≥ µ(y′′)−αρ(y′′) (23)

The relation of fair α-consistency will be called
strongif, in addition to (23), the following holds

y′ ≻e y′′ ⇒ µ(y′)−αρ(y′) > µ(y′′)−αρ(y′′). (24)

Theorem 1. If the inequality measureρ(y) is fairly
α-consistent (23), then except for outcomes with iden-
tical values of µ(y) andρ(y), every efficient solution
of the bicriteria problem (22) is a fairly efficient allo-
cation pattern. In the case of strong consistency (24),
every allocation patternx ∈ Q efficient to (22) is, un-
conditionally, fairly efficient.

Proof. Let x0 ∈ Q be an efficient solution of (22).
Suppose thatx0 is not fairly efficient. This means,
there existsx ∈ Q such thaty = f(x) ≻e y0 = f(x0).
Then, it follows µ(y) ≥ µ(y0), and simultaneously
µ(y)−αρ(y) ≥ µ(y0)−αρ(y0), by virtue of the fair
α-consistency (23). Sincex0 is efficient to (22) no in-
equality can be strict, which impliesµ(y) = µ(y0) and
andρ(y) = ρ(y0).

In the case of the strong fairα-consistency (24),
the suppositiony = f(x)≻e y0 = f(x0) impliesµ(y)≥
µ(y0) andµ(y)−αρ(y) > µ(y0)−αρ(y0) which con-
tradicts the efficiency ofx0 with respect to (22).
Hence, the allocation patternx0 is fairly efficient.

FAIR AND EFFICIENT RESOURCE ALLOCATION - Bicriteria Models for Equitable Optimization

153



4 FAIR CONSISTENCY
CONDITIONS

Typical dispersion type inequality measures are con-
vex, i.e. ρ(λy′ +(1−λ)y′′) ≤ λρ(y′)+ (1−λ)ρ(y′′)
for any y′,y′′ and 0≤ λ ≤ 1. Certainly, the under-
achievement functionMαρ(y) must be also monotonic
for the fair consistency which enforces more restric-
tions on the inequality measures. We will show fur-
ther that convexity together with positive homogene-
ity and some boundedness of an inequality measure
is sufficient to guarantee monotonicity of the corre-
sponding underachievement measure and thereby to
guarantee the fairα-consistency of inequality mea-
sure itself.

We say that (dispersion type) inequality measure
ρ(y) ≥ 0 is ∆-boundedif it is upper bounded by the
maximum downside deviation, i.e.,

ρ(y) ≤ ∆(y) ∀y. (25)

Moreover, we say thatρ(y) ≥ 0 is strictly∆-bounded
if inequality (25) is a strict bound, except from the
case of perfectly equal outcomes, i.e.,ρ(y) < ∆(y)
for anyy such that∆(y) > 0.

Theorem 2. Let ρ(y) ≥ 0 be a convex, positively
homogeneous and translation invariant (dispersion
type) inequality measure. Ifαρ(y) is ∆-bounded, then
ρ(y) is fairly α-consistent in the sense of (23).

Proof. The relation of fair dominancey′ �e y′′ de-
notes that there exists a finite sequence of vectors
y0 = y′′,y1, . . . ,yt such thatyk = yk−1− εkei′ + εkei′′ ,
0≤ εk ≤ yk−1

i′ −yk−1
i′′ for k= 1,2, . . . ,t and there exists

a permutationπ such thaty′π(i) ≥ yt
i for all i ∈ I . Note

that the underachievement functionMαρ(y), similar
asρ(y) depends only on the distribution of outcomes.
Further, ify′ ≥ y′′, theny′ = y′′ +(y′− y′′) andy′−
y′′ ≥ 0. Hence, due to concavity and positive homo-
geneity,Mαρ(y′) ≥ Mαρ(y′′)+ Mαρ(y′ − y′′). More-
over, due to the bound (25),Mαρ(y′ − y′′) ≥ µ(y′ −
y′′)−∆(y′−y′′) ≥ µ(y′−y′′)−µ(y′−y′′) = 0. Thus,
Mαρ(y) satisfies also the requirement of monotonic-
ity. Hence,Mαρ(y′) ≥ Mαρ(yt). Further, let us notice
that yk = λȳk−1 + (1− λ)yk−1 whereȳk−1 = yk−1−
(yi′ −yi′′)ei′ +(yi′ −yi′′)ei′′ andλ = ε/(yi′ −yi′′). Vec-
tor ȳk−1 has the same distribution of coefficients as
yk−1 (actually it represents results of swappingyi′

and yi′′ ). Hence, due to concavity ofMαρ(y), one
getsMαρ(yk) ≥ λMαρ(ȳk−1) + (1− λ)Mαρ(yk−1) =

Mαρ(yk−1). Thus,Mαρ(y′)≥ Mαρ(y′′) which justifies
the fairα-consistency ofρ(y).

For strong fair α-consistency some strict
monotonicity and concavity properties of the un-
derachievement function are needed. Obviously,

there does not exist any inequality measure which is
positively homogeneous and simultaneously strictly
convex. However, one may notice from the proof
of Theorem 2 that only convexity properties on
equally distributed outcome vectors are important for
monotonous underachievement functions.

We say that inequality measureρ(y)≥ 0 isstrictly
convex on equally distributed outcome vectors, if

ρ(λy′+(1−λ)y′′) < λρ(y′)+ (1−λ)ρ(y′′)

for 0< λ < 1 and any two vectorsy′ 6= y′′ representing
the same outcomes distribution as somey, i.e., y′ =
(yπ′(1), . . . ,yπ′(m)) π′ andy′′ = (yπ′′(1), . . . ,yπ′′(m)) for
some permutationsπ′ andπ′′, respectively.

Theorem 3. Let ρ(y) ≥ 0 be a convex, positively
homogeneous and translation invariant (dispersion
type) inequality measure. Ifρ(y) is also strictly con-
vex on equally distributed outcomes andαρ(y) is
strictly ∆-bounded, then the measureρ(y) is fairly
stronglyα-consistent in the sense of (24).

Proof. The relation of weak fair dominancey′ �e y′′

denotes that there exists a finite sequence of vectors
y0 = y′′,y1, . . . ,yt such thatyk = yk−1− εkei′ + εkei′′ ,
0≤ εk ≤ yk−1

i′ −yk−1
i′′ for k= 1,2, . . . ,t and there exists

a permutationπ such thaty′π(i) ≥ yt
i for all i ∈ I . The

strict fair dominancey′ ≻e y′′ means thaty′π(i) > yt
i for

somei ∈ I or at least oneεk is strictly positive. Note
that the underachievement functionMαρ(y) is strictly
monotonous and strictly convex on equally distributed
outcome vectors. Hence,Mαρ(y′) > Mαρ(y′′) which
justifies the fair strongα-consistency of the measure
ρ(y).

The specific case of fair 1-consistency is also
called the mean-complementary fair consistency.
Note that the fairᾱ-consistency of measureρ(y) ac-
tually guarantees the mean-complementary fair con-
sistency of measureαρ(y) for all 0 < α ≤ ᾱ, and the
same remain valid for the strong consistency proper-
ties. It follows from a possible expression ofµ(y)−
αρ(y) as the convex combination ofµ(y)− ᾱρ(y) and
µ(y). Hence, for anyy′ �e y′′, due toµ(y′) ≥ µ(y′′)
one getsµ(y′)−αρ(y′) ≥ µ(y′′)−αρ(y′′) in the case
of the fair ᾱ-consistency of measureρ(y) (or respec-
tive strict inequality in the case of strong consistency).
Therefore, while analyzing specific inequality mea-
sures we seek the largest valuesα guaranteeing the
corresponding fair consistency.

As mentioned, typical inequality measures are
convex and many of them are positively homoge-
neous. Moreover, the measures such as the mean ab-
solute (downside) semideviation̄δ(y) (18), the stan-
dard downside semideviation̄σ(y) (19), and the mean
absolute differenceΓ(y) (12) are∆-bounded. Indeed,
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one may easily notice thatµ(y)−yi ≤ ∆(y) and there-
fore δ̄(y) ≤ 1

m ∑i∈I ∆(y) = ∆(y), σ̄(y) ≤
√

∆(y)2 =

∆(y) andΓ(y) = 1
m2 ∑i∈I ∑ j∈I (max{yi,y j}−µ(y)) ≤

∆(y). Actually, all these inequality measures are
strictly ∆-bounded since for any unequal outcome
vector at least one outcome must be below the
mean thus leading to strict inequalities in the above
bounds. Obviously,∆-bounded (but not strictly) is
also the maximum absolute downside deviation∆(y)
itself. This allows us to justify the maximum down-
side deviation∆(y) (17), the mean absolute (down-
side) semideviation̄δ(y) (18), the standard down-
side semideviation̄σ(y) (19) and the mean absolute
difference Γ(y) (12) as fairly 1-consistent (mean-
complementary fairly consistent) in the sense of (23).

We emphasize that, despite the standard semide-
viation is a fairly 1-consistent inequality measure, the
consistency is not valid for variance, semivariance
and even for the standard deviation. These measures,
in general, do not satisfy the all assumptions of The-
orem 2. Certainly, we have enumerated only the sim-
plest inequality measures studied in the resource allo-
cation context which satisfy the assumptions of The-
orem 2 and thereby they are fairly 1-consistent. The-
orem 2 allows one to show this property for many
other measures. In particular, one may easily find
out that any convex combination of fairlyα-consistent
inequality measures remains also fairlyα-consistent.
On the other hand, among typical inequality measures
the mean absolute difference seems to be the only one
meeting the stronger assumptions of Theorem 3 and
thereby maintaining the strong consistency.

As mentioned, the mean absolute deviation is
twice the mean absolute downside semideviation
which means thatαδ(y) is ∆-bounded for any 0< α≤
0.5. The symmetry of mean absolute semideviations
δ̄(y) = ∑i∈I (yi − µ(y))+ = ∑i∈I (µ(y)− yi)+ can be
also used to derive some∆-boundedness relations for
other inequality measures. In particular, one may find
out that form-dimensional outcome vectors of un-
weighted problem, any downside semideviation from
the mean cannot be larger thanm−1 upper semidevi-
ations. Hence, the maximum absolute deviation satis-
fies the inequality 1

m−1R(y) ≤ ∆(y), while the maxi-

mum absolute difference fulfills1md(y)≤ ∆(y). Simi-
larly, for the standard deviation one gets1√

m−1
δ(y)≤

∆(y). Actually, ασ(y) is strictly ∆-bounded for any
0 < α ≤ 1/

√
m−1 since for any unequal outcome

vector at least one outcome must be below the mean
thus leading to strict inequalities in the above bounds.
These allow us to justify the mean absolute semidevi-
ation with 0< α ≤ 0.5, the maximum absolute devia-
tion with 0< α ≤ 1

m−1, the maximum absolute differ-

ence with 0< α ≤ 1
m and the standard deviation with

0 < α ≤ 1√
m−1

as fairlyα-consistent within the spec-
ified intervals ofα. Moreover, theα-consistency of
the standard deviation is strong.

Table 1: Fair consistency results.

Measure α–consistency

Mean abs. semidev. δ̄(y) (18) 1
Mean abs. dev. δ(y) (14) 0.5
Max. semidev. ∆(y) (17) 1
Max. abs. dev. R(y) (15) 1

m−1
Mean abs. diff. Γ(y) (12) 1 strong
Max. abs. diff. d(y) (13) 1

m
Standard semidev. σ̄(y) (19) 1
Standard dev. σ(y) (16) 1√

m−1
strong

The fair consistency results for basic dispersion type
inequality measures considered in resource alloca-
tion problems are summarized in Table 1 whereα
values are given and the strong consistency is indi-
cated. Table 1 points out how the inequality measures
can be used in resource allocation models to guar-
antee their harmony both with outcome maximiza-
tion (Pareto-optimality) and with inequalities mini-
mization (Pigou-Dalton equity theory). Exactly, for
each inequality measure applied with the correspond-
ing valueα from Table 1 (or smaller positive value),
every efficient solution of the bicriteria problem (22),
ie. max{(µ(f(x)),µ(f(x))−αρ(f(x))) : x ∈ Q}, is a
fairly efficient allocation pattern, except for outcomes
with identical values ofµ(y) andρ(y). In the case of
strong consistency (as for mean absolute difference or
standard deviation), every solutionx ∈ Q efficient to
(22) is, unconditionally, fairly efficient.

The consistency results summarized in Table 1 are
sufficient conditions. This means that whenever theα
limit is observed the corresponding consistency rela-
tion is valid for any problem. It may happen that for
a specific problem instance and a specific inequality
measure the fair consistency is valid for larger values
of α. Nevertheless, we have provided strict bounds
in the sense that for a larger value ofα there exists a
resource allocation problem on which the fair consis-
tency is not valid, and the bicriteria problem (22) may
generate dominated solution.

5 CONCLUSIONS

The problems of efficient and fair resource allocation
arise in various systems which serve many users. Fair-
ness is, essentially, an abstract socio-political concept
that implies impartiality, justice and equity. Neverthe-
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less, in operations research it was quantified with var-
ious solution concepts (Denda et al., 2000). The eq-
uitable optimization with the preference structure that
complies with both the efficiency (Pareto-optimality)
and with the Pigou-Dalton principle of transfers may
be used to formalize the fair solution concepts. Mul-
tiple criteria models equivalent to equitable optimiza-
tion allows to generate a variety of fair and efficient
resource allocation patterns (Kostreva et al., 2004;
Ogryczak et al., 2008).

In this paper we have analyzed how scalar inequal-
ity measures can be used to guarantee the fair consis-
tency. It turns out that several inequality measures can
be combined with the mean itself into the optimiza-
tion criteria generalizing the concept of the worst out-
come and generating fairly consistent underachieve-
ment measures. We have shown that properties of
convexity and positive homogeneity together with be-
ing bounded by the maximum downside semidevia-
tion are sufficient for a typical inequality measure to
guarantee the corresponding fair consistency. It al-
lows us to identify various inequality measures which
can be effectively used to incorporate fairness fac-
tors into various resource allocation problems while
preserving the consistency with outcomes maximiza-
tion. Among others, the standard semideviation and
the mean semideviation turn out to be such a consis-
tent inequality measure while the mean absolute dif-
ference is strongly consistent.

Our analysis is related to the properties of solu-
tions to resource allocation models. It has been shown
how inequality measures can be included into the
models avoiding contradiction to the maximization of
outcomes. We do not analyze algorithmic issues for
the specific resource allocation problems. Generally,
the requirement of convexity necessary for the consis-
tency, guarantees that the corresponding optimization
criteria belong to the class of convex optimization, not
complicating the original resource allocation model
with any additional discrete structure. Many of the in-
equality measures, we analyzed, can be implemented
with auxiliary linear programming constraints. Nev-
ertheless, further research on efficient computational
algorithms for solving the specific models is neces-
sary.
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