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Abstract: Resource allocation problems are concerned with the allocation of limited resources among competing ac-
tivities so as to achieve the best performances. In systems which serve many usersthere is a need to respect
some fairness rules while looking for the overall efficiency. The so-called Max-Min Fairness is widely used to
meet these goals. However, allocating the resource to optimize the worst performance may cause a dramatic
worsening of the overall system efficiency. Therefore, several other fair allocation schemes are searched and
analyzed. In this paper we focus on mean-equity approaches which quantify the problem in a lucid form of two
criteria: the mean outcome representing the overall efficiency and a scalar measure of inequality of outcomes
to represent the equity (fairness) aspects. The mean-equity model is appealing to decision makers and allows
a simple trade-off analysis. On the other hand, for typical dispersion indices used as inequality measures, the
mean-equity approach may lead to inferior conclusions with respect to the outcomes maximization (system
efficiency). Some inequality measures, however, can be combined with the mean itself into optimization cri-
teria that remain in harmony with both inequality minimization and maximization of outcomes. In this paper
we introduce general conditions for inequality measures sufficient to provide such an equitable consistency.
We verify the conditions for the basic inequality measures thus showing how they can be used not leading to
inferior distributions of system outcomes.

1 INTRODUCTION peared (Kostreva et al., 2004; Luss, 1999).
The generic resource allocation problem may be

Resource allocation problems are concerned with the.s'tatecj as follows. Each activity is measured by an

allocation of limited resources among competing ac- individual pgrformance function th.at depends on the
tivities (Ibaraki and Katoh, 1988). In this paper, we _correspondlng resource Ie\(el aSS|_gned to that activ-
focus on approaches that, while allocating resources'ty' A larger function value is considered better, like

to maximize the system efficiency, they also attempt g;e gg:forsme?\zgg ?g?ﬁﬁ{igﬂ;g{g‘zg ?\xggteylslaﬁrl]’
to provide a fair treatment of all the competing ac- pacity, o

tivities (Luss, 1999). The problems of efficient and ;ne;g?(;regiﬁe?) ?hbéescjlr\:s ETESR?JS:: rgar‘]z(c;rrnnfaiscg]se
fair resource allocation arise in various systems which are widel usgdyto formulate resource aFI)Iocation rob-
serve many users, like in telecommunication systems y P

: : ; lems, th fining th -called mean solution con-
among others. In networking a central issue is how ems, thus defining the so-called mean solution co

to allocate bandwidth to flows efficiently and fairly cept. This solution concept Is primarily concerned
(Bonald and Massoulie, 2001; Denda et al., 2000; with the overall system efficiency. As based on aver-

Kleinberg et al., 2001: Pioro and Medhi, 2004). In aging, it often provides solution where some smaller

. ¢ . . - rvi re discriminated in terms of allocated re-
location analysis of public services, the decisions of- Zﬁurgeess i\ﬁ e?ltse(;nativ: :d roa?:h dse Oer?dgf)i ?ﬁe zo
ten concern the placement of a service center or an- ) PP P

other facility in a position so that the users are treated Cglrl]%drm'\gi);v'i? rﬁg%gﬁgegonfﬁgtkﬂg:_i;?n tge \:\éoar;t]
fairly in an equitable way, relative to certain criteria P : PP

(Ogryczak, 2000). Recently, several research publica—!s consistent W'th Rawisian (Rawls, 1971) t'heory.of
tions relating the faimess and equity concepts to the lustice, especially when additionally regularized with

multiple criteria optimization methodology have ap- the lexicographic order. The latter is called the Max-
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Min Fairness (MMF) and commonly used in network- imized which allows us to view the generic resource
ing (Pi6ro and Medhi, 2004; Ogryczak et al., 2005). allocation problem as a vector maximization model:
Allocating the resources to optimize the worst perfor- max {f(x) : x € Q} 1)
mances may cause, however, a large worsening of the , , O
overall (mean) performances. Therefore, there is a Wheref(x) is a'vector—fun'cnoln that maps the decision
need to seek a compromise between the two extremeSPaceX = R" into the criterion spac¥ = R", and
approaches discussed above. Q C X denotes the feasible set. _ _
Fairness is, essentially, an abstract socio-political “’,'0‘?'9' (1) only speqﬁgs that we are mtgrested n
concept that implies impartiality, justice and equity MaXimization of all objective functionf fori € I =
(Rawls and Kelly, 2001; Young, 1994), Neverthe- {1,2,...,m}. In order to make it operational, one
less, fairness was frequently quantified with the so- needs to assume some SO'U“OF‘ concgpt_spemfymg
called inequality measures to be minimized (Atkin- What it means to maximize multiple objective func-
son, 1970; Rothschild and Stiglitz, 1973). Unfortu- “OF‘S- The solution conce'pts may be defined by prop-
nately, direct minimization of typical inequality mea- €'li€S Of the corresponding preference model. The
sures contradicts the maximization of individual out- prefgrence model is completely characterized by t.he
comes and it may lead to inferior decisions. In or- 'elation of weak preference, denoted hereafter with
der to ensure fairness in a system, all system entities=" Namely, thg cgrrespondlng relat'lons gistrict pref-
have to be equally well provided with the system’s erence and indifference= afe defined,by the fol-
services. This leads to concepts of fairness expressed®Wing formulas:
by the equitable efficiency (Kostreva and Ogryczak, Y=y & (Y=y' and y'#Y),
1999; Luss, 1999). The concept of equitably effi- yy' = Y=y’ and y' =y
cient solution is a specific refinement of the Pareto-
optimality taking into account the inequality mini-
mization according to the Pigou-Dalton approach. In
this paper the use of scalar inequality measures in bi-
criteria models to search for fair and efficient allo- y=y, (2)
c?tions is anal)(/jzed. _ Ther:e is shown that prr]oper_tiﬁstransitive
of convexity and positive homogeneity together wit
some boun)élednepss condition a?e suﬁ)i/cie%t for a typi- ('=y" and y'=y") = y=y" ()
cal inequality measure to guarantee that it can be usedandstrictly monotonic
consistently with the equitable optimization rules. y+eg=y fore>0;i=1,....m (4)

The standard preference model related to the Pareto-
optimal (efficient) solution concept assumes that the
preference relatiok is reflexive

whereg denotes thé-th unit vector in the criterion
space. The last assumption expresses that for each in-
2 EQUITY AND FAIRNESS dividual objective function more is better (maximiza-
tion). The preference relations satisfying axioms (2)—
The generic resource allocation problem may be (4) are called hereafteational preference relations
stated as follows. There is a system dealing with a set The rational preference relations allow us to formal-
| of m services. There is given a measure of ser- ize the Pareto-optimality (efficiency) concept with the
vices realization within a system. In applications we following definitions. We say that outcome vecyor
consider, the measure usually expresses the servicdationally dominateg” (y' - y"), iff y' ~ y” for all
qua”ty_ In generaL outcomes can be measured (mod-rational preference reIation§. We say that feasible
eled) as service time, service costs, service delays agolutionx € Q is aPareto-optimal (efficientjolution
well as in a more subjective way. There is also given of the multiple criteria problem (1), ify = f(x) is ra-
a setQ of allocation patterns (allocation decisions). tionally nondominated.
For each servicee | a functionf;j(x) of the alloca- Simple solution concepts for multiple criteria
tion patternx € Q has been defined. This function, Problems are defined by aggregation (or utility) func-
called the individual objective function, measures the tionsg:Y — Rto be maximized. Thus the multiple
outcome (effecty; = fi(x) of allocationx pattern for criteria problem (1) is replaced with the maximization
servicei. In typical formulations a larger value of the ~Problem
outcome means a better effect (higher service qual- max{g(f(x)) : x € Q} (5)
ity or client satisfaction). Otherwise, the outcomes In order to guarantee the consistency of the aggre-
can be replaced with their complements to some largegated problem (5) with the maximization of all indi-
number. Therefore, without loss of generality, we can vidual objective functions in the original multiple cri-
assume that each individual outcomés to be max-  teria problem (or Pareto-optimality of the solution),
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the aggregation function must be strictly increasing problem (1) we are interested in a set of outcome val-

with respect to every coordinate. ues without taking into account which outcome is tak-
The simplest aggregation functions commonly ing a specific value. Hence, we assume that the pref-

used for the multiple criteria problem (1) are defined erence model is impartial (anonymous, symmetric).

as the mean (average) outcome In terms of the preference relation it may be written
as the following axiom
1 m
HY) =5 2 Y ©6) Y1), - Yrgm) = (Y1, ¥m)  YETI(1)  (8)

where(l) denotes the set of all permutations of
I. This means that any permuted outcome vector is
I ) indifferent in terms of the preference relation. Fur-
M(y) = izT.I.h,m ¥ ) ther, fairness requires equitability of outcomes which
i ) , i i . causes that the preference model should satisfy the
The mean (6) is a strictly increasing function while - pjga,_palton) principle of transfers. The principle
the minimum (7) is only nondecreasing. Therefore, o yransfers states that a transfer of any small amount
the aggregation (5) using the sum of outcomes always.om an outcome to any other relatively worse—off
generates a Pareto-optimal solution while the maxi- 4,come results in a more preferred outcome vector.

mization of the worst outcome may need some addi- A 5 property of the preference relation, the principle
tional refinement. The mean outcome maximization of transfers takes the form of the following axiom

is primarily concerned with the overall system effi-
ciency. As based on averaging, it often provides a so- y—ee+ee -y forO<e<yi—y; (9)
lution where some services are discriminated in terms
of performances. On the other hand, the worst out-
come maximization, ie, the so-called Max-Min solu-
tion concept is regarded as maintaining equity. In-
deed, in the case of a simplified resource allocation
problem with the knapsack constraints, the Max-Min
solution meets the perfect equity requirement. In the
general case, with possibly more complex feasible
set structure, this property is not fulfilled. Never-
theless, if the perfectly equilibrated outcome vector
Y1 = Y2 = ... = ym IS nondominated, then it is the
unique optimal solution of the corresponding Max-
Min optimization problem. In other words, the per-
fectly equilibrated outcome vector is a unique opti-
mal solution of the Max-Min problem if one cannot
find any (possibly not equilibrated) vector with im-
proved at least one individual outcome without wors-
ening any others. Unfortunately, it is not a common
case and, in general, the optimal set to the Max-Min
aggregation may contain numerous alternative solu-
tions including dominated ones. The Max-Min solu-
tion may be then regularized according to the Rawl- 9(Yr(1): Yn2) -+ Ymm) = 9(Y1, Y2, -, Ym)  (10)
sian principle of justice (Rawls, 1971) which leads
us to the lexicographic Max-Min concepts or the so-

or the worst outcome

The rational preference relations satisfying addition-
ally axioms (8) and (9) are called hereaftair (equi-
table) rational preference relationd\Ve say that out-
come vectoy/’ fairly (equitably) dominateg” (Y’ =e
y"), iff y' = y” for all fair rational preference relations
. In other wordsy’ fairly dominatesy”, if there
exists a finite sequence of vectors(j = 1,2,...,9)
such thay! =y”, y$ =y’ andy! is constructed from
y/~1 by application of either permutation of coordi-
nates, equitable transfer, or increase of a coordinate.
An allocation patterx € Q s calledfairly (equitably)
efficientor simply fair if y = f(x) is fairly nondomi-
nated. Note that each fairly efficient solution is also
Pareto-optimal, but not vice verse.

In order to guarantee fairness of the solution con-
cept (5), additional requirements on the class of ag-
gregation (utility) functions must be introduced. In
particular, the aggregation function must be addition-
ally symmetric (impartial), i.e. for any permutation
ofl,

as well as be equitable (to satisfy the principle of

called Max-Min Fairness (Marchi and Oviedo, 1992; transfers)
OgryCZak an@IIWIﬁSKI! 2006) g(yl7 e 7yi —&... 7y] =+ g ... 7Ym) > g(yla cee aYm)
In order to ensure fairness in a system, all sys- (1)

tem entities have to be equally well provided with for any 0< € < yy —Vj». In the case of a strictly
the system’s services. This leads to concepts of fair- increasing function satisfying both the requirements
ness expressed by the equitable rational preferenceg10) and (11), we call the corresponding problem (5)
(Kostreva and Ogryczak, 1999). First of all, the fair- afair (equitable) aggregatiomf problem (1). Every
ness requires impartiality of evaluation, thus focusing optimal solution to the fair aggregation (5) of a multi-
on the distribution of outcome values while ignoring ple criteria problem (1) defines some fair (equitable)
their ordering. That means, in the multiple criteria solution.
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Note that both the simplest aggregation functions,
the sum (6) and the minimum (7), are symmetric al-
though they do not satisfy the equitability require-
ment (11). To guarantee the fairness of solutions,

some enforcement of concave properties is required.

For any strictly concave, increasing utility function
u: R— R, the functiong(y) = $i"; u(yi) is a strictly
monotonic and equitable thus defining a family of the
fair aggregations. Various concave utility functions
u can be used to define such fair solution concepts.
In the case of the outcomes restricted to positive val-
ues, one may use logarithmic function thus resulting
in the Proportional Fairness(PF) solution concept
(Kelly et al., 1997). Actually, it corresponds to the
so-called Nash criterion which maximizes the product
of additional utilities compared to the status quo. For
a common case of upper bounded outcompes y*

one may maximize power functiorsy " ; (y* —Vi)P

for 1 < p < c which corresponds to the minimization
of the corresponding-norm distances from the com-
mon upper boung* (Kostreva et al., 2004).

Y2

S Y2=Y1

Y1
Figure 1: Structure of the fair dominancBy(y) — the set
fairly dominated byy, S(y) — the set of outcomes fairly
dominatingy.

Fig. 1 presents the structure of fair dominance for
two-dimensional outcome vectors. For any outcome
vectory, the fair dominance relation distinguishes set
D(Yy) of dominated outcomes (obviously worse for all
fair rational preferences) and sgty) of dominating
outcomes (obviously better for all fair rational prefer-
ences). However, some outcome vectors are left (in
white areas) and they can be differently classified by
various specific fair rational preferences. The MMF
fairness assigns the entire interior of the inner white
triangle to the set of preferred outcomes while clas-
sifying the interior of the external open triangles as
worse outcomes. Isolines of various utility functions
split the white areas in different ways. One may no-
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tice that the seD('y) of directions leading to outcome
vectors being dominated by a giveris, in general,
not a cone and it is not convex. Although, when we
consider the se¥('y) of directions leading to outcome
vectors dominating giveywe get a convex set.

3 INEQUALITY MEASURES AND

FAIR CONSISTENCY

Inequality measures were primarily studied in eco-
nomics while recently they become very popular tools
in Operations Research. Typical inequality mea-
sures are some deviation type dispersion characteris-
tics. They ardranslation invariantin the sense that
p(y + ve) = p(y) for any outcome vectoy and real
numberv (wheree vector of units(1,...,1)), thus
being not affected by any shift of the outcome scale.
Moreover, the inequality measures are afssguality
relevantwhich means that they are equal to 0 in the
case of perfectly equal outcomes while taking positive
values for unequal ones.

The simplest inequality measures are based on the
absolute measurement of the spread of outcomes, like
themean absolute difference

1 m m

ry =--= 1¥i — Vil (12)
2 &y 2 MY
or themaximum absolute difference
diy) = max_|yi—yjl (13)
,j=1,...m

.....

In most application frameworks better intuitive appeal
may have inequality measures related to deviations
from the mean outcome like the mean absolute de-
viation

1 m
d(y) = WM; Vi — k()] (14)
or themaximum absolute deviation
R(y) = maxlyi — u(y)| (15)

Note that thestandard deviatioro (or the variance
02) represents both the deviations and the spread mea-
surement as

g()’i — U(y))? ) ,%,%

a?(y) -

Deviational measures may be focused on the down-
side semideviations as related to worsening of out-
come while ignoring upper semideviations related to
improvement of outcome. One may define thaxi-
mum (downside) semideviation

A(y) = max(p(y) - i)

(16)

(Vi —yj)?
22
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and themean (downside) semideviation

=S bW

where(.); denotes the nonnegative part of a num-
ber. Similarly, thestandard (downside) semideviation

is given as
5) = [ 3, 0) -2

In economics one usually considers relative inequal-
ity measures normalized by mean outcome. Among

19)

many inequality measures perhaps the most com-

monly accepted by economists is the Gini coefficient,
which is the relative mean difference. One can easily
notice that direct minimization of typical inequality

measures (especially the relative ones) may contra-

dict the optimization of individual outcomes resulting
in equal but very low outcomes. As some resolution
one may consider a bicriteria mean-equity model:

max{(K(f(x)), —p(f(x))) : xeQ}  (20)

which takes into account both the efficiency with op-
timization of the mean outcomp(y) and the eg-
uity with minimization of an inequality measupgy).

For typical inequality measures bicriteria model (20)
is computationally very attractive since both the cri-
teria are concave and LP implementable for many
measures. Unfortunately, for any dispersion type in-
equality measures the bicriteria mean-equity model
is not consistent with the outcomes maximization,
and therefore is not consistent with the fair domi-

nance. When considering a simple discrete problem

with two allocation patterns P1 and P2 generating
outcome vectory’ = (0,0) andy” = (2,8), respec-
tively, for any dispersion type inequality measure one
getsp(y”) > 0= p(y’) while p(y"”) =5> 0= p(y’).
Hence,y” is not bicriteria dominated by’ and vice
versa. Thus for any dispersion type inequality mea-
surep, allocation P1 with obviously worse outcome
vector than that for allocation P2 is a Pareto-optimal
solution in the corresponding bicriteria mean-equity
model (20).

Note that the lack of consistency of the mean-
equity model (20) with the outcomes maximization

tary to the mean leading us to the worst outcome cri-
terion which does not contradict the outcome max-
imization. This construction can be generalized for
various (dispersion type) inequality measures. More-
over, we allow the measures to be scaled with any pos-
itive factora > 0, in order to avoid creation of new
inequality measures as one could consipgfX) =
ap(X) as a different inequality measure. For any in-
equality measur@ we introduce the corresponding
underachievement function defined as the difference
of the mean outcome and the (scaled) inequality mea-
sure itself, i.e.

Map(y) = K(y) —ap(y).

This allows us to replace the original mean-equity bi-
criteria optimization (20) with the following bicriteria
problem:

max{ (U(f(x)), u(f(x)) —ap(f(x))) : x€Q} (22)

where the second objective represents the correspond-
ing underachievement measuvk,(y) (21). Note
that for any inequality measung(y) > 0 one gets
Map(Y) < H(y) thus really expressing underachieve-
ments (comparing to mean) from the perspective of
outcomes being maximized.

We will say that an inequality measupds fairly
a-consistentf

(21)

Y ey = uy')—apy) > uy”’) —apy”) (23)

The relation of faira-consistency will be called
strongif, in addition to (23), the following holds

Y ey’ = uy')—ap(y’) > uy")—ap(y”). (24)

Theorem 1. If the inequality measurg(y) is fairly
a-consistent (23), then except for outcomes with iden-
tical values of |ly) andp(y), every efficient solution

of the bicriteria problem (22) is a fairly efficient allo-
cation pattern. In the case of strong consistency (24),
every allocation patterx € Q efficient to (22) is, un-
conditionally, fairly efficient.

Proof. Letx° € Q be an efficient solution of (22).
Suppose thax? is not fairly efficient. This means,
there existsc € Q such thaty = f(x) = y° = f(x°).
Then, it follows p(y) > u(y°), and simultaneously
H(y) —ap(y) > p(y®) —ap(y°), by virtue of the fair

applies also to the case of the maximum semidevia- 0-consistency (23). Sino€ is efficient to (22) no in-
tion A(y) (17) used as an inequality measure whereas equality can be strict, which impliggy) = p(y°) and

subtracting this measure from the megn) — A(y) =
M(y) results in the worst outcome and thereby the
first criterion of the MMF model. In other words, al-
though a direct use of the maximum semideviation in
the mean-equity model may contradict the outcome

andp(y) = p(y°).

In the case of the strong fair-consistency (24),
the suppositioy =f(x) =ey° = f(xo) impliesp(y) >
K(y°) andu(y) —ap(y) > u(y°) —ap(y®) which con-
tradicts the efficiency oi® with respect to (22).

maximization, the measure can be used complemen-Hence, the allocation pattexf is fairly efficient. [
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4 FAIR CONSISTENCY there does not exist any inequality measure which is
CONDITIONS positively homogeneous and simultaneously strictly
convex. However, one may notice from the proof
Typical dispersion type inequality measures are con- ©f Theorem 2 that only convexity properties on
vex, i.e. p(Ay + (1= N)y") < Ap(y') + (1— A)p(y") equally distributed outcome vectors are important for
for anyy’,y” and 0< A < 1. Certainly, the under- Monotonous underachievement functions.

achievement functiolq,(y) must be also monotonic We say that inequality measupey) > O is strictly
for the fair consistency which enforces more restric- convex on equally distributed outcome vectdrs
tions on the inequality measures. We will show fur- POV + (1= A)y") < Ap(Y) + (1— N)p(y")

ther that convexity together with positive homogene-
ity and some boundedness of an inequality measurefor 0 < A < 1 and any two vectong #y" representing
is sufficient to guarantee monotonicity of the corre- the same outcomes distribution as soymée.,y’ =
sponding underachievement measure and thereby to(y,(1y,...,Yy(m) T andy” = (Y (1), -+, Yrer(my) for
guarantee the faio-consistency of inequality mea-  some permutations’ andn’, respectively.
sure itself.

We say that (dispersion type) inequality measure
p(y) > 0 is A-boundedf it is upper bounded by the
maximum downside deviation, i.e.,

Theorem 3. Let p(y) > 0 be a convex, positively
homogeneous and translation invariant (dispersion
type) inequality measure. ff(y) is also strictly con-
vex on equally distributed outcomes ang@(y) is
p(y) <A(y) vy. (25)  strictly A-bounded, then the measuggy) is fairly

Moreover, we say thai(y) > 0 is strictlyA-bounded stronglya-consistent in the sense of (24).

if inequality (25) is a strict bound, except from the Proof. The relation of weak fair dominanggé >, y”
case of perfectly equal outcomes, i.p(y) < A(y) denotes that there exists a finite sequence of vectors
for anyy such that\(y) > 0. yO=y” vyt ....y' such tha® = y* 1 — g/ + g,

" 0<g <y<l_ylfork=1,2,...,tand there exists
Theorem 2. Let p(y) > 0 be a convex, positively i i .
homogeneous anc(i %ranslation invariant (dispersion 2 permgtaﬂoqwuch that)/n(i) >y foralliel. The
type) inequality measure. dfp(y) is A-bounded, then  strict fair dominancg’ - y” means thay; ;, >} for
p(y) is fairly a-consistent in the sense of (23). somei € | or at least one is strictly positive. Note
that the underachievement functiby, (y) is strictly
monotonous and strictly convex on equally distributed
outcome vectors. Henc®lup(y’) > Map(y”) which
0<e Syikfl— i,flfork: 1,2,.. ..t and there exists justifies the fair stron@-consistency of the measure

a permutatiorrtsuch thayn<i) >y foralli € 1. Note P(Y)- 0

, ) il The specific case of fair 1-consistency is also
that the underachievement functidy,(y), similar

- called the mean-complementary fair consistency
asp(y) depends only on the distribution of outcomes. Ngte that the faib-consistency of measupgy) ac-
Further, ify’ >y”, theny’ =y” + (y' —y”) andy’ —

. ! g tually guarantees the mean-complementary fair con-
y” > 0. Hence, due to concavity and positive homo- sistency of measurep(y) for all 0 < a < &, and the

geneity,Map(y') > Map(y”) + qu(/y’ _I}’U)- More- same remain valid for the strong consistency proper-
over, du(? to /t/he bou/nd (ESMGP(}’ B ) = My — ties. It follows from a possible expression jafy) —

Y) =AY —y") > Uy’ —y") — Uy —y") =0. Thus, 55y as the convex combination pfy) — ap(y) and
Mup(y) satisfies /also the retzqwrement of monotonic- H(y). Hence, for any’ =ey", due top(y’) > p(y”)

ity. Hence,Map(y') > Map(y'). Further, let us notice  jqq getsu(y') — ap(y’) > u(y”) — ap(y”) in the case
thatyk = Ay*~ 1+ (1 — \)yk! wherey 1 — yk=1 — of the faira-consistency of measupy) (or respec-

(Yo = Yir)&r + (Y —Yir)&r andA = &/(yr —yir). Vec- tive strictinequality in the case of strong consistency).
tor )_/kil has the same distribution of COEﬁ|C|e-nt5 as Therefore, while ana|yzing Speciﬁc inequa”ty mea-
y =t (actually it represents results of swappig  sures we seek the largest valueguaranteeing the
andy;»). Hence, due to concavity dlap(y), One  corresponding fair consistency.

Proof. The relation of fair dominancg =.y” de-
notes that there exists a finite sequence of vectors
yO=vy” yl ...yt suchthay® =y 1 — g + e,

gets Map(Y¥) > AMgp(Y<1) + (1 — A)Mgp(y<?) = As mentioned, typical inequality measures are
Map(Y<™1). ThusMap(y') > Map(y”) which justifies convex and many of them are positively homoge-
the faira-consistency op(y). d neous. Moreover, the measures such as the mean ab-

For strong fair a-consistency some strict solute (downside) semideviatiaty) (18), the stan-
monotonicity and concavity properties of the un- dard downside semideviatiar{y) (19), and the mean
derachievement function are needed. Obviously, absolute differencE(y) (12) areA-bounded. Indeed,
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one may easily notice thaty) —y; <A(y) and there-  ence with O< a < % and the standard deviation with
fore 8(y) < 150 Ay) = A(y), a(y) < VA(Y)2 = O<a< ﬁ as fairly a-consistent within the spec-
A(y) andrl (y) = alz Yiel Y jer(max{yi,yj} —uy)) < ified intervals ofa. Moreover, thea-consistency of
A(y). Actually, all these inequality measures are the standard deviation is strong.

strictly A-bounded since for any unequal outcome

vector at least one outcome must be below the Table 1: Fair consistency results.

mean thus leading to strict inequalities in the above

bounds. ObviouslyA-bounded (but not strictly) is Megsure a-consistency
also the maximum absolute downside deviaidy) mggz gg:' Zgy'de"' ggg 83; 015

itself. This allows us to justify the maximum down- 4= " cemidev. Ay) 7| 1

side deviationA(y) (17), the mean absolute (down-  pay abs. dev. Ry) (15)| =L

side) semideviatiord(y) (18), the standard down- Mean abs. diff. ry) (12 ™ strong
side semideviatiow(y) (19) and the mean absolute  pax. abs. diff. dly) (13) £
difference(y) (12) as fairly 1-consistent (mean-  Standard semidev. | a(y)  (19) 1
complementary fairly consistent) in the sense of (23).  Standard dev. oly) (16) \/% strong

We emphasize that, despite the standard semide-
viation is a fairly 1-consistent inequality measure, the . . . .
consistency is not valid for variance, semivariance The fa|r' consistency resultg o ba§|c dispersion type
and even for the standard deviation. These measures'r1equallty U3 consplereo[ in_resource alloca-
in general, do not satisfy the all assumptions of The- tion problemg are summarized-in Taple 1 whetrg .
orem 2. Certainly, we have enumerated only the sim- values are given 'and the strong consistency is indi-
plest inequality measures studied in the resource aIIo-g:;e%'eTa:Lzl.ﬁorgz Oructehg\(;’otgaet.'gr?qmusgzgngasuraef
cation context which satisfy the assumptions of The- t thu i h ' ub th with ' ¢ ) gu
orem 2 and thereby they are fairly 1-consistent. The- diEC =" harmonyQain with oulcome maximiza-

orem 2 allows one to show this property for many tion E.Pareltaq-optlgalléty) and'twitrr]\ mequaEIltlestImlPl-
other measures. In particular, one may easily find mization (Pigou-Dalton equity theory). Exactly, for

out that any convex combination of faidyconsistent gach iNBqualiy measure applied with the correspond-

inequality measures remains also faitiyconsistent. ing value'cx' om Taple 1 (or S“?a'.'er 'positive value),
On?he otyher hand, among typical ineqlﬁlity measures &Ve"Y efficient solution of the bicriteria problem (22),
the mean absolute difference seems to be the only on e. max (K(f(x)), u(f(x)) — ap(f(x))) : x€ Q}, is a

meeting the stronger assumptions of Theorem 3 and a.irly_effici.ent allocation pattern, except for outcomes
thereby maintaining the strong consistency. with identical values ofi(y) andp(y). In the case of

As mentioned. the medl absoluteXaevidions strong consistency (as for mean absolute difference or
twice the mean ,absolute downside semideviation standard deviation), every solutiare Q efficient to

which means thatd(y) is A-bounded for any & a < (22)is, unconditionally, fairly ef“Cie"?t- .

0.5. The symmetry of mean absolute semideviations | N€ consistency results summarized in Table 1 are

g(y) = Sia (i — H0Y))+ = Tici (M(y) — i)+ can be sufficient conditions. This means that wheneverthe
- I — | . I . .

also used to derive sonfeboundedness relations for I!m|t IS ob;erved the corresponding consistency rela-

other inequality measures. In particular, one may find 10N is valid for any problem. It may happen that for

out that form-dimensional outcome vectors of un- & SPecific problem instance and a specific inequality

weighted problem, any downside semideviation from measure the fair consistency is valid for larger values
the meah cannot b'e larger tham- 1 upper semidevi- of a. Nevertheless, we have provided strict bounds
ations. Hence, the maximum absolute deviation satis- N 1€ sense that for a larger valuewthere exists a

fies the i lity-L- R(y) < A(y), while th 3 resource aIIocgtion problem on vyhich the fair consis-
es IR neana I. m-1RY) . (y), while the ”?a’_" tency is not valid, and the bicriteria problem (22) may
mum absolute difference fulflllﬁz‘d(y) <A(y). Simi-

= generate dominated solution.
larly, for the standard deviation one ggyﬁ%lé(y) <

A(y). Actually, ao(y) is strictly A-bounded for any

0 < a <1/y/m-1 since for any unequal outcome

vector at least one outcome must be below the mean5 CONCLUSIONS

thus leading to strict inequalities in the above bounds. o . )
These allow us to justify the mean absolute semidevi- The problems of efficient and fair resource allocation
ation with 0< a < 0.5, the maximum absolute devia- arise in various systems which serve many users. Fair-

tion with 0< a < Ll the maximum absolute differ- Ness is, essentially, an abstract socio-political concept
- that implies impatrtiality, justice and equity. Neverthe-
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less, in operations research it was quantified with var- Denda, R., Banchs, A., and Effelsberg, W. (2000). The

ious solution concepts (Denda et al., 2000). The eg- fairness challenge in computer networksct. Notes
uitable optimization with the preference structure that Comp. Scj.1922:208-220.

complies with both the efficiency (Pareto-optimality) Ibaraki, T. and Katoh, N. (1988).Resource Allocation
and with the Pigou-Dalton principle of transfers may Erri%tg);lgms' Algorithmic ApproacheMIT Press, Cam-

be used to formalize the fair solution concepts. Mul-
tiple criteria models equivalent to equitable optimiza- Kelly, F., Mauloo, A., and Tan, D. (1997). Rate con-
tion allows to generate a variety of fair and efficient trol for communication networks: shadow prices, pro-

resource allocation patterns (Kostreva et al., 2004; ggzrgggflzfylrness and stability.J. Opnl. Res. Sog.

Ogryczak et al., 2008). . . :
ary . ) . Kleinberg, J., Rabani, Y., and Tardos, E. (2001). Fairness
In this paper we have analyzed how scalar inequal- in routing and load balancingd. Comput. Syst. S¢i.

ity measures can be used to guarantee the fair consis-  g3:2-21.

tency. Itt_urns ogtthat several_lneqqahty measures can,  «eva M. M. and Ogryczak, W. (1999). Linear opti-
be combined with the mean itself into the optimiza- mization with multiple equitable critericRAIRO Op-
tion criteria generalizing the concept of the worst out- erations Researgt83:275-297.

come and generating fairly consistent underachieve-ystreva M. M. Ogryczak, W., and Wierzbicki, A. (2004).
ment measures. We have shown that properties of Equitable aggregations and multiple criteria analysis.

convexity and positive homogeneity together with be- Eur. J. Opnl. Res.158:362-377.

ing bounded by the maximum downside semidevia- | yss, H. (1999). On equitable resource allocation problems
tion are sufficient for a typical inequality measure to A lexicographic minimax approachOperations Re-
guarantee the corresponding fair consistency. It al- search 47:361-378.

lows us to identify various inequality measures which Marchi, E. and Oviedo, J. A. (1992). Lexicographic op-
can be effectively used to incorporate fairness fac- timality in the multiple objective linear programming:
tors into various resource allocation problems while the nucleolar solutiorEur. J. Opnl. Res57:355-359.
preserving the consistency with outcomes maximiza- Ogryczak, W. (2000). Inequality measures and equitable
tion. Among others, the standard semideviation and approaches to location problemgur. J. Opnl. Res.

the mean semideviation turn out to be such a consis- ~ 122:374-391.

tent inequality measure while the mean absolute dif- Ogryczak, W., Pioro, M., and Tomaszewski, A. (2005).
ference is strongly consistent. Telecommunications network design and max-min

Our analysis is related to the properties of solu- optimization problemJ. Telecom. Info. Tech3:1-14.

tions to resource allocation models. It has been shownOgryczak, W. andliwinski, T. (2006). On direct methods
how inequality measures can be included into the  for lexicographic min-max optimizationLect. Notes
models avoiding contradiction to the maximization of Comp. Sc|.3982:774-783.

outcomes. We do not analyze algorithmic issues for Ogryczak, W., Wierzbicki, A., and Milewski, M. (2008). A
the specific resource allocation problems. Generally, gh“'t"‘t:.r |terg,\7£goa§gltg{alzggd efficient bandwidth
the requirement of convexity necessary for the consis- _ ocation. _ A 36:451 B

tency, guarantees that the corresponding optimizationP10r0: M. a%d Medhi, CD' (2004)'R9“t'n9'd':'°"" and Cil-
criteria belong to the class of convex optimization, not \?v?)ﬂ?s/ M%srg:nlr;(au(;m;nnunnlgaétlnogrzgdscczmputer et
complicating the original resource allocation model ' _ ' :
with any additional discrete structure. Many of the in- RaW'fz;r élés(lg;rln)bme eTheory of Justice Harvard Univ.
equality measures, we analyzed, can be implemented ' ge. ) ,

with auxiliary linear programming constraints. Nev- Rawlsi Jt and F:IIy, Ea(ﬁopl);ustlcegs FS'TSeSS: A Re-
ertheless, further research on efficient computational statementHarvard Univ. Fress, t.amoridge.

algorithms for solving the specific models is neces- Rothschild, M. and Stiglitz, J. E. (1973). Some further re-
sults in the measurement of inequality. Econ. The-

sary. ory, 6:188-204.

Young, H. P. (1994)Equity in Theory and PracticeéPrince-
ton Univ. Press, Princeton.
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