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Abstract: Event sequences estimation is an important issue for fault diagnosis of DES, so far as fault events cannot be 
directly measured. This work is about event sequences estimation with Petri net models. Events are assumed 
to be represented with transitions and firing sequences are estimated from measurements of the marking 
variation. Estimation with and without measurement errors are discussed in n – dimensional vector space 
over alphabet Z3 = {-1, 0, 1}. Sufficient conditions and estimation algorithms are provided. Performance is 
evaluated and the efficiency of the approach is illustrated on two examples from manufacturing engineering. 

1 INTRODUCTION 

Modern technological processes include complex 
and large-scale systems, where faults in a single 
component have major effects on the availability and 
performances of the system as a whole. For example 
manufacturing systems consists of many different 
machines, robots and transportation tools all of 
which have to correctly satisfy their purpose in order 
to ensure and fulfil global objectives. In this context, 
a failure is any event that changes the behaviour of 
the system such that it does no longer satisfy its 
purpose (Rausand et al., 2004). Faults can be due to 
internal causes as to external ones, and are often 
classified into three subclasses: plant faults that 
change the dynamical input – output properties of 
the system, sensor faults that results in substantial 
errors during sensors reading, and actuator faults 
when the influence of the controller to the plant is 
disturbed. In order to limit the effects of the faults on 
the system, diagnosis is used to detect and isolate the 
failures. Diagnosis includes distinct stages: the fault 
detection decides whether or not a failure event has 
occurred; the fault isolation find the component that 
is faulty; the fault identification identifies the fault 
and estimates also its magnitude. Model-based and 
data-based methods have been investigated for 
diagnosis (Blanke et al., 2003).  

The motivations for the diagnosis of discrete 
event system (DES) are obvious as long as DES 
occur naturally in the engineering practice. Many 
actuators like switches, valves and so on, only jump 
between discrete states. Binary signals are mainly 

used with numerical systems and logical values 
“true” and “false” are often used as input and output 
signals. Alarm sensors that indicate that a physical 
quantity exceeds a prescribed bound are typical 
systems with only two logical states. Moreover, in 
several systems also the internal state is discrete 
valued. As an example, robot encoders are discrete 
valued even if the number of discrete state is large 
enough to produce smooth trajectories. At last, one 
must keep in mind that a given dynamical system 
can always be considered as a DES system or as a 
continuous variable system according to the purpose 
of the investigation. As long as supervision 
problems are considered, a rather broad view on the 
system behaviour can be adopted that is based on 
discrete signals. On the contrary, if signals have to 
remain in a narrow tolerance band, the following 
approaches do no longer fit and one has to adopt a 
continuous point of view (Blanke et al., 2003). 

The behaviour of DES is described by sequences 
of input and output events. In contrast to the 
continuous systems only abrupt changes of the 
signal values are considered with DES. In that case, 
the problem has been originally investigated with 
observation methods for automata developed in 
connection with the supervisory control theory 
(Ramadge et al., 1987). Concerning model-based 
methods automata (Sampath et al., 1995) or Petri 
nets (Ushio et al. 1998) models can be used. This 
article focus on diagnosis of DES modelled with 
Petri nets (PN) where failures are represented with 
some particular transitions. The problem is to detect 
and isolate the firing of the failure transitions in a 

15
Lefebvre D. (2008).
DIAGNOSIS OF DISCRETE EVENT SYSTEMS WITH PETRI NETS AND CODING THEORY.
In Proceedings of the Fifth International Conference on Informatics in Control, Automation and Robotics - RA, pages 15-22
DOI: 10.5220/0001481700150022
Copyright c© SciTePress



 

given firing sequence. The firings of the failure 
transitions are assumed to be unobservable and must 
be estimated according to complete or partial 
marking measurements that are eventually disturbed 
by measurement errors. As a consequence a method 
based on coding theory is proved to be suitable for 
sensor faults diagnosis. The article is divided into six 
sections. Section two is about Petri nets states. 
Section three states the diagnosis problem for DES 
and is about the usual state space methods for PN. 
Section four details the event estimation with coding 
theory that can be combined with state space 
approach. Both methods are presented in a 
framework in the conclusion. 

2 ORDINARY PETRI NETS 

An ordinary PN with n places and q transitions is 
defined as < P, T, Pre, Post > where P = {Pi} is a 
non-empty finite set of n places, T = {Tj} is a non-
empty finite set of q transitions, such that P ∩ T = 
∅. Pre: P × T → {0, 1} is the pre-incidence 
application and WPR = ( wPR

ij ) ∈ {0, 1}n × q with 
wPR

ij = Pre (Pi, Tj) is the pre-incidence matrix. Post: 
P × T → {0, 1} is the post-incidence application and 
WPO = ( wPO

ij ) ∈ {0, 1}n × q with wPO
ij = Post (Pi, Tj) 

is the post-incidence matrix. The PN incidence 
matrix W is defined as W = WPO – WPR ∈ Z3

n x q 
with Z3 ∈ {-1, 0, 1} and wi stands for the ith column 
of W (Askin et al., 1993; Cassandras et al., 1999; 
David et al., 1992). M = (mi) ∈ (Z+)n is defined as 
the marking vector and MI ∈ (Z+)n as the initial 
marking vector, with Z+ the set of non negative 
integer numbers. A firing sequence σ = Ti.Tj… Tk is 
defined as an ordered series of transitions that are 
successively fired from marking M to marking M’ 
(i.e. M [σ > M’) such that equation (1) is satisfied: 

} } }
σ → → → →L

j ki T TT

1 2: M M M M'  (1) 

A sequence σ can be represented by its 
characteristic vector (i.e. Parikh vector) X = (xj) ∈ 
(Z+)q where xj stands for the number of times Tj has 
occurred in sequence σ (David et al., 1992). 
Marking M’ resulting from marking M with the 
execution of sequence σ is given by (2) where X is 
the characteristic vector for sequence σ: 

ΔM = M’ - M = W.X (2) 
 

The reachability graph R(PN, MI) is the set of 
markings M such that a firing sequence σ exists 
from MI to M. A sequence σ is said to be executable 

for marking MI if there exists a couple of markings 
(M, M’) ∈ R(PN, MI)  such that M [σ > M’. 

3 DIAGNOSABILITY AND 
DIAGNOSER DESIGN FOR DES 

3.1 Problem Statement 

In the context of diagnosis, it is commonly assumed 
that no inspection of the process is possible. As a 
consequence the diagnosis is only based on available 
measurement data. Basically, the diagnosis problem 
for a dynamical system with input u, output y and 
subject to some faults f, is to detect and isolate the 
faults from a given sequence of input – output 
couples (U, Y) with: 

 

 U = (u(0), u(1),…,u(k)) 

 Y = (y(0), y(1),…,y(k)) 
(3) 

 

where k stands for time t = k.Δt, and Δt represents 
the sampling period of sensors. The main issues are 
(1) to decide the diagnosability of the faults; (2) to 
detect, isolate and identify the faults that are 
diagnosable. In case of model - based diagnosis, the 
input – output couples (U, Y ) are usualy compared 
with the behaviour of a reference model. Fault 
indicators like residuals are worked out from this 
comparison. It is often convenient to separe actuator, 
system and sensor faults. 

As long as DES are considered the inputs and 
faults are usualy considered as events and the 
outputs are related to the states of the DES. A 
reference model (automata, finite state machines, 
Petri nets, and so on) can be used for diagnosis 
purpose and sequences of estimated outputs obtained 
thanks to the model are compared with the measured 
outputs of the system. Indicators of the faults result 
from this comparison. According to the traces 
generated by the system, faults are : 

 

(1) strongly diagnosable if they result in immediate 
abnormal behaviours (no intermediate event is 
required for diagnosis); 

(2) weakly diagnosable if they result in abnormal 
behaviours after a finite number of intermediate 
events; 

(3) non diagnosable if no abnormal behaviour 
occurs whatever the future evolution of the 
system. 

Let us notice that the notion of strong or weak 
diagnosability for DES is related to the question of 
persistent excitation in temporal systems.  
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The figure 1 is an example of diagnosis with finite 
state machine. The system has 5 states {A, B, C, D, 
E}, 4 outputs {1, 2, 3, 4}, 5 inputs {a, b, c, f1, f2} (3 
normal events {a, b ,c} and 2 fault events {f1, f2}). 
The reference model (full lines only) and the system 
(full and dashed lines) evolve according to the figure 
1. Diagnosability analysis and diagnosers design 
result from the simulation with automata in figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Example of diagnosis with finite state machine. 

If the state of the system is measured, then the 
faults f1 and f2 are both strongly diagnosable as long 
as the fault events lead to an immediate difference 
between system state (S) and estimated one (Sest) 
(table 1, grey cells). If only the output is measured 
then the fault f2 is strongly diagnosable but the fault 
f1 is weakly diagnosable in the sense that 
intermediate event “b” must occur so that the system 
output (O) and estimated output (Oest) become 
different. If state “E” results in output “1” instead of 
“4” then fault f2 is non diagnosable. 

3.2 Diagnosis with Petri Nets 

The previous approach can be applied to Petri net 
models with finite reachability graph to prove the 
diagnosability of the faults and to design diagnosers 
based on Petri net models. The basis idea is to 
investigate the indeterminate cycles in partial 
expansion of the reachability graph (Ushio et al., 
1998). The considered PN are live (i.e. for any Tj ∈ 
T, and for all M ∈ R(PN, MI) there exists a sequence 
σ executable from M that includes transition Tj) and 
safe (i.e. for all M ∈ R(PN, MI), M ∈ {0, 1}n ). Some 
places are assumed to be observable and other not, 
and transitions, that are associated with events, are 
usually assumed to be unobservable. A cycle is 
called “determined” if it contains at least one 
observable state that results with no ambiguity from 

a normal firing sequence, or from a firing sequence 
with a fault. The fault is diagnosable if and only if 
there is no indeterminate cycle in partial expansion 
of the reachability graph that correspond to the 
observable part of the system. For a diagnosable 
fault, the detection and isolation can be obtained 
according to the finite state machine that corresponds 
to partial expansion of the reachability graph. Let us 
notice that the method is different from the dignosis 
with finite state machines in the sense that 
knowledge of inputs is not required and that 
definition of outputs is restricted to marking 
projection. 
Let consider the system PN1 in figure 2 as an 
example. The reachability graph of PN1 is the finite 
state machine of figure 1. If the set of observable 
places is given by PO1 = {P1, P4, P5}, the observable 
part of the labelled reachability graph R(PN1, {T1}, 
(1, 0, 0, 0, 0)T, PO1) is worked out as in figure 3a. 
This diagnoser has an indetermined cycle so the 
system is not diagnosable (figure 3a, left cycle). If 
PO2 = {P1, P3}, the observable part of the labelled 
reachability graph R(PN1, {T1}, (1, 0, 0, 0, 0)T, PO2) 
is worked out as in figure 3b. This diagnoser has no 
indetermined cycle so the system is diagnosable. 
 
 
 

 
 
 
 
 
 
 
 
 

 
Figure 2: Example PN1 of Petri net. 

Let us mention that other approaches have been 
developped for diagnosis based on event 
detectability (Ramirez – Trevino et al., 2007) and 
structural properties (Lefebvre et al., 2007). All 
above mentioned approaches require complete or 
partial measurements of the marking vector. Thus, 
they are sensitive to measurement errors. As a 
consequence, it is important to detect and eventually 
correct the errors that disturb the measurements of 
marking variation in order to obtain an exact 
estimation of the occurrence of events. The next 
section concerns events estimation and can be 
introduced as a diagnosis method for sensor faults. 
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Table 1: Example of input sequence (I), state sequence (S), output sequence (O), estimated state sequence (Sest) and 
estimated output sequence (Oest) for the final state machine in figure 1 

I a b c a f2 b C f1 b c a b … 
S C E A C D E A B E A C E … 
O 2 4 1 2 3 4 1 1 4 1 2 4 … 
Sest C E A C C E A A A A C E … 
Oest 2 4 1 2 2 4 1 1 1 1 2 4 … 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 : Two partial expansions of the reachability graph 
for PN1 a) R(PN1, {T1}, (1, 0, 0, 0, 0)T, PO1) ; b)  R(PN1, 
{T1}, (1, 0, 0, 0, 0)T, PO2). 

4 SENSOR FAULTS DIAGNOSIS 
BASED ON CODING THEORY 

Event sequences estimation is an important issue for 
fault diagnosis of DES, so far as fault events cannot 
be directly measured. This section is about event 
sequences estimation with PN models. Events are 
assumed to be represented with transitions and firing 

sequences are estimated from measurements of the 
marking variation. Estimation with and without 
measurement errors can be discussed in n – 
dimensional vector space over alphabet Z3  = {-1, 0, 
1} (Lefebvre, 2008). The basis idea to correct 
measurement errors by projecting measurements in 
orthogonal subspace of Vect(W) where Vect(W) 
stands for the subspace generated by the columns of 
W. This method is inspired from linear coding theory 
(Van Lint, 1999) and extends the results presented 
for continuous PN in (Lefebvre et al., 2001). 

Our contribution can be compared to another 
method that incorporates redundancy into Petri nets 
to detect and identify faults (Li et al., 2004; Wu et 
al., 2002, 2005) and uses algebraic decoding 
techniques as the Berlekamp – Massey decoding 
(Berlekamp, 1984). The marking of the original PN 
is embedded into a redundant one and the diagnosis 
of faults is performed by mean of linear parity 
checks. In comparison with the method developed in 
(Wu et al., 2005), our approach does not require 
additive places, but is less efficient for faults 
correction.  

Let us assume that measurement ˆΔM of marking 
variation ΔM ∈ (Z3)n may be affected by additive 
error vector E ∈ (Z3)n: Δ = Δ +M̂ M E  where “+” 
stand for the sum endowed over Z3. Error vector will 
be characterized according to the Hamming distance 
d(W) of the considered PN that is defined with the 
Hamming distance of the columns of incidence 
matrix : 

 

= ≠i j 0 id(W) min{min{d(w ,w ),i j},min{d (w )}}  (4) 
where d(wi, wj) stands for the Hamming distance 
between columns wi and wj of matrix W and d0(wi) = 
d(wi, 0) stands for the weight of vector wi. 

It is assumed that error vector E verifies the 
following conditions:  

a) Pr(d0(E) = 0) > Pr(d0(E) = 1) > ... > Pr(d0(E) = n) 
where Pr(d0(E) = i) is the probability that weight 
of E equals i; 

b) An error in position i does not influence other 
positions; 

c) A symbol in error can be each of the remaining 
symbols with equal probability. 
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A short estimation algorithm easy to use and to 

implement when state measurement is complete (i.e. 
all entries of ˆΔM  are measured), and error free (i.e. 
measurement equals actual marking variation ΔM), 
is based on the comparison of measurement with 
respect to columns of W and zero vector (this 
corresponds to the condition of event-detectability in 
case that all places are observable). When this 
measurement equals a single column of W, the 
algorithm decides that the corresponding transition 
fired. When it equals the zero vector, the algorithm 
decides that no transition fired.  

When measurement is perturbed by non zero error 
E, two problems must be mentioned :  
a) A miss estimation may occur when ˆΔM  is non 

zero and different from any columns of W. The 
estimation algorithm is not able to decide if a 
transition fired or not and which transition fired. 
As consequence the algorithm does not give any 
decision. 

b) A wrong estimation may occur when ˆΔM  does 
not equal actual marking variation ΔM but 
equals zero vector or another column of W. The 
estimation algorithm decides if a transition fired 
or not and which transition fired, but the decision 
is wrong due to the measurement error.  

 
To overcome these difficulties and to improve 

estimation, diagnosis can be reformulated as a linear 
problem in ((Z3)n, +, *), with the Smith 
transformation of W, where “+” and “*” stand for 
the sum and product endowed over Z3. The Smith 
transformation results from elementary operations 
(i.e. row or column permutations, linear 
combinations and external products), summed up in 
matrices P ∈ (Z3)n x n and Q ∈ (Z3) q x q

 such that: 
 

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

rI 0
P * W * Q

0 0
 (5) 

Ir is the identity matrix of dimension r x r, and r is 
the rank of matrix W. The Smith transformation 
leads to reduced incidence matrix W' : 

 
W' = (Ir 0) * Q-1 = (Ir 0) * P *W  

= F * W ∈ (Z3) r x q (6) 

 
Necessary and sufficient conditions for firing 

sequences estimation can be stated when 
measurement is error free and basic assumption in 
section 2.b is satisfied : columns of incidence matrix 
W' defined by equation (6) are distinct and non zero 
(Lefebvre, 2008). In case of measurement errors that 

satisfy assumptions a to c, sufficient conditions 
inspired from coding theory can be stated. These 
conditions are based on Hamming distance, cosets 
investigation, parity check matrices, and syndromes 
(Van Lint, 1999). Cosets characterise the structure of 
(Z3)n  according to the sum and product over Z3 (the 
coset C(u) of u is defined as C(u) = {x ∈ (Z3)n such 
that x = u + y with y ∈ Vect(W)}, for any vector u ∈ 
(Z3)n). Parity check matrices are introduced to work 
out syndromes that can be considered as the 
signatures of the faults in (Z3)n. Two conditions for 
firing sequences estimation are proposed (Lefebvre, 
2008):  
a) Columns of incidence matrix W are distinct, non 

zero and errors E that disturb satisfy d0(E) ≤ 
(d(W) – 1) / 2 (i.e. the number of disturbed 
entries of measurement is no larger than (d(W) – 
1) / 2).  

b) Columns of reduced incidence matrix W' are 
distinct and non zero, and considered errors E 
belong to distinct cosets different from C(0).  

 
Moreover, the use of the Smith transformation of 
incidence matrix is also helpful to define the parity 
check matrix HT = (0 In-r ) * P ∈ (Z3) (n-r) x n, and to 
work out the syndrome of marking variation 
measurements S( ˆΔM ) = HT * ˆΔM  and to compare 
it with the syndrome of errors S(E) = HT * E.  As a 
consequence the method leads to a less complex and 
more efficient diagnosis algorithm (algorithm b) in 
comparison with usual method based on Hamming 
distance (algorithm a) (Lefebvre, 2008).  

 
Algorithm a 
1. For each time k, measure M̂ (k) the current state 

of DES  
2. Compute ˆΔM  (k) = M̂ (k) – M̂ (k-1)  
3. Compute weight d0( ˆΔM  (k)). If d0( ˆΔM (k)) ≤ 

(d(W) - 1) / 2, then no event occurs between two 
consecutive state measurements. Go to step 6. 

4. Compute Hamming distance d( ˆΔM (k), wj) for 
each column wj of W. If d( ˆΔM (k), wj) ≤ (d(W) - 
1) / 2 then Tj fired. Go to step 6. 

5. If for all j = 1,...,q, d( ˆΔM (k), wj) > (d(W) - 1) / 2 
then measurement is too much disturbed by 
errors (i.e. d0(E) > (d(W) – 1) / 2) and no 
decision is provided (i.e. a miss estimation 
occurs). 

6. Wait until time k + 1. Go to step 1. 
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Algorithm b 
1. For each time k, measure M̂ (k) the current state 

of DES  
2. Compute ˆΔM (k) = M̂ (k) – M̂ (k-1)  
3. Compute HT * ˆΔM (k). If HT * ˆΔM (k) = 0 then 

measurement is not disturbed by errors: 
Δ = Δ ˆM(k) M(k) . Go to step 5.  

4. If syndrome HT* ˆΔM (k)≠0, compute coset leader 
E(k) and Δ = Δ −ˆM(k) M(k) E(k) . Go to step 5.  

5. Compute ΔM'(k) = F * ΔM(k). 
6. If ΔM'(k) = 0 then no event occurs between 2 

consecutive state measurements. Go to step 8. 
7. If ΔM'(k) = w'j then Tj fired. Go to step 8. 
8. Wait until time k + 1. Go to step 1. 

 
The correction capacity (i.e. number of error 

vectors that are corrected) of algorithm a is given by 
equation (7):  

 
−

=

⎛ ⎞
⎜ ⎟

−⎝ ⎠
∑

(d(W) 1)/2
i

i 1

n!2 .
i!(n i)!

 (7) 

 
and its complexity results from 2n.(q+1) scalar 
comparisons or operations whereas correction 
capacity of algorithm b equals 3n – r – 1, and its 
complexity results from r.(2n+q)+(n–r).(2n–1+3n-r) 
scalar comparisons or operations (Lefebvre, 2008). 
As a conclusion, algorithm b (with matrix W’) is 
more efficient than algorithm a (with matrix W) for 
PN with small rank r in comparison with the number 
of places, and for PN with few transitions in 
comparison with the number of places. Algorithm b 
will be also preferred for PN with a small Hamming 
distance. This result is not surprising as long as the 
correction capacity of algorithm a is directly related 
to the value of Hamming distance. The 
determination of reduced incidence matrix does not 
increase the complexity of algorithm b as long as this 
determination is work out off – line. 

5 APPLICATION 

Algebraic methods have been used for the diagnosis 
of manufacturing and robotic systems. In order to 
illustrate algebraic methods, let us consider PN2 in 
figure 4 with incidence matrix (8), that is a 
simplified model of a manufacturing workshop 
(Silva et al., 2004). The final product is composed of 
two different parts that are processed in two separate 
machines modelled by transitions T1 and T2, and 
stored in buffers P4 and P6, respectively. Then, they 
are assembled by the machine T3, and processed by 

T4 and T5. During the processing, several tools are 
needed, modelled by places P3, P5 and P7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Model PN2 of a manufacturing system. 

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎜ ⎟
⎜ ⎟−=
⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟⎜ ⎟−⎝ ⎠

1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
1 0 1 0 0
1 0 1 0 0W

0 1 1 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1

 (8) 

 
PN2 has n = 9 places, q = 5 transitions, is of rank 

r = 4 and incidence matrix W has a Hamming 
distance d = 2. Matrices F and HT, worked out as in 
section 4, are given according to equations (9) and 
(10): 

 
⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0

F
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0

 (9) 

 

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−=
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎝ ⎠

T

1 0 1 0 1 0 0 0 0
0 1 1 0 0 1 0 0 0
0 1 1 0 0 0 1 0 0H
1 0 1 1 0 0 0 0 0
0 0 1 0 0 0 0 1 1

 (10) 

 
PN2 has 243 cosets and each coset has 81 vectors. 

The table 2 gives the relationships between 
syndromes and coset leaders. Let us notice that the 
two last syndromes correspond to two different coset 
leaders. As a consequence not all errors of weight 1 
will be corrected by algorithms a and b (errors (0 0 0 
0 0 0 0 1 0)T and (0 0 0 0 0 0 0 0 1)T cannot be 
separated as errors (0 0 0 0 0 0 0 -1 0)T and (0 0 0 0 0 
0 0 0 -1)T ). 

P9T4 T5
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P4T1
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Table 2: Correspondence between syndromes and coset leaders for PN2. 

Syndromes Errors of weight 1 Syndromes Errors of weight 1 

(-1 0 0 1 0)T (1 0 0 0 0 0 0 0 0)T (1 0 0 0 0)T (0 0 0 0 1 0 0 0 0)T 

(1 0 0 -1 0)T (-1 0 0 0 0 0 0 0 0)T (-1 0 0 0 0)T (0 0 0 0 -1 0 0 0 0)T 

(0 1 -1 0 0)T (0 1 0 0 0 0 0 0 0)T (0 1 0 0 0)T (0 0 0 0 0 1 0 0 0)T 

(0 -1 1 0 0)T (0 -1 0 0 0 0 0 0 0)T (0 -1 0 0 0)T (0 0 0 0 0 -1 0 0 0)T 

(1 -1 1 -1 1)T (0 0 1 0 0 0 0 0 0)T (0 0 1 0 0)T (0 0 0 0 0 0 1 0 0)T 

(-1 1 -1 1 -1)T (0 0 -1 0 0 0 0 0 0)T (0 0 -1 0 0)T (0 0 0 0 0 0 -1 0 0)T 

(0 0 0 1 0)T (0 0 0 1 0 0 0 0 0)T (0 0 0 0 1)T (0 0 0 0 0 0 0 1 0)T 

(0 0 0 0 0 0 0 0 1)T 

(0 0 0 -1 0)T (0 0 0 -1 0 0 0 0 0)T (0 0 0 0 -1)T (0 0 0 0 0 0 0 -1 0)T 

(0 0 0 0 0 0 0 0 -1)T 
 
Simulations for on – line estimation of the 

transitions firing are provided with figure 5. In these 
simulations, a measurement error ratio of 0.1 is 
supposed to be associated to each place (i.e. a 
probability of 0.1 that the marking variation of each 
place is biased). Transitions are assumed to fire with 
stochastic firing periods (exponential distribution) of 
mean value equal to 1 TU. All simulations indicate 
that complexity of algorithm b is not a limitation for 
real time applications. For the example PN2, the 
total CPU time for algorithm b is less than 5 TU for 
a simulation of 100 TU with a sampling period of 0.1 
TU. This means that the average duration for each 
cycle of algorithm is approximatively 20 times less 
than the sampling period. The miss estimation rate 
for b is about 32% in comparison with a that has a 
rate of 60% and the wrong estimation rate is about 
8% for b in comparison with a that has a rate less 
than 1%. Let us mention that the large number of 
miss estimation (even if measurement is unbiased) is 
due to the small Hamming distance of W (d = 2). For 
this reason numerous unbiased measurements of the 
marking variation are considered as suspicious and 
not used for estimation. 

6 CONCLUSIONS 

The investigation of diagnosis methods for discrete 
event systems shows that Petri nets is efficient not 
only to model the considered systems but also to 
support the diagnosis methods. Several approaches 
can be used in order to check diagnosability, to 
select sensors and to work out diagnosers. As a 
conclusion it is important to notice the great effort, 

observed this last years to develop and improve 
diagnosis methods for DES. The use of the coding 
theory plays an important role in that development. 
As long as it is suitable to detect and correct 
measurement errors in the marking error variation. 
The main drawback is the strong dependence of the 
method to the algebraic properties of the incidence 
matrix.  

 
Figure 5: On – line firings estimation with algorithm b for 
the transitions T1 to T5 of PN2 (number of firings, full 
line: correct value; cross: estimated value; estimated value 
= -1 means miss estimation) in function of time (TU). 
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The method can be improved by incorporating 
additive places into Petri nets models. Taken into 
account the past sequence of events is another 
perspective to improve the efficiency of the method. 
But, the main challenge is, from our point of view, 
to take advantages from many important 
contributions that have been proposed for 
continuous systems. To build a bridge from 
continuous variable systems to DES theories 
remains one of the most promising issues for the 
next years. 
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