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Abstract: Repetitive control is known as one of the most effective methods to reduce repetitive errors with a known
period in various practical control systems performing repetitive tasks. The application of Internal Model
Control (IMC) structure for repetitive control is introduced. Two IMC-based repetitive control configurations
are proposed together with their adaptive versions. A comparative simulation study is carried out for the model
of a first link of the robot.

1 INTRODUCTION cussed in the literature.

In this paper, two structures of the adaptive repeti-
Many computer-controlled control systems perform tive IMC system are presented and simulated using
repetitive (periodic) tasks thus being subjected to the model of one link of the robot.
repetitive as well as nonrepetitive disturbances. Re-
jecting of periodic disturbances or tracking a periodic
reference signal can be considered as the original aim
of the repetitive controller. In last years much effort 2 THE INTERNAL MODEL
has been devoted to the development of discrete-time ~ PRINCIPLE
repetitive control systems which may be considered

to be very powerful tools to regulate the repetitive er- A piock diagram of the conventional discrete-time
rors whose fundamental frequencies are priori KNOWn e neyitive control system based on the Internal Model

(Hillerstrom and Walgama, 1996; Chang et al., 1995, pyinciple (IMP) for a single fundamental frequency of
Kempfetal., 1993; Hu and Yu, 1996). The case of un- repetitive errors is shown in Fig.1.

certain period time is analyzed in (Steinbuch, 2002).
Usually, the repetitive errors containing only one fun-

damental frequency and its harmonics are taken for
consideration. A discrete-time repetitive controller

for odd harmonic reference and disturbance signals is
proposed in (Grifié and Costa-Castell6, 2005). This 4
type of signals appear for example in power electron- «T

ics systems. Usually, the period of repetitive signals
is assumed to be known. In (Steinbuch, 2002), a new
structure for repetitive control is proposed which is
robust for changes in period-time. The problem of
tracking arbitrary periodic reference signals is dis-
cussed in (Ledwich and Bolton, 1993), where the In this block diagramr(k) and d(k) represent
compensator design is proposed to give zero steady-the unknown periodic reference and disturbance with
state error. The robustness issues of repetitive con-known period, respectively. Typically, the disturbance
trol are for example examined in (Chang et al., 1995; is assumed to have one fundamental frequdp@nd

Hu and Yu, 1996; Tenney and Tomizuka, 1996). The higher harmonics. The gai; is an adjustable pa-
problem of adaptive repetitive control is not much dis- rameter of the repetitive controll&; (z1).

Figure 1: IMP-based repetitive control system.
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The IMP implies a use of the repetitive signal gener- relationship betweeG(z*) andG*(z 1) can be ob-
ator which is a\ step delay chain with positive feed- tained in terms of modelling uncertainty
back around it (Hillerstrém and Walgama, 1996) hav-

ing the transfer function Gz NG (z 1) =144z )] (5)
i N From (3),(4) and (5), a modelling uncertainty can be
Gim(zZ™7) = 7—x (1)  derivedas
This generator represents simply the model of a pe- (7Y = Gp(z1) —Gp(z h) ©)

riodic disturbance. Ifls denotes the sampling period ~ Gp(z 1) (1+Gy(z 1))
thenNTs is chosen to be equal to the period of the o Inms o1
fundamental component of the repetitive errors, i.e. WhereGo(z =) = Ge(z )Gp(z 7).
NTs=To = f_lo soN = % A harmonic signal has only Assuming thaiA(z 1)| < ¢ for eachz such that
> 1, the robust stability can be demonstrated
one componentaﬁ%" radslfork=1,2,---. 2 =1, X
Let the plant be sgiven by the transfer function (Chang et al., 1998) provided that the galtg sat-

G’F;(z*l). It is known (Kempf et al., 1993) that for the isfy the condition

repetitive control system design a parametric model n 2
of the plant is required. The nominal plant is charac- _ZKri S (7)
terized by the transfer function =
1
Golz ) =712 @
A(z'Y 4 THE INTERNAL MODEL
with B(fl) _ blfl e bnbfnba A(Zﬁl) =14+ CONTROL STRUCTURE

a1z 14+ 4+a,,z"andd > 0.

A nominal feedback controlleG.(z 1), typically a 4.1 The Main IMC Configuration

lag-lead compensator or PD controller is designed

so that for the nominal open-loop transfer function The discrete-time IMC (Internal Model Control) sys-
Go(z 1) = Ge(z H)Gp(z 1), the nominal closed-loop  tem structure is shown in Fig.3. This structure is

transfer function a counterpart of the continuous-time IMC controller
. Go(z7) given in (Datta, 1998). It is known that every stabiliz-
G(z7) = [EeNE=)) (3)  ing controllerG(z 1) is given by
is asymptotically stable and minimumphase. To as- Go(zY) = Qi (8)
C

sure the stability of the control system with repetitive - 1-Gp(zH)Q(z Y
controller the filterG¢ (z~1) such that . .
whereQ(z 1) varies over the set of all stable ratio-
Gi(zHG(zH =1 (4)  nal transfer functions. This structure may also yield

is usually introduced (Chang et al., 1995; Kempf a stable closed-loop performance for unstable plant

etal., 1993; Chang et al., 1998).

3 THE MULTIPLE REPETITIVE
CONTROL SYSTEM

The purpose of the multiple repetitive controller is to
regulate multiple repetitive errors which contain mul-
tiple dominant fundamental frequencies and their har-
monics (Chang et al., 1998). The multiple repetitive
discrete-time control system is depicted in Fig.2. Itis «
worthy to note that all repetitive control systems can
be augmented by multiple repetitive loops.

Consider again the unmodelled dynamics in the
form of a multiplicative modelling uncertainty given
by G*(z1) = G(z Y)[1+A(z1)]. Then from (4), a

Figure 2: Multiple repetitive control system.
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Figure 3: IMC structure.

provided that a plant modép(z‘l) is stable, how-
ever in this cas€(z 1) must not only be stable but
must also satisfy certain constraints imposed by un-
stable poles of the plant.

_ Suppose  that the (possibly  proper)
Gp(z'1),Q(z 1) are stable so that the IMC structure
is stable forGp(z 1) = Gj(z'1). Let the uncertainty
modelling have the following multiplicative form

Gh(z 1) =Gp(z M)[L+8p(z )] )
whereAp(fl) is stable strictly proper uncertainty.

From the IMC structure (Fig.3) the following equa-
tion can be derived

u(k) = —-Gp(z HQz Hapz Hu(k) + Q(z Hr(k)
(10)

SO
luM)2 < [|Gp(z H)Q(z HAp(z ||| lu(k) |2+
HIQEZ Hlwllr(0)l2  (12)
This shows that if
Gz HRZ VA Yl <1 (12)
then
U2 < [1—[|Gp(z H)QZ HApz )||w] * x
<[1QZ )l Ir (K)[]2

so the condition (12) gives the sufficient condition
for L, stability, thus the IMC structure is robust with
respect to modelling errors in the plant. Note that the
closed-loop transfer function is

y@)  Gp(z Hz HA(z Y +Gp(z HQz Y
1+ Gp(z 1)Q(z L)Ap(z 2)

(13)

r2)
(14)
For similar approach in continuous-time IMC struc-
ture see (Datta, 1998).

4.2 The Pole-placement IMC
Configuration

The standard RST controller has a form

R(z Hu(k) = —=S(z Hy(k) + T(z Y)r(k+d+1)
(15)

92

and is the solution of

Az YRz Y +z 9Bz HSz ) =AZ )Pz
(16)
whereP(z 1) is the stable polynomial the roots of
which are assumed to be the closed-loop poles. The
above equation implies that

Sz =AzhS(@z?), (17)
i.e.(16) is replaced by
RzYH+z9BEzYH)S(iz ) =Pz (18)

and this allows the controller to be characterized by
RzYH=PzYH-z9BzHS(zl. (19

PolynomialS (z-1) is assumed to be stable. For ex-
ample, ifR(z"1) contains an integrator then

(P
S(1) B (20)
yielding
—1
Rz 1Y) =P(z )zd% (21)
and B(1
Sz Y —Az g g (22)

Using the controller equation (15) and (18) one ob-
tains

P@1B(@) .\ _ 4Bz
A(Tli)P(l)u(k) =—[y(k) -z Az u(k)] +
T(z1)B(1)
which is the IMC scheme as shown in Fig.4 where
T(z1H)B(1

and using the notation from Fig.3

1, _ Az P

W pemeny

It is easy to see that takiff(z 1) = % guaran-

tees the zero steady-state error in the case of perfect
matching.

4.3 The Repetitive IMC Configuration

The proposed repetitive IMC system structure is rep-
resented in Fig.5. This is a combination of the IMC
structure (Figs.3,4) and the standard repetitive con-
troller (or multiple repetitive controller). The aim of
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this control system is reject the repetitive errors by the
repetitive controller and to improve the robustness by
a proper choice o®(z 1.

From (3), (4), (9) and (13) the following rela-
tion between uncertaintiés,(z 1) andA(z 1) can be
found

~ Dp(z7h)
Az =-—"~P" 1| 26
( ) 1 + Gé(z_]-) ( ) Internal Model Controller

Taking into account thaf\(z 1)| < € as in (6) the

Figure 6: Adaptive repetitive IMC structure.

following condition can be derived
Az indirect way, i.e. the model parameters are first esti-
|1+G*7(r1))| =€ (27) mated, and subsequently the obtained parameter es-
| oy timatesd(k) = (&1(K), ..., 4na(K), bu(K), .., Bp(K))T

This means that under this condition the robust sta- are used for tuning the parameters of both repetitive
b|l|ty of the I‘epetitive IMC structure will be assured and internai modei Contro”ers_
if additionally the uncertainty\(z 1) is stable. The
inequality (27) can not practically be checked out be-
causeG}(z 1) is not known, however using (8) and
(9) the inequalityA(z 1)| < € takes a form

|Ap(f H(A-Gp(z M)z )
14+ Gp(z1)Q(z 1) Ap(z7 )
so the (multiple) repetitive IMC system is robustly

stable if the uncertaint,(z 1) is such that the above
condition is fulfilled.

5 SIMULATIONS

(28) Often robotic manipulators are required to execute
repetitive tasks. Then the desired trajectory to be fol-
lowed by the manipulator is bounded and periodic
with known period. Below a first link of the Adep-
tOne robot (Tenney and Tomizuka, 1996) is taken as
an example for simulations. The link considered as a
plant is approximated by the nominal ARX model

[<e

4.4 The Adaptive Repetitive IMC
0.000242*
Structure Gp(z 1) (29)

-~ 1-1.978814+0.978% 2

The proposed adaptive repetitive IMC system struc-
ture is represented in Fig.6, where the parameter esti-
mation is realized using the standard recursive least-
squares algorithm. The adaptation is realized in an

obtained at%5 = 1kHz sampling rate. The nominal
compensator has a form of PD-type

1-0.92521
1-0.6521°

oAl Moge] e The main IMC repetitive controller has been
' tested for

AN . oz Y= 1195—3477 '+ 33572 2~ 10827 °
82 - 1-26z14+2238&2- O.636:f3(31)
- ey - that has been obtained according to (8) for a stable
Figure 4: Pole-placement IMC structure. plant model (29). In turn, the filte®¢ (z 1) was de-
rived according to (4) as

Ge(z 1) =1195 (30)

il lee) Gi(zl) =

1-45571+8278&2—-752% 3 N
0.028921 —0.0839% 2+ 0.08124 3 —0.0261% 4
1 i) ¥ 3424774 - 0.622%°

i pes 0.02892 1 —0.08397% 2 +0.08124 3 — 0.0261% *"

Sz

r(k)

(32

[

The disturbance (k) with amplitude of 5 units con-
tains the fundamental and harmonic frequencies of
for = 5Hz (10HZz 15H2Z), fop = 7THz (14HZz 21H2),

foz = 9HZz (18HZz27HZ) thus Ny = 200 N, = 143,

,,,,,,,,,,,,,,,,,,,,,,

Internal Model Controller

Figure 5: Repetitive IMC structure.
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Figure 7: Adaptive repetitive IMC, disturbance attenuatio Figure 9: Adaptive repetitive pole-placement IMC.
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Figure 8: Adaptive repetitive IMC, parameter estimates. Figure 10: Adaptive repetitive pole-placement IMC.

Nz = 111 withK;1 = K;» = K3 = 0.5. Additionally, The filter G¢ (z'1) was derived again from (4), how-
a pulse disturbance, with amplitude of 15 units is  ever in this case the transfer functiGiiz 1) is
also inserted to the input of the plant.

The initial conditions for parameter estimates and (7Y = Gr(zHQzNGp(z?) (35)
covariance matrix in the recursive least squares al- 1+ Gr(z1)Q(z 1)Gp(z 1Y)
gorithm were taken a8(0) = (0.01,0.01,0.01)" and

P(0) = 1001. The error signal is shown in Fig.9, and the corre-
The performance of adaptive multiple repetitive sponding parameter estimates are shown in Fig.10 for

IMC control system given in Fig.7 shows the effect of Multiple harmonic disturbance attenuation.
disturbance attenuation. The corresponding parame-

ter estimates are shown in Fig.8.

Finally, the adaptive pole-placement IMC structure 6 CONCLUSIONS

was combined with multiple repetitive controller. For
the polynomiaP(z 1) = 1— 1.8z 14 0.9z 2 one ob-

) Two structures of IMC repetitive control system are
tains from (25)

examined and their adaptive versions are simulated

1 0.1-0.197% 1+ 0.0978% 2 taking the first link of an AdeptOne robot as the ex-
Qz™)= 0.000242— 0.0004356-1+0.000217¢-2’ ample. The proposed control structures can be en-

(33) larged by the multiple repetitive controller. The adap-

and from (24) tive loop included into the IMC repetitive control sys-
0.0001 tem reduces the level of parametric uncertainty thus

Gr(z7) =13 97% 11 0978% 2 (34)  improves the quality of disturbance attenuation. In
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this way the proposed configurations can be consid-
ered as the robust adaptive ones.
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