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Abstract: An efficient implementation of Model Predictive Control (MPC) using a multilayer feed forward network as 
the plants linear model is presented. This paper presents a comparison between the Generalized Predictive 
Control and Neural Generalized Predictive Control with Newton-Raphson as minimization algorithm. Three 
different linear models are taken and their performances are tested. Simulation result shows the effect of 
neural network on Generalized Predictive Control for linear systems. The performance comparison of these 
system configurations has been given in terms of ISE and IAE.  

1 INTRODUCTION  

Model predictive control (MPC) has found a wide 
range of applications in the process, chemical, food 
processing, automotive, aerospace, metallurgy, and 
pulp and paper industries. (Qin and Badgwell, 2003; 
Yu, Yu and Gomm, 2006; Lawrynczuk, 2007). In 
recent years, the requirements for the quality of 
automatic control in the process industries increased 
significantly due to the increased complexity of the 
plants and sharper specifications of product quality. 
As a result, computer models that are 
computationally expensive became applicable even 
to rather complex problems. Intelligent and model 
based control techniques were developed to obtain 
tighter control for such applications. Neural network 
techniques has been found to be particularly useful 
for modeling and controlling highly uncertain 
nonlinear and complex systems. (Noorgard, Ravn, 
Poulsen and Hansen, 2000). The Model Predictive 
Control (MPC) techniques found to be very effective 
in control systems. MPC was introduced 
successfully in several industrial plants. Some of the 
most popular MPC algorithms that found a wide 
acceptance in industry are Dynamic Matrix Control 
(DMC), Model Algorithmic Control (MAC), 
Predictive Functional Control (PFC), Extended 
Prediction Self Adaptive Control (EPSAC), 
Extended Horizon Adaptive Control (EHAC) and 
Generalized Predictive Control (GPC). (Morari and 
Lee, 1999, Rossiter, 2003). In this work, comparison 
between GPC and Neural GPC has been carried out 

for linear systems. The results show the efficacy of 
NGPC for such plants. 

2 GENERALIZED PREDICTIVE 
CONTROL  

The GPC method was proposed by Clarke et. al. 
(Clarke, Mohatadi and Tuffs, 1987) and has become 
one of the most popular MPC methods both in 
industry and academia.  

The basic idea of GPC is to calculate a sequence 
of future control signals in such a way that it 
minimizes a multistage cost function defined over a 
prediction horizon. The index to be optimized is the 
expectation of a quadratic function measuring the 
distance between the predicted system output and 
some reference sequence over the horizon plus a 
quadratic function measuring the control effort. The 
GPC scheme consists of the plant to be controlled, a 
reference model that specifies the desired 
performance of the plant, a linear model of the plant, 
and the Cost Function Minimization (CFM) 
algorithm that determines the input needed to 
produce the plant’s desired performance. The GPC 
system starts with the input signal, r(t), which is 
presented to the reference model. This model 
produces a tracking reference signal, w (t) that is 
used as an input to the CFM block. The CFM 
algorithm produces an output, which is used as an 
input to the plant. Between samples, the CFM 
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algorithm uses this model to calculate the next 
control input, u(t+1), from predictions of the 
response from the plant’s model. Once the cost 
function is minimized, this input is passed to the 
plant.  

3 NEURAL GENERALIZED 
PREDICTIVE CONTROL 

The ability of the GPC to make accurate predictions 
can be enhanced if a neural network is used to learn 
the dynamics of the plant instead of standard 
nonlinear modeling techniques.(Noorgard, Ravn, 
Poulsen and Hansen, 2000). The selection of the 
minimization algorithm affects the computational 
efficiency of the algorithm. In this work Newton-
Raphson method is used as the optimization 
algorithm. The main cost of the Newton-Raphson 
algorithm is in the calculation of the Hessian, but 
even with this overhead the low iteration numbers 
make Newton-Raphson a faster algorithm for real-
time control. (Soloway, 1996). The Neural 
Generalized Predictive Control (NGPC) system can 
be seen in Fig. 1. It consists of four components, the 
plant to be controlled, a reference model that 
specifies the desired performance of the plant, a 
neural network that models the plant, and the Cost 
Function Minimization (CFM) algorithm that 
determines the input needed to produce the plant’s 
desired performance. The NGPC algorithm consists 
of the CFM block and the neural net block. 

 
Figure 1: Block Diagram of NGPC System. 

The NGPC system starts with the input signal, r(t), 
which is presented to the reference model. This 
model produces a tracking reference signal, w(t+k), 
that is used as an input to the CFM block. The CFM 
algorithm produces an output that is either used as 
an input to the plant or the plant’s model. The 
double pole double throw switch, S, is set to the 
plant when the CFM algorithm has solved for the 
best input, u(t), that will minimize a specified cost 
function. Between samples, the switch is set to the 
plant’s model where the CFM algorithm uses this 

model to calculate the next control input, u(t+1), 
from predictions of the response from the plant’s 
model. Once the cost function is minimized, this 
input is passed to the plant. The computational 
performance of a GPC implementation is largely 
based on the minimization algorithm chosen for the 
CFM block. Models using neural networks have 
been shown to have the capability to capture 
nonlinear dynamics. Improved predictions affect rise 
time, over-shoot, and the energy content of the 
control signal.  

3.1 Formulation of NGPC 

3.1.1 Cost Function 

As mentioned earlier, the NGPC algorithm 
(Soloway, 1996) is based on minimizing a cost 
function over a finite prediction horizon. The cost 
function of interest to this application is  
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When this cost function is minimized, a control 
input that meets the constraints is generated that 
allows the plant to track the reference trajectory 
within some tolerance. There are four tuning 
parameters in the cost function, N1, N2, Nu, and λ. 
The predictions of the plant will run from N1 to N2 
future time steps. The bound on the control horizon 
is Nu. The only constraint on the values of Nu and N1 
is that these bounds must be less than or equal to N2. 
The second summation contains a weighting factor, 
λ that is introduced to control the balance between 
the first two summations. The weighting factor acts 
as a damper on the predicted u(n+1). 

3.1.2 Cost Function Minimization Algorithm 

The objective of the CFM algorithm is to minimize J 
in Equation (1) with respect to [u(n+l), u(n+2), ..., 
u(n+Nu)]T, denoted as U. This is accomplished by 
setting the Jacobian of Equation (1) to zero and 
solving for U. With Newton-Rhapson used as the 
CFM algorithm, J is minimized iteratively to 
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determine the best U. An iterative process yields 
intermediate values for J denoted J(k). For each 
iteration of J(k) an intermediate control input vector 
is also generated and is denoted as: 
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and  the Hessian as  
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The each element of the Jacobian is calculated by 
partially differentiating (4) with respect to vector U.  

3.1.3 Neural Network Architecture 

In NGPC the model of the plant is a neural network. 
This neural model is constructed and trained using 
MATLAB Neural Network System Identification 
Toolbox commands and Control System Design 
Toolkit (Noorgard, Ravn, Poulsen and Hansen, 
2000). 

The output of trained neural network is used as 
the predicted output of the plant. This predicted 
output is used in the Cost Function Minimization 
Algorithm. If yn(t) is the neural network’s output 
then it is nothing but plant’s predicted output 

( )ny t k t
∧

+ ⏐ .  

The initial training of the neural network is typically 
done off-line before control is attempted 

3.1.4 Prediction using Neural Network 

The NGPC algorithm uses the output of the plant's 
model to predict the plant's dynamics to an arbitrary 
input from the current time, t, to some future time, 
t+k.  

4 SIMULATION RESULTS 

The objective of this study is to show how GPC and 
NGPC implementation can cope with linear systems. 
GPC is applied to the systems with changes in 
system order. The Neural based GPC is 
implemented using MATLAB Neural Network 
Based System Design Toolbox (Noorgard, Ravn, 
Poulsen and Hansen, 2000). 

4.1 GPC and NGPC for Linear 
Systems 

The GPC and NGPC algorithm was applied to the 
different linear models with varying system for 
simulation purpose. For all the systems Prediction 
Horizon N1 =1, N2 =7 and Control Horizon (Nu) is 2 
have been considered. The weighing factor λ for 
control signal is kept to 0.3 and δ for reference 
trajectory is set to 0. The same controller setting is 
used for all the systems simulation. The following 
simulation results are obtained showing the plant 
output when GPC and NGPC are applied. Also the 
required control action for different systems is 
shown.  

System I. The GPC and NGPC algorithms are 
applied to a second order system (6). Fig. 2 shows 
the plant output with GPC and NGPC. Fig. 3 shows 
the control efforts taken by both controllers. 
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Figure 2: System I Output using GPC and NGPC. 
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Figure 3: Control Signal for System I. 

System II. A simple first order system (7) is 
controlled. Fig. 4 and Fig. 5 show the system output 
and control signal.  

1( )
1 10

G s
s

=
+

 (7) 

 

 
Figure 4: System II Output using GPC and NGPC. 

 
Figure 5: Control Signal for System II. 

System III. A second order system (8) is controlled 
using GPC and NGPC. Fig.6 and Fig.7 Show the 
predicted output and control signal.  
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Figure 6: System III Output using GPC and NGPC. 

 
Figure 7: Control Signal for System III. 

Initially systems were trained using Levenberg-
Marquardt learning algorithm. Fig. 8 shows input 
data applied to the neural network for offline 
training purpose and corresponding neural network 
output.  

 
Figure 8: Input and output data for NN. 

Performance evaluation of both the controller is 
carried out using ISE and IAE criteria. Table 1 gives 
ISE and IAE values for both GPC and NGPC 
implementation for all the linear systems considered. 
It was observed that for each system ISE and IAE 
using NGPC is smaller or equal to GPC. 
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Table 1: ISE and IAE Performance Comparison of GPC 
and NGPC for Linear System. 

GPC NGPC Systems Setpoint 
ISE IAE ISE IAE 

0.5 1.827 4.4107 1.6055 3.6351 I 
1 0.2567 1.4492 0.1186 1.4312 

0.5 1.1803 3.217 0.7896 2.6894 II 
1 0.1311 0.767 0.063 1.017 

0.5 1.4639 3.7625 1.1021 3.3424 III 
1 0.1759 0.9065 0.0957 0.7062 

5 CONCLUSIONS 

In this paper a comparison between GPC and NGPC 
is carried out for linear systems. The performance of 
NGPC is better that GPC in terms of ISE and IAE 
Performance index. 
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