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Abstract: This work presents a method for the generation of normal maps from two polygonal models: a very detailed 
one with a high polygonal density, and a coarser one which will be used for real-time rendering. This 
method generates the normal map of the high resolution model which can be applied to the coarser model to 
improve its shading. The normal maps are completely generated on the graphics hardware. 

1 INTRODUCTION 

A normal map is a two-dimensional image whose 
contents are RGB colour elements which are 
interpreted as 3D vectors containing the direction of 
the normal of the surface in each point. This is 
especially useful in real-time applications when this 
image is used as a texture applied onto a 3D model, 
because normals for each point of a model can be 
specified without needing more geometry. This 
feature enables the use of correct per-pixel lighting 
using the Phong lighting equation. 

Normal map generation is a key part in real-time 
applications, such as video-games or virtual reality, 
due to the intensive use of techniques such as 
normal-mapping, used to increase the realism of the 
scenes. 

Compared to traditional per-vertex lighting, per-
pixel lighting with normal maps gives the rendered 
model a great amount of surface detail, which can be 
appreciated through the lighting interactions of the 
light and the surface. Figure 1 shows the effect of 
applying a normal, extracted from a highly detailed 
model, onto a coarser mesh which is used for 
rendering the model in real-time without almost 
losing quality. This technique gives detail to meshes 
without having to add real geometric detail. 

Altough normal maps can be easily generated 
when both the reference and the working meshes use 

a common texture coordinate system, this is not 
always the case and thus, it is not trivial to 
implement on the graphics hardware. This is the 
reason why this kind of tools are often implemented 
on software. 

The high programmability of current graphics 
hardware allows for the implementation of these 
kinds of methods on the GPU. This way, the great 
scalability of the graphics hardware, which is 
increased even more each year, can be used to 
perform this task. 

2 STATE OF THE ART 

Some other authors have presented works about the 
generation of normal maps for simplified meshes. 
(Sander, 2001) (Soucy, 1996) (Cignoni, 1998) 
generate an atlas for the model so that they can 
sample the colour and normal values of the surface 
to be stored in a texture, which will be applied over 
a simplified version of the same original model. 
However, these methods need the coarse version of 
the mesh to be a simplified version of the sampled 
mesh, which is a disadvantage. The method 
proposed in this work does not have this limitation, 
the only limitation; of our work is that the two 
objects involved must have the same size, positions 
and shape in the space. 

62
Gumbau J., González C. and Chover M. (2008).
GPU-BASED NORMAL MAP GENERATION.
In Proceedings of the Third International Conference on Computer Graphics Theory and Applications, pages 62-67
DOI: 10.5220/0001097100620067
Copyright c© SciTePress



 
Figure 1: Normal mapping example: the figure on the right shows the results of applying the normal map generated from 
the high resolution mesh (left) and its coarse representation (middle). 

Although other authors (Wang, 2002) 
implementation takes advantage of graphics 
hardware for the generation of normal maps, they do 
not exploit it completely as they only use the 
rasterizing stage of the GPU, performing other tasks 
on the CPU. Moreover, this method has some 
limitations: it can not generate the normals for faces 
that are occluded by other parts of the model, and it 
does not fully take advantage of the graphics 
hardware capabilities, having to perform some read 
backs from the colour buffer. 

On the other hand, (Gumbau, 2006) present an 
extremely fast method to calculate normal maps on 
the GPU. However, it has a strong limitation: the 
normal map generated from a mesh A to be applied 
to a mesh B can be generated if and only if the mesh 
B has been generated from a simplification process 
applied to the mesh A, and the distribution of texture 
coordinates fulfil some special requirements. These 
strong limitations enable the normal map to be 
generated very fast, but it can only be used in very 
specific and controlled situations. 

Finally, there exist some applications (NVIDIA) 
that use ray tracing to calculate the normal map in a 
very precise way. Their disadvantage is that they do 
not benefit from the graphics hardware, and thus 
they will not be explained. 

3 METHOD 

The method presented in this paper generates the 
normal map completely on the GPU, so that all the 
work is performed by the graphics hardware. This 
has the advantage of taking profit of a highly 
parallelizable hardware which will quickly 
increment its performance in the next years. Coarse 
versions of highly detailed meshes are often 
modelled from scratch (as in the video game 
industry for example), so we can not expect any 
correspondence between the two meshes other than 

geometric proximity. Having this in mind, this 
method avoids the requirement of generating the 
coarse mesh from the highly detailed mesh, and, as a 
consequence, they can be modelled separately. 

3.1 Main Idea 

Let MHR and MLR be two polygonal meshes so that 
MLR is a coarse representation of MHR. We define 
the normal map MN as a two-dimensional texture 
which can be used as input for normal mapping. Our 
goal is to calculate MN on the GPU. 

We assume that MLR is a good approximation of 
MHR and that both are situated in the same spatial 
position, and have the same sizes and orientation. 
Basically, to calculate MN, one render of MHR will 
be performed for each triangle (T) of MLR, 
discarding those parts of the model projected outside 
T. For every fragment of MHR projected through T, 
the direction of the normal will be extracted and 
stored into MN, using the texture coordinates of T to 
calculate the exact position inside the texture. Easily 
explained, the algorithm works as: the normals of all 
those pixels of the high resolution mesh rendered 
through the window formed by the triangle T will 
become the part of the normal map applied to T. 
This way, MHR is used as a three-dimensional grid 
which contains information about how to render 
MHR. 

Texture coordinates of MHR must be fully 
unwrapped in a way that there are no triangles 
overlapped in texture space. 

3.2 Transformation Matrices 

For each iteration of the algorithm, a transformation 
matrix (which encapsulates the model, view and 
projection transformations) must be calculated. This 
matrix transforms the triangle T (composed by the 
vertices v0, v1 and v2) to the two-dimensional 
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triangle t (composed by the texture coordinates of T: 
t0, t1 and t2). 

Figure 2 shows this process. Once obtained, this 
matrix will be applied to every vertex of MHR, so 
that all the triangles visible through T will be 
projected onto the area defined by t. 

 
Figure 2: The transformation matrix which converts the 
3D triangle T into a 3D triangle composed by the texture 
coordinates of T must be calculated at each step. 

3.2.1 Model/View Matrix Calculation 

The model/view matrix (MV) is derived from the 
three parameters that define a virtual camera which 
will be configured so that its viewing direction is 
parallel to the normal of T, looking to the center of 
the triangle and located at a certain distance of T. As 
we will use an orthographic projection, the distance 
T will not affect the final projection. 

To define a virtual camera, a third parameter is 
needed: the roll angle usually specified as the “up 
vector”. This vector is calculated using its texture 
coordinates. 

Let (t1, t2 y t3) be the texture coordinates of the 
three vertices of T (v1, v2, v3). The vertical value on 
our two-dimensional space will be assumed to be the 
vector (0,1). Having this in mind we can propound 
the following equation system: 
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Working out the values of α and β will let to 
calculate the desired vector in the following way: 

)·()·( 1312 vvvvUP −+−= βα
 

(2)

3.2.2 Projection Matrix 

We will use a pseudo-orthogonal projection matrix 
to project the vertices of MHR. Similar to an 
orthogonal matrix, it will not modify the X and Y 
coordinates depending on the value of Z. However 

its behavior is not exactly the same of a common 
orthogonal matrix, as we will explain later. 

We need to calculate a projection matrix (P) 
which transforms the coordinates of T into its 
texture coordinates t, so we propound the following 
equations: 

}2,1,0{· ∈∀= itvP ii  (3) 

The problem here is that the matrix P is a 
homogeneous transform matrix (it has 16 elements), 
and thus it can not be solved directly because we 
have not enough equations.  
As we are looking for a pseudo-orthogonal matrix 
which transforms the X and Y coordinates of each 
vertex to the texture coordinates, we only need to 
calculate the value of the 6 unknowns (Pn) shown in 
figure 3: 
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Figure 3: Unknowns to solve to calculate the desired 
projection matrix. 

where i refers to each one of the three vertices of 
T, and wi refers to those vertices pre-multiplied by 
the MV matrix, as shown below: 

}3,2,1{· ∈∀= iwvMV ii
 

(4) 

Ntx
i and Nty

i are the normalized device 
coordinates for each one of the transformed vertices. 
As after perspective division, the visible coordinates 
in the screen are situated in the range [-1,1]. 
Nevertheless, we want them to be in the range [0,1] 
of the texture coordinates, then we have to take that 
into account. They are calculated using the 
following formula: 
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After solving the equations propounded in 
Figure 3 we get the desired pseudo-orthogonal 
matrix which projects every vertex of MHR in a way 
that all the triangles visible through T will be 
rendered inside the area formed by the texture 
coordinates of T. 
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3.3 Framebuffer 

As explained before, the number of renders of MHR 
needed to be performed is equal to the triangle count 
of MLR. However, we are only interested in the 
pixels which are inside the area formed by the 
triangle T projected with the matrix MVP. Setting up 
the stencil buffer to discard all pixels which are 
outside the projection of T, is a very simple way to 
discard unwanted pixels and to protect those parts 
which have been already rendered.  

Finally, the pixel shader re-scales every un-
masked normal to the range [0,1], so that the normal 
vector can be encoded as a colour in the RGB space. 

3.4 The Auto-occlusion Problem 

Sometimes, there are some parts of the models that 
will cause this method to fail. This happens when 
there is another part of the model between the 
camera and the real target surface. This problem is 
clearly shown in Figure 4, where a part of the model 
is incorrectly occluding the desired surface 
(coloured in red), causing the normal map to be 
completely invalid. 

 
Figure 4: Auto-occlusion problem: the ear next to the 
camera is occluding the real desired geometry. 

To solve this problem we have developed a 
technique called vertex mirroring. Basically we 
consider that if a pixel is going to be drawn more 
than once (some parts of the model overlap in screen 
space), then the valid pixel will be that one which is 
closer to T. This is similar to what raytracing-based 
normal map generation algorithms do: if some 
polygons intersect the ray, take the one which is 
closer to T. 

Let Π be the plane containing T. Let N be the 
normal of Π, vi be each one of the vertices of MHR 
and ki be the distance between Π and vi. Then the 
final position of vi is recalculated as follows: 

Nkkclampvv iiii )·,0,(·2−=  
(6) 

The function clamp(a,b,c) will trunk the value a 
inside the range [b,c]. This ensures that all vertices 
of MHR are in front of the plane Π, because those 
vertex that are behind that plane are mirrored 
through it. After performing this step, we can use the 
standard depth test to ensure that each rendered pixel 
is the nearest possible to T. 

This technique can be implemented in a vertex 
shader for optimal performance, in a clear, elegant 
and efficient way. 

3.5 Normal Map Border Expansion 

Once the previous process is over, the normal map is 
correctly calculated. However, due to the texture 
filtering methods used in real-time hardware, 
normals could incorrectly interpolate with their 
neighbouring “empty” texels. To solve this problem, 
we need to create an artificial region surrounding 
every part of the normal map. 

To detect those texels that do not contain a valid 
normal, an extra pass rendering a full screen quad 
textured with the previously generated normal map 
will be performed. For each pixel, the pixel shader 
of the normal map generator will check if the texel 
belonging to the pixel being processed has a module 
less than 1, which means that it does not contain a 
valid normal (because all normal must be unitary). If 
that happens, the pixel must be filled with the 
average normalized value of its neighbouring texels 
which contain a valid normal. 

At the end of the process a 1-pixel sized frontier 
is created around all parts of the normal map that 
didn’t contain a valid normal. This process can be 
repeated with the resulting texture to expand the 
frontier to a user defined size. 

4 RESULTS 

All tests were performed on an Athlon64 3500+ / 
1GB RAM / GeForce 6800 Ultra and can be divided 
into two categories: performance and quality tests. 
Table 1 shows a study of total times required to 
generate the normal maps for two models with a 
different polygonal complexity. For each model 
(MHR, first column) different coarse approximations 
are used (MLR, second column) to generate MN. The 
column on the right shows the time in milliseconds 
needed to calculate the normal map for a certain 
combination of meshes. 

An octree-based acceleration structure is used to 
discard as many triangles as possible in an efficient 
way to improve rendering times up to 10 times.
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Figure 5: Normal maps used in Figure 6. From left to right: the bunny, the monster and the horse. 

Table 1: Total times in milliseconds needed to generate 
the normal maps for two different models, using a set of 
different coarse approximations. 

Triangles 
MHR 

Triangules 
MLR 

Time 
 (ms) 

250 140 
500 224 

1.000 442 
2.000 721 
2.500 912 

 
 
 

69.451 

3.000 1034 
250 22 
500 32 

1.000 66 
2.000 102 
2.500 131 

 
 
 

16.843 

3.000 158 
 

On the other hand, some tests have been done to 
compare our results with a software based approach, 
which is implemented in the nVidia Melody tool. 
These results are not shown in a table because that 
tool does not display time information. However, 
those the times needed for the application to 
calculate the normal maps for the same high 
resolution model used in our tests vary from 2 to 6 
seconds for the worst and better cases, which is 
worse compared with our results. 

The other studied parameter is how the size of 
the normal map affects to our method. As one can 
imagine, the bottleneck of our application is the 
huge amount of vertices needed to be processed, 
because the pixel operations performed are very 
light weight. Table 2 shows how our method is 
independent of the size of the normal map. 

Figure 6 shows the results of the generated 
normal maps for 3 different models: the bunny, the 
monster and the horse. The column on the left shows 

the high resolution models (MHR). The column on 
the centre shows the coarse versions of each mesh 
(MLR) used to calculate the normal map. Finally, the 
column on the right shows the final normal map 
applied to the coarse mesh, so one can check the 
final visual quality of the normal map. Figure 5 
shows the normal maps generated for its use in 
Figure 6. 

Table 2: Generation times at different resolutions. 

Triangles MHR / MLR Resolution Time (ms) 
128 x 128 442 
512 x 512 441 

 
69.451 / 1.000 

1024 x 1024 443 

5 CONCLUSIONS 

We have presented a GPU-based method for normal 
map generation. This method exploits the graphics 
hardware in a way that it takes advantage of the 
parallelization of the GPU in various ways. On the 
one hand, the graphics hardware utilizes several 
shading processors in parallel, which is inherent to 
the graphics pipeline. On the other hand, there is a 
parallelization between the GPU and the CPU, 
which is useful to calculate matrices on the CPU 
while the GPU is performing each render. Moreover, 
the method proposed here does not have some of the 
limitations explained in the introduction. 

Although this method has been used to calculate 
the normals of a high resolution polygonal mesh, it 
could also be used to obtain other surface parameters 
such as diffuse colour maps, height maps or specular 
maps. As seen before, this method is highly 
dependent of the number of triangles of both models 
(MHR and MLR). However, this limitation can be 
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reduced by using some kind of hierarchical culling 
method to discard most of the unneeded geometry. 
In this article we have used octrees as an 
acceleration structure. Moreover, reducing the 
number of renders needed by grouping triangles of 
MLR would also be possible. This would highly 
accelerate the total generation times, although this 
has been left as future work. 
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Figure 6: The column on the left show the high resolution models (MHR). The column in the middle shows the coarse 
versions (MLR) of those meshes. Finally, the column on the right show the resulting normal map applied to ML. 
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