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Abstract: This paper deals principally with the comparison of two efficient algorithms to solve multi-contact problems 
with friction between two deformable bodies. These two algorithms are based on the bi-potential 
formulation of the contact laws, offering the control of the solution at each contact point through an unique 
mathematical operator of projection as well as a better force feedback stability of the friction contact force.  
For reasons of modular programming,  a method to decouple the contact solver from the displacement 
solver is presented.  A Haptic Contact simulator  called “HapCo” has been developed as a prototype to test 
contact algorithms between two deformable objects in the context of interactive simulation with a haptic 
device. 

1 INTRODUCTION 

During the last twenty years, technologies related to 
medical areas have enormously improved; one of 
them is medical interactive simulators. The interest 
of interactive simulators based on advanced virtual 
and augmented reality techniques comes mainly 
from the surgeon’s needs in terms of advanced 
teaching and training tools. Virtual Reality has been 
developed for many years in this context to reduce 
learning problems. The interactive simulation 
associated with multimodal rendering (haptic, visual, 
touch …) provides medical operators the possibility 
to learn faster and easier. Surgical simulators are 
currently being developed at many research centers 
and companies (Gibson et al., 1997), (Cotin et al., 
2000) , (Zhuang, 2000) to create environments to 
help train physicians in the use of new surgical 
instruments and techniques in minimally invasive 
surgery. In this type of application, the numerical 

context is soft body simulation based on physical 
models. Because surgical instruments are typically 
long slender structures, the contact points are limited 
to one point (point-based rendering) or some points 
along a segment (ray-based rendering) but never on 
a surface (surface-based rendering). However it 
could be interesting to consider for example the 
shape of a new surgical tool to test its efficiency in 
surgical tasks such as pulling, clamping, gripping 
and cutting soft tissue. Multiple contact points could 
be considered in that case  between a rigid body (the 
tool) and the deformable object (the tissue).  But in 
all complex simulated surgical tasks, we have to 
consider the organ-organ interaction through a 
surfaced distribution of contact points between two 
deformable bodies. In such a medical context of 
simulation, there is an ongoing quest for faster 
algorithms to solve multiple contact forces while 
controlling the numerical stability of the solution. 

A real time simulation relies on three optimized 
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numerical “black boxes”, the first one to detect the 
potential contact points (collision detector), the 
second one to solve the nodal displacements of the 
discrete objects (displacement solver) and the third 
one to solve the multiple friction contact forces 
(contact solver). This paper concerns only 
descriptions about the contact solver.  Interested 
readers may refer to (Teschner et al., 2004), (Lin, 
1998) for a review of collision detectors and to 
(Erleben et al., 2005), (Gibson, 1997) about physics-
based displacement solvers. 

In the next section, we present  a Haptic 
Contact simulator  called “HapCo”  developed in our 
laboratory as a prototype to test contact algorithms 
between two deformable objects in the context of 
interactive simulation with a haptic device. The 
important concept of  the flexibility method is 
presented in which there is a separation between the 
computation of the contact forces and the 
computation of the nodal displacements. 

The third section presents the formulation and 
the resolution of friction contact problems and it is 
focus  on two  efficient algorithms for the contact 
solver, called respectively  “local Uzawa” and 
“global Uzawa”.  They are both  based on a 
bipotential formulation introduced by De Saxcé and 
Feng (De Saxce, 1991), (Feng, 1995). This 
formulation has the advantage to control the solution 
of the friction contact force. Finally we report and 
discuss the experimental results followed by some 
perspectives of future works. 

2 DESCRPTION OF THE 
“HAPCO” SIMULATOR 

The Haptic Contact “HapCo” simulator is a 
prototype developed in our laboratory to test contact 
algorithms between two deformable bodies  in the 
context of interactive simulation with a haptic 
device.  These two bodies are parallelepiped  (see 
figure 5),  The red one  can be  clamped at its 
extremities and the green one can be manipulated in 
translation by  the operator  through a PHANTOM 
Desktop haptic interface (Sensable). 

In the HapCo simulator, we use a linear elastic 
modelling of the bodies based on the Finite Element 
Method (FEM). We consider only quasi-static 
analysis because of very small inertial forces in 
medical applications. The linear elastic modeling is 
not really justified because it is only accurate for 
small deformations which is not the case of soft 
tissues (hyperelastic deformations). We have chosen 

the linear modeling only for reasons of simplicity 
and computational efficiency. It is important to 
announce that our friction contact solver is suitable 
either for the non linear modeling or any other 
deformation modeling since it is based on the 
principle of flexibility (Francavilla, 1975) which 
allows to decouple the numerical task of the 
displacement solver from the numerical task of the 
friction contact force solver. 

 
Figure 1: Data flow chart of the HapCo simulator. 

The figure 1 describes the functional diagram 
of the interactive simulation in “HapCo”. When a 
collision is detected between the green body and the 
red one (see figure 5), the displacement solver 
computes the relative free displacement   between 
the potential pairs of contact points. Then the contact 
solver gives the local contact forces r in order to 
avoid any interpenetration (Signorini condition) and 
to satisfy Coulomb laws (stick/slip phenomena). 

Finally the displacement solver computes all 
the nodal positions of  the  two bodies  by 
considering the contact forces as external (or given 
forces). The haptic rendering force is then computed 
from the given contact forces and sent back to the 
operator. 

So this feedback force takes into account the 
stiffnness of the two bodies  and the friction contact 
laws (Signorini and Coulomb) of  all contact points 
distributed on the contact surface. The next step of 
the simulation process is reinitialised from the new 
increment of rigid displacement given by the 
operator through the haptic device. The sample 
frequency of the elapsed time must be superior to 25 
Hz to have an accurate visual rendering and superior 
to 300 Hz to have an accurate haptic force rendering. 
view).  The main objective of HapCo is to test 
different algorithms to solve multi friction contact 
problem  in order to determinate witch one gives the 
best stable force feedback in real-time. 
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3 ALGORITHMIC PRINCIPLE 

We propose to follow an incremental mixed 
formulation (displacement and contact force) of the 
equilibrium equations and to solve separately the 
contact force by successive local projections of these 
equations in the local reference frames at contact 
points. This method is called the flexibility method 
because it consists of establishing a flexibility matrix 
(Francavilla, 1975) or a Delassus operator (Duriez, 
2005). 

In order to calculate the friction contact forces, 
the contact laws (Signorini and Coulomb) are 
formulated from an augmented Lagrangian 
formulation (bi-potential formulation) and computed 
by an Uzawa technique which leads to an iterative 
predictor/corrector process. The bipotential method 
proposed by De Saxcé and Feng (Feng, 2003), 
(Feng, 1995) provides a powerful tool to model 
dissipative constitutive laws such as Coulomb 
friction laws. The figure 2 describes the basic 
principle of this method. Interested readers can find 
more details in (De Saxcé, 1991 and Wriggers, 
2002).  

Figure 2: Principle Algorithm. 

3.1 Incremental Formulation of 
Equilibrium Equations  

The following equation governs the quasi static 
nonlinear problems involving contact between finite 
element bodies: 

Fint + Fext + R =0 

where Fint is the vector of internal nodal forces, 
Fext denotes the vector of external nodal forces and 
R, the vector of nodal contact  forces. 

This equation is strongly nonlinear with respect 
to the nodal displacements U, because of finite 
strains and large displacements. The incremental 
formulation consists of writing a linear relation of 
the internal forces relative to U. A Newton-Raphson 
iterative resolution is carried out as follows: 

⎧⎪
⎨
⎪⎩

i i i
T int ext

i+1 i

K ∆U = F + F + R

U = U + ∆U
 

where i is the iteration number at which the 
equations are computed. i

TK  is the tangent stiffness 
matrix and ∆U is the correction vector of the nodal 
displacements. Taking the derivative of Fint with 
respect to U gives the tangent stiffness matrix:  

int∂
= −

∂T
FK
U

 

It is noted that the incremental formulation of 
the equilibrium equations can not be solved directly 
since ∆U and R are both unknown. The key idea is 
to determine first R in a reduced system which only 
concerns the contact nodes. Then ∆U can be 
computed in the whole structure, using contact 
reactions as external forces. In the following section, 
we describe how to determine the contact forces. 

3.2 Friction Contact Formulation 

 
 
 
 
 
 
 
 
 

Figure 3: Local coordinate frame at the contact point α . 

The unilateral contact law in the case of 
deformable objects is characterized by a linear 
relationship between the constraint displacement αu 
and the contact force αr, for each pair of contact 
points α= (1..m) as shown in figure 3. This relation 
can be written as: 

α αβ α α
αα +W r + u u = u  

where Wαα and α u  represent respectively the 
local flexibility matrix (3x3dimension) and the free 
displacement at the contact point α  (i.e. when all the 
contact forces are zero). αβu is the displacement at 
the contact point α induced by the contact forces 
occurring at contact points α≠β. αu, αβu and αr are 
defined relative to the local coordinate frame 
positioned at the contact point α. The flexibility 
matrix depends on the local stiffness of each object 
in contact and the free displacement depends on the 
internal forces and the external forces applied to 
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each object in contact. 
This equation represents a system of 3 scalar 

equations where the local unknowns are αu and αr  
(6 scalar unknowns). To describe the local behavior 
of each contact point α additive constraints are 
necessary. 

The unilateral contact law is characterized by a 
geometric condition of non-penetration, a static 
condition of no-adhesion and a mechanical 
complementary condition. These three conditions 
are known as Signorini conditions expressed, for 
each contact point α, in terms of the normal signed 
constrained displacement αun=αu.n and the normal 
signed contact force  αrn=αr.n by: 

Signor( , ) 0, 0 and  ( ) 0n n n n n nu r u r u rα α α α α α⇔ ≥ ≥ =  

The classical Coulomb friction rule is defined by: 

Coul( , ) If 0 then

                               else

t t t t n

t
t

t

rα α α α α

α
α

α

µ

µ

⇔ = ≤

= −

u r u r

ur
u

 

Where µ is the coefficient of friction and αut  (resp. 
αrt  ) is the tangential part of αu (resp. αr). 

The complete contact laws (Signorini condition 
+ Coulomb friction laws) can be defined by the three 
contact states as follows: 

• 0 and 0n nu rα α> =  (Separating) 

• 
0

and int ( )

t

t K

α

α α
µ

⎧ =⎪
⎨
⎪ ∈⎩

u

r
 (Contact with sticking) 

• 
0   

and  bd ( )     

with 

t

t

t
t n

t

K

r

α

α α
µ

α
α α

α
µ

⎧
⎪

≠⎪
⎪⎪ ∈⎨
⎪
⎪ =−⎪
⎪⎩

u

r

ur
u

 (Contact with sliding) 

Where K α
µ  is the so-called Coulomb cone at 

the contact point α and represents the set of 
admissible forces defined by: 

{ }3 tel que 0 et 0n t nK R r rα α α α α
µ µ= ∈ ≥ − ≤r r  

The terms int( )Kα
µ  and bd ( )Kα

µ  are respectively 
the interior and the surface of the Coulomb cone. 
The contact laws give no explicit relation between 
αrt  and αut  in case of contact with sticking and in 
case of no contact. 

Based on the augmented lagrangian method 

used to solve contact problems (Alart, 1991 and  
Simo, 1992), De Saxcé and Feng have proposed to 
use the bi-potential formulation to write the 
complete contact laws by the following  projection 
operator: 

*

* *

*

           Proj ( )   

with  

           

K

t

µ

α α

α α α

α α α

ρ

µ

=

= −

= +

r r

r r u

u u u n  

Where αr* is the so-called augmented contact force 
at the contact point α. Proj  Kµ is the projection 

operator on the Coulomb cone. ρ is an arbitrary 
positive parameter. The three possible contact states 
are illustrated in figure 4. 

 
Figure 4: Coulomb cone projection and contact states. 

Within the bi-potential framework, the 
projection operation can be explicitly defined by: 

* * * *

* * *

* * *
* *

2 *
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3.3 Friction Contact Resolution 

From the above equations and by considering m 
contact points, we have to solve successively m local 
systems (α=1, m) described as: 

*

0

Proj ( ) 0Kµ

α α αβ α
αα

α α

⎧ − − − =⎪
⎨

− =⎪⎩

u W r u u

r r
 

These m local systems are implicitly dependent 
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because of αβu which has the following expression: 

1,m

αβ β
αβ

β
α β
=
≠

= ∑u W r  

Where each Wαβ can be considered as an 
influence matrix between two contact points α and 
β. To solve these local systems, we propose the two 
following approaches: 

3.3.1 Local Uzawa Approach 

The non linear iterative Gauss Seidel algorithm 
consists of solving successively the m local systems 
at each iteration k: 

( 1) ( 1) ( 1)

( 1) ( 1)*

( 1) ( 1) ( )

1, 1 1,

0

Proj ( ) 0

k k k

k k
K

k k k

m

µ

α α αβ α
αα

α α

αβ β β
αβ αβ

β α β α

+ + +

+ +

+ +

= − = +

⎧ − − − =⎪
⎨

− =⎪⎩

= +∑ ∑

u W r u u

r r

u W r W r
 

Until we obtain the numerical convergence defined 
by: 

( 1) ( ) ( ) 1 ( ) ( )
1 ( ,...., )k k k k m kr rε+ − < =r r r  

where ε1 is the numerical tolerance of the global 
contact force which can be related to the precision of 
the haptic device. The initial value is (0) 0=r . 

Now we have to solve for each local system the 
unknowns ( 1)kα +u and ( 1)kα +r . The numerical 
solution can be carried out by means of the Uzawa 
algorithm which leads thus to an iterative process: 

( 1)( )*( 1)( 1) ( 1)( ) ( 1)( )

( 1)( 1) *( 1)( 1)

( 1)( 1) ( 1)( 1) ( 1)

( )

Proj ( )

k jk j k j k j
t

k j k j
K

k j k j k
µ

α α α α

α α

α α αβ α
αα

ρ µ++ + + +

+ + + +

+ + + + +

= − +

=

= + +

r r u u n

r r

u W r u u

 

The numerical convergence is given by: 

( 1)( 1) ( 1)( )

2

k j k jα α

ε
ρ

+ + +−
<

r r
 

ε2 is a second numerical tolerance which can be 
related to the desired visual rendering or to the 
physical interpenetration tolerance which can be 
estimated from characteristic lengths of the objects 
in contact. The initial values are ( 1)(0) 0kα + =r  and  

( 1)(0) ( 1)k kα αβ α+ += +u u u . 
We call this approach the “local Uzawa”. 

Indeed, the two presented iterative processes 
compute all the contact forces with two levels of 

control. One is local to each contact point and based 
on visual rendering and the other is global and based 
on the  haptic rendering. 

3.3.2 Global Uzawa Approach  

Another way is to have a control only on the haptic 
rendering by considering only one predictor 
corrector step in the Uzawa algorithm: 

• Predictor step: 
( )*( 1) ( 1) ( )( )kk k k

t
α α α αρ µ+ += − +r r u u n  

• Corrector step 
( 1) *( 1)Proj ( )k k

Kµ

α α+ +=r r  

• Back up the new constrained displacement  
( 1) ( 1) ( 1)k k kα α αβ α

αα
+ + += + +u W r u u  

We call this approach the “global Uzawa”. 
Many examples have been successfully treated 
(Feng, 1995 and 2003) with the global Uzawa 
approach but only in a standard simulation process 
(non interactive).  In these examples the numerical 
convergence is given by: 

( 1) ( )

3( 1)

k k

k ε
+

+

−
<

r r

r
 

In computational mechanics, ε3  is just a very 
small parameter (relative error) related only to a 
desire of a high numerical precision. 

3.3.3 Comparison and Results  

To compare the local and global Uzawa approaches, 
we consider the following benchmark:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Numerical benchmark 1. 

The highlighted points on the upper surface of 
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the green object move along 5 series of rigid 
displacements as described in figure 5. Every unit 
displacement P is equal to 0.1cm.  The red object is 
clamped on its extremities at the highlighted nodal 
points (see  figure 6).  The green  object and the red 
one have respectively  80 000 and 3000 as Young 
modulus.  Both objects have the same Poisson ratio 
equal to 0,3. The dimensions of the clamped elastic 
solid are L=10, W=2, H=2 (cm). Initially, the two 
objects are not deformed and are in contact (no 
interpenetration).  The computer used is a Pentium 4 
with 1.75 Ghz and 1.5 Go of  RAM. 

Simulation results are shown in figures 7 and 8. 
In the second numerical benchmark, the red object is 
fixed from only the left extremity. That makes this 
benchmark less stiff than the previous one, 
numerical results are shown in figure 9. For both 
algorithms (local and global Uzawa), we choose to 
control only the physical interpenetration tolerance, 
then all the numerical convergence thresholds 1ε , 

2ε  and 3ε  are defined by: 

( 1) ( )
1( ) 0, 3

k k

ii
Uzawa Error Min i m

W

α α

ρ
ρ

+ −
< = =

r r
 

ρ  is equivalent to a stiffness and must be inferior to 
the smallest local stiffness at the contact points. 

The figures 6, 7, and 8 are divided in 5 phases 
according to the 5 rigid displacements series. We 
note that the iteration numbers k in the local Uzawa 
resolution are lower than the iteration numbers  k 
obtained for the Gauss-Seidel resolution in the five 
simulation phases. 

 
Figure 6: Friction coefficient = 0.3. 

This result has been observed several times (as 
shown in figure 7), for different values of the 
friction coefficient (from 0.0 to 0.6) and for different 
values of the Uzawa error. We observe from the 
graph 8 that the Uzawa error has an important role 
on the convergence time for the two resolution 

techniques. Indeed, if the resolution precision 
increases, then, the CPU time increases as well. This 
result has been observed with many friction 
coefficients. We can also note that local Uzawa 
solver has a tendency to be faster than the global 
Uzawa one. Figure 9 points out instabilities with the 
global Uzawa solver. 

Figure 7: Friction coefficient = 0.3. 

Figure 8: Friction coefficient= 0.6, Uzawa Error =1e-4. 

4 CONCLUSIONS 

The HapCo simulator represents our first 
contribution to bridge two domains, the 
computational mechanics and the haptic rendering in 
the context of Virtual Reality. This real time 
simulator with haptic feedback force includes elastic 
deformable objects, collision detection between 
interacting bodies, friction contact force 
computation and displacement solver based on the 
Finite Element Method. 

We have successfully tested the local and 
global Uzawa algorithm described above with the bi-
potential approach. The results obtained seem to 
indicate that the local Uzawa solver is faster and 
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more stable than the global Uzawa solver. 
By changing the friction coefficient we can feel 

the slip/stick contact force. Many people have tested 
the HapCo simulator and have been surprised by the 
quality of the haptic rendering. 

We need more numerical tests to conclude 
about the computational efficiency of the two 
algorithms.  Indeed, if the application works very 
well when the moving object comes into contact 
with the very soft parts of the clamped object, we 
find some numerical instabilities when the contact 
occurs with the stiff parts (near the fixed nodal 
points). These difficulties have two origins. The first 
one is when the operator does not handle firmly the 
haptic device and can be surprised by the increase in 
rigidity while he is moving towards rigid part. The 
second one is due to excessive free displacement αu  
when the contact occurs. The greater this quantity is, 
the greater the number of iterations is and so the real 
time constraint is no longer satisfied. To overcome 
this difficulty, the operator has to move gently when 
he comes into contact with the stiff parts. To help 
the operator we suggest zooming around the contact 
area in order to augment the control of his gesture by 
a better visual feedback. 

We are working to optimize and to accelerate 
the simulation algorithm by considering closer the 
sparseness of the matrices and vector manipulated 
during the process. This is in order to consider non 
linear elasticity modeling and large multi-contact 
problems: childbirth simulation for example. 
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