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Abstract: This paper introduces a new BRDF sampling method with reduced variance, which is based on a hierarchical

adaptive parameterless PDF. This PDF is based also on rejection sampling with a bounded average number of
trials, even in regions where the BRDF does exhibit high variations. Our algorithm works in an appropiate way
with both physical and analytical reflectance models. Reflected directions are sampled by using importance
sampling of the BRDF times the cosine term. This fact improves computation of reflected radiance when
Monte-Carlo integration is used in Global Illumination. Test images have been obtained by using a Monte-
Carlo rendering system, and they show reduced variance as compared with those obtained by other known

techniques.

1 INTRODUCTION Monte-Carlo random walks by applying impor-
tance sampling of BRDFs to reduce the variance

In Global lllumination software the Bidirectional Re- of the estimator. Reflected directions are generated
flectance Distribution Function (BRDF) is used to de- with a probability density function that is exactly
scribe how light is scattered at surfaces, and it de- proportional to the BRDF times the cosine term.
termines the appearance of objects. Many reflec- For generality, we have sampled many parametric
tion models have been proposed which account for BRDFs that are well-known in computer graphics:
real visual effects produced by object-to-object re- for plastics the Phong model and its variants (Phong,
flections, self-shadowing, retro-reflection, etc. Monte 1975; Blinn, 1977; Lewis, 1993; Lafortune and
Carlo (MC) algorithms, which rely on BRDF sam- Willems, 1994) and (Schlick, 1993), for metals the
pling, include distributed ray tracing (Cook et al., He model (He et al., 1991), Strauss (Strauss, 1990),
1984), path tracing (Kajiya, 1986), bidirectional path Minnaert Lunar reflectance (Minnaert, 1941), for
tracing (Lafortune and Willems, 1993), density es- rough and polished surfaces based on Torrance’s mi-
timation (Shirley et al., 1995) and photon mapping crofacet representation (Maxwell et al., 1973; Cook
(Jensen and Christensen, 1995). and Torrance, 1982; Poulin and Fournier, 1990) and

Monte Carlo methods usually require a large num- (Oren and Nayar, 1994). Anisotropy models (Ward,
ber of rays to be traced through the scene. The direc-1992; Ashikhmin and Shirley, 2000a; Ashikhmin
tion of the rays follows a stochastic distribution which and Shirley, 2000b) are also considered. In fact our
depends on light sources, BRDFs and visual impor- representation makes no assumptions on the BRDF
tance. A mayor challenge in incorporating complex model but the need for evaluating the function giving
BRDFs into a Monte-Carlo-based global illumination two directions.
system is efficiency in sampling, however, complex The rest of this document is organized con-
reflectance models have no corresponding samplingsidering: Section 2 gives an overview of current
strategies to use with. techniques for sampling the BRDF and explains

In (Lawrence et al., 2004) a Monte-Carlo impor- how importance sampling works when Monte Carlo
tance sampling technique was presented for generalintegration is used. Section 3 provides details of
analytic and measured BRDFs based on its factor- our algorithm which adaptively samples the BRDF.
ization. We have used factorized approximations of Results and time-error analysis are given in Section 4.
those BRDFs in order to compare Lawrence approachSome discussion and ideas for future work conclude
with ours. the paper.

This document presents a method to improve
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2 REFLECTANCE EQUATION
AND MONTE-CARLO
ESTIMATION

One of the main interests in Global lllumination relies

on the evaluation of the reflected radiance, by using

thereflectance equatiaon
Lr(wo) & /Q fr (o, wi) Li (Wi) (i -n) do(wi) (1)

HerelL; stands for incoming radiance ahg for
reflected radiance.
solved in global illumination by using MC integra-
tion, because it is often impossible to obtain analytic
expressions fot, or Lj. Let w, = (uy,Uy,U;) and
wi = (W, W, Vz) be two unit-vectors i, the hemi-

sphere of unit radius with def (0,0,1).
2.1 MC Numerical Estimation of L,

Integration over the hemisphefecan be done by us-

ing three related measures defined in that domain: (1)

the solid angle measure (which we notexs(2) the
projected solid angle measurepj and (3) an area
measurei.

(w-n)do(w) = dop(w) = dA(h(w))

Let D denote the unit radius disc iR2.

@)
By us-

ing equation (2), the reflectance equation (1) can be dR,

alternatively expressed as:
Ly (W) = /D fr (Wo, Wyy) Li (Wxy) dAX, YY) (3)

wherewyy € D is the projection ofv; ontoD.

When numerical integration of an arbitrary
integrable (w.r.t. a measug® functionge S— R

no knowledge about irradiance or other terms of
the integrand, but with a known BRDF. In these

circumstances, the best option is to use a PDF which
is as proportional as possible to the BRDF times the
cosine term.

To compute an estimator af (wo), as defined in
equation (1), for a givem, € Q, we must use a set
of samples(sy,...,s), which aren identically dis-
tributed random vectors defined @, with probabil-
ity measureR,, (the probability measure depends on

The above equation is usually w,). With this sample set, the estimator of the outgo-

ing radiance can be obtained as:

1o fr(wo,S0) ()
I—I’(WO) ~ ﬁ Z qu(Sk)

k=1
whereqy, = dRy,/do is the PDF associated Ry, .

Li(s«) (4)

An alternative expression can be given by us-
ing equation (3) instead of (1) and it's used in
our algorithm. In this case, the set of samples
((X1,¥1),---,(Xn,¥n)) contains random vectors iD
instead of mQ and the estimator becomes:

1 ! fl’ (W07Sk)
Lr(Wo) =~ — ——— L
r( 0) n K=1 p\No(kayk> I(SK)

wheres, is the projection ofxy, yk) ontoQ.

(5)

In this case, the PDFpy, = dRy,/dop =

o/dA is defined w.r.t. area measufe and its
domain isD. Finally, from equations (4) and (5) we
conclude that the PDF must be evaluated, and thus
we should be capable to do this in a short time.

2.2 Sampling the BRDF

is done by using MC techniques, random samples 221 Lobe Distribution Sampling

in S must be generated from a random variable with
probability measurd® —which obeysP(S) = 1 and

it is absolutely continuous w.rt—. The function

p %" dp/du is frequently called the probability

density function (PDF) of those samples. Fram
such random samples (nameyy,...,xn}) we can
build a new random variable (r.v.X, whose mean
value is the integral we want to compute. This is
done by generating samples sets whose POi-asnd
evaluatingX, on them. The variance o, is a value
which determines the efficiency of the method.

Designing efficient MC sampling methods usually
means designingood PDFs by using all available
information abouty. The closerp to g/l the less
variance we obtain (ideallyp = g/I). Consider

now integrals like equation (1) and assume we have
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A well known class of BRDF models are based on
cosine-lobes, which have an associated algorithm for
sampling. Within this category are Phong, Blinn
and their respective normalized versions delivered by
Lewis, Lafortune and Ward. The single-lobe BRDF is
defined as:

fr (Wo,wi) = C(n) (W;-Wo )"

wheren > 0 is a parameter, ard(n) is a normaliza-
tion factor which normally depends onand ensures
these BRDFs obey conservation of energy.

For this BRDF, a related and normalized PDF can
be defined as:

1

Pwo (Wi) = W

Wi - Wo, )"
lWOI‘vn)( | Wor)
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whereN; ensures normalization and is defined as:

/ (wi-a)"do(w;)
Q

N; is called asingle axis moment around axds
and analytical expressions for it are known (Arvo,
1995).

In order to obtain samples distributed according to
this PDF, we obtain a random vectoy whose spher-
ical coordinates are:

(arccos(&ﬁ) ,2T[52)

where&; and§; are two independent uniformly dis-
tributed random variables with values[ 1).

A variant of this PDF avoids evaluation df by
using samples on the whole sphgfeinstead of only
the hemispher®. Taking into account the part of the
lobe under the surface, it makdg(wo,n) indepen-
dent ofw, and equal ta\i(n,n) = 21t/ (n+ 1). This

def

Ni(a,n)

(Bwi, Qwi)

PDF is defined in the sphere, however, when a sample

is produced under the surface, the contribution of that
sample to the integral is taken as zero. The algorithm
is faster and still unbiased, but it has higher variance
whenw, approaches grazing angles.

Cosine-lobe sampling is the most efficient sam-
pling for Phong BRDF and its variations but this
scheme is not suitable for non-lobe-based BRDFs.

2.2.2 TheFactorized BRDF Representation

Recent work about effective importance sampling
strategies for arbitrary BRDFs is Lawrence’s factor-
ization of the BRDF (Lawrence et al., 2004). This
function is decomposed as the product of two 1D
functions, stored compactly in tabular form, and then
it is used for sampling.

A first factorization, after a reparametrization
based on the half angle, gives a decomposition into
2D factors of the initial data matri¥ containing
Nw x Nwo values along the outgoing elevation angle
and the outgoing azimuthal angle. After thatis ap-
proximated by the product of two matrices of lower
dimension:Gis Ny, x J andF is anJ x Nyo matrix.
Both matrices are always positive by using the non-
negative matrix factorization (NMF) method (Lee and
Seung, 2000J.

A second factorization of the view independént
matrix leads to the product of two matrices of one di-
mension, very easy to sample by numerical inversion
of the Cumulative Distribution Function after normal-
ization.

1Code sample is given by J. Lawrence in

<http://www. cs.virginia.edu/ jdl/nnf/>.

SAMPLING - A Sampling Method for Global Illumination

fr (Wo, W;) cogw;) ~ i Fj(wo)
]

K

Z Ujk (Bw) Vik (Qw).-
(6)

EachL = J x K factor is intuitively the approx-
imation of a specific lobe of the original BRDF.
When the factorization is used in generating random
directions two steps are necessary. First sampling
according toF selects one of the. lobes that
contributes more energy for the current view. The
CDF for this step is recomputed when the outgoing
direction changes. Next the hemisphere is sampled
according to selected lobdeby sequential generation
of elevation and azimuthal angles using pre-computed
CDF for factorsy; andyv, respectively.

3 OURALGORITHM

\We consider the reflectance equation givenin (3), and
the estimator in (5). The proposed sampling scheme
yields more samples in areas where the BRDF times
the cosine term has higher values, thus achieving im-
portance sampling. The usage of area measura

D is better tharo on Q because this makes it unnec-
essary to include the cosine term in the formulation or
the computation, making the first simpler and the sec-
ond faster and more reliable. Also, the algorithm is
independent of the BRDF and avoids user guidance.

Our method is based on rejection sampling (Gen-
tle, 2003). This is a very simple and well known tech-
nique that yields a PDF proportional to any function
g € G — R. It only requires thag can be evaluated,
and its maximum valuen in G to be known. How-
ever, it runs a loop which in fact can be executed a
unbounded number of times, thus it potentially yields
large computing times even in the cases whearan
be quickly evaluated.

The probability for a sample to be accepted/im,
wheree > 0 is the average value afin the domain
G. The number of times the main loop is executed
(until a valid sample is obtained) is a geometric dis-
tribution with success probabilitg/m, and thus the
average number of trials i®/e, which can be quite
large fore < m.

The core of our approach is an hierarchical
guadtree structure which can be used to efficiently
obtain samples with a PDF exactly proportional to
the target function. The adaptive approach checks
whether a region can be safely used for raw rejection
sampling. This check consists on evaluating, for that
region, the average numbayrof trials with rejection
sampling in that region. This can be known provided
we know bothe andm for the region. Ifr; is above a
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threshold numbeng,,y, then the region is subdivided by evaluatingf, on a very dense grid of points R

in four, and the criterion is applied to these four creating the quadtree, or alternatively a bottom-up ap-
subregions. Otherwise, the region is not subdivided. proach could be used which starts by obtaining these
If we apply this recursive process starting fr@nfthe values at the maximum depth possible (with a high

unit radius disc centered at the origin), we obtain a resolution grid) and then it stores them so the data can
guadtree which can be used to efficiently sample the be used during tree construction. Therefore, the algo-
BRDF. In the next section, further details are given rithm only requires to be able to evaluate the BRDF.

about this process. In any case, it holds that the sum of thevalues for

the four children of a parent node must be equal to
that value on the parent.

The subdivision criteria used must ensure that re-
jection sampling on leaf nodes can be done with an
As the sampling process requires a PDF proportionala priori bounded number of average tri@igax This
to f;(wo,-) for arbitrary values ofv, and for a finite can be easily ensuring tihat:
collection of BRDFs in a scene, it is necessary to cre- Nmax— > 1 (7)
ate aquadtreestructure that subdivides the unit disc B Vi | ;
domain for each(f,,wo) pair. In the case oo, a where the pr.ob.ablhty f(_)r accepting a samplé; j&/.
finite set of vectorsS = {w,...,w,} can be used. When th_|s mequahty does nofc holds, the node
When an arbitrarw, is given, it is necessary to se- must be split. In our implementation, we have u_sed
lect the nearest; to w, and use the corresponding Nmax= 2. The largemmay the less memory that is
structure. The error induced by usimg instead of needed (pecayse the quadtree has smaller depth) and
W, can be reduced by using a largend uniformly t_he Igss time is used_ for_quadtree_ traversal, but more
distributing vectorav;. Note that, since we assume time is needed for rejection sampling on leaf nodes.
the BRDF to be isotropic, it is enough f6to include
vectors in the plane XZ, thus a rotation must be ap-
plied tow, before finding the nearest;. The inverse
rotation must be applied to resulting samples.

For a given quadtree in this structure, each niode
has an associated regi® C D, which it is a square
area defined by:

3.1 Building the Adaptive Structures

3.2 Obtaining Sample Directions

Generating a random direction involves selecting a
leaf node and then doing rejection sampling on that
node. If thei-th node is a leaf node, then the proba-
bility for selecting it must be proportional 19 (more
exactly it isli/lo, if we assume the root node has in-
dex 0). A leaf node is selected following a path from
the root to the leaf. On each step, starting from the
root, the integral§ of the descendants nodes are used
for randomly choosing one child to continue the path
down.

R = [u,ui+8s)x[Vi,Vi+5)
where (uj,Vv;) is the lower left vertex of the region
boundary ands is the edge length. The region as-

sociated to the root node is the full domédn1)2.
The algorithm creates the root node and it checks

the criteria for subdivision. If the split is necessary,

four new child nodes are created, each one with an

associated region with a edge length size half of that
of the parent. Then, process is recursively applied to

these new four nodes. The recursive algorithm ends
in case no split is necessary or a predefined maximal

depth is reached.
In order to check the subdivision criteria for node
i these values must be computed:

Mi = max{ fi(wo,Wixy) | (X,y) €Ri }
i = /R{ fr (Wo;Wixy)dA(Xa y)
Vi = §M

M; is the smaller upper bound for values %fin the
i-th region,l; is the integral of the BRDF in the re-
gion anaV is the volume of the space where rejection
sampling is done. Botiv; andl; can be computed
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To do this, we can store in each nadeur values
Fo,...,Fs, defined as:

_ le(:o ICij
Z?:OIQJ'
whereGjj is the index ofi-th node j-th child node

(note thatF3z = 1). Leaf selection is then simply a
loop:

Fik

Algorithm 1
L eafNodeSdlection ()

i :=0 (index of root node)

while i-th node is not a leaf dbegin
r := uniform random value if0, 1)
j = min. natural such that < F;
=]

end

return i
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Rejection sampling on the resultingh node is car- j containsnl; /1o samples on the average, as required
ried out. This consists in selecting a random vector by importance sampling.

(x,,2) € R® with uniform distribution in the prism

R x [0,M;]. Value z= y/x2+¥? is then obtained

and the conditionf; (Wo, Wyy) < z is checked. If it 4 RESULTS

holdswyy is returned as the resulting sample, other-

wise a new sample must be generated and checked. An this section we provide results for our adaptive
sample is valid with probability /Vi, which is neces-  sampling method for various reflectance models, and
sarily greater than /nmax, because of inequality (7). we compare the computing time and average rela-

With our method samples on the disc will follow  tive error we obtain for several images under different
a distribution where more samples are placed in partssampling strategies (PDFs).

of the domain where the function has higher values.  We have analyzed different PDF functions (in-
In fact, it is exactly proportional to the BRDF. cluding the one we present) and we have measured
their performance for various BRDFs models when
high variation occurs, for instance, at a specular peak.
Images have been obtained with a varying number of
samples per pixel ranging from 1 sampl&, 507, 15,
207, 307, 407, 507 and 1008 samples. The maximum
quality (1006 samples) has been used to produce a
reference image. We assign to each image a relative
error value, computed with respect to this reference
image. We average relative error for all pixels with
non-null radiance in the reference image and report it
as a percentage.
Figure 1: Both images show a distribution of 2500 samples ~ The full set of images takes each BRDF function
obtained with our disc method. The left one shows how the from a list of the most common theoretical and
samples match the BRDF function (in red). The image on empirical models (table 2) and samples them with
the right is the projection on disc of those directions. the following five PDFs: (1) uniform sampling
technique, (2) cosine lobe sampling #fiandQ, (3)
Lawrence’s factorization (Lawrence et al., 2004) and

3.3 Quadtree Traversing for Optimal (4) the proposed adaptive method. All the images
Sampling were rendered using a naive path tracing algorithm in
a Linux machine with an AMD64 processor and 2GB

of RAM.

Some considerations should be taken in order to in-
crease the time performance. For example rather than
asking for a single sampkg we can implement a sin-
gle recursive traversal algorithm which yields a set of
n samples. Each node is visited once at most, instead
of visiting it ntimes as it would be the case when us-
ing the basic approach we introduced.

First the algorithm starts by requestingamples
in the root node region and proceeding recursively.
Whenever a node with indéxs visited, the program
must producé random samples iR;. If thei-th node
is a leaf, those samples are obtained by rejection 4.1 Glossy Sphere
sampling. Wheri-th node is an inner node, a parti-
tion oft is done, selecting four random integer values Considering a sphere object lit by a single area light,
mo,...,M 3, which holdmig+mi1+m+m3=t as shown in Figure 2. We focused our measures on
and in such a way that the average valuea®f is the portion of the image containing the highlight on
Nlc,j)/li- Then the algorithm is recursively called the sphere, because in that portion is where efficiency
for eachj-th childC(i, j) of i-th node (this is not done  of different sampling approaches differs the most.
if m j =0), and as a result we obtain four sets with Each PDF model, with exception of uniform sam-
samples in total. These four sets can be joined in one,pling and our method, is assigned a set of manu-
which is the resulting set afsamples. Each leaf node ally adjusted parameters in order to match the target

Figure 2: Rendering image example of the test scene.
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BRDF. For example, a cosine-lobe based PDF uses anrable 1: Relative error and average sampling time in sec-
exponent parameter This value could be taken from  onds for each PDF and test scene when &mples are
the corresponding exponentin the BRDF in use, how- taken compared to the 1008ample reference image.

ever, there is no information to set the PDFs exponent
if we sample a BRDF model which does not depend
on that parameter, thus a constant must be used. To )
make comparisons fairer we have manually found the C.Lobes® || 2.39%  0.28328
exponent that yields the best match between the lobe- C.LobeQ || 2.24%  0.35734
based PDF and each BRDF function. Even for Phong- Adaptive || 2.13%  0.20032
based BRDFs, the bestfor the PDF can be differ- Factored || 3.19% 0.2986
ent to the BRDFs exponent. This is because both the

PDF and the BRDF include the terfw, - w;)", how- 4.2 Sampling many BRDFs
ever the BRDF also includes the cosine tdmmn - n)

whereas the PDF does not. In this point we treat on the Dragon model from the
[For the Factored PDF we have found the best fac- giantord University?. The reflectance function used
torization. Itis necessary to find seven values for each i ihis scene corresponds to Oren’s (Oren and Nayar,
BRDF. Parameters ar8l, , x Ng,, andNe,, x N, for 1994) with a rough value of 0.83, and a Strauss in-
matrix size,J x K for the numbers of lobes that ap-  gance (Strauss, 1990) mostly smooth for floor and
proximates the BRDF and whether or not to use the ;- respectively. The dragon itself has a Lafor-

half-angle reparametrization. Best values are found ,ne BRDF (Lafortune and Willems, 1994) with ex-
comparing the average original matrix value with the ponentn = 20. With this mixture of BRDFs, visu-
average from the product of factors. ally we can compare our sampling method with uni-
To compare the various PDF functions we plotthe form sampling, cosine lobe i, and the Factored
sampling time obtained vs. non-null pixel averaged representation of Lawrence, with manually adjusted
relative error. By considering this, we can select the parametrization to fit the shape of each BRDF in-
best method as the one that gives less error for a givenstance. With only 100 samples, our algorithm gives

time. The results are plotted in Figure 3. Numerical resylts with less noise than the others. You can see in
data is given in Table 1. Figure 4.

| error time
Uniform 5.82% 0.03792

4.3 Quadtree Set Construction

Sphere PDF comparative Requ| rements
100 ‘ ‘ "~ Uniform ——
\ ;N o It was mentioned previously that our algorithm in-
g daptiygel.c - volves some more computations in order to closely
i 10 \ represent any BRDF function. Table 2 shows in-
£ formation related to the cost in seconds of the pre-
computation for a given number of quadtree struc-
tures and varying incident angle directions. Once we
y , ‘ ‘ ; ‘ have these structures on memory, they are used to es-
fe-04 0001 001 01 1 10 100 1000 timate radiance. The values that are listed in the table

time correspond to the pre-computation of 90 quadtrees,
which is high enough to ensure a structure is available
Figure 3: PDF comparative for Sphere scene. Manual se-yery close to any incident direction. Average value is
lection of the cosine lobe exponent is needed, as well as the20‘71 seconds compared with 27, the cost of fac-
best factorization hats to be found. torized computation and pre-computation of CDFs for
.. sampling by using Lawrence’s technique. Also you
As the graph shows, the plot of our method is in 5y notice the extreme difference in terms of time

most cases below the others. This means that, with heween experimental and physically based reflection
same time our sampling performed best and also with 1,5 gels.

same error our method needs less time. The adaptive  apgther issue concerning the requirements of our
method not only can be used with any isotropic BRDF  yathod is memory consumption. Let us consider
but it also does not need manual selection of parame-

ters, and it requires no knowledge of the BRDF. |tjUSt 2The Stanford 3D Scanning Repository at
requires the ability to evaluate the BRDF. <http://graphics. stanford. edu/ dat a/ 3Dscanr ep/ >

196



GENERIC BRDF SAMPLING - A Sampling Method for Global Illumination

Figure 4: From left to right, images corresponding to umifd?DF, adjusted cosine-lobe strategyinthe Factored represen-
tation of the BRDF and finally our algorithm sampling. AdaptDisc shows less noise using the same number of samples
than the others. The resolution is 400 x 400 pixels. Follgwhre same order, sampling time is: 9.232, 114.735, 90.088 an
133.172 seconds respectively.

Table 2: Quadtree creation times for each BRDF model Table 3: Memory in KBytes for Adaptive Disc usitig,o =
for Adaptive method compare with factorization and pre- 74°.
computation times of Factored PDF. Memory requirements

for both methods are also given. Data is relative to the Disc o 13| 16 2| 23| 26
glossy scene. KB || 2056.5| 543 | 12.51 | 4.6 | 3.33
Adaptive Factorized
BRDF (sec)  (KB)| (sec) (KB)
Ashikhmin 51.4 6.25| 829 1031 5 CONCLUSIONS
BeardMax. 15,5 1713.2% 17.3 6454
Blinn 8.7 58225/ 83.7 6481 We have presented a new sampling method based on
Coupled 22.6 6.29 222 1033

an adaptive and parameterless algorithm which imple-

He 102.7 240723 75.1 103 ments a PDF exactly proportional to generic BRDF.
Lafortune 66 127528 532 QS Reflected directions were sampled using importance
Lewis 6.9 127925 119.3496445 sampling of the BRDF times the cosine term which
Minnaert 73 146125 4.9 1031 is preferable to only sampling the BRDF. The method
Oren 10.5 6.25 4,85 1036 can be used for numerical Monte-Carlo based inte-
Phor.]g 6.9 12792792 §u45 gration in global illumination or in other contexts. Its
Poulin 355 297.25 5.4 1038

efficiency is similar or even better than standard sam-

SchiickD 191 G125 JEO W3t pling methods with manually selected optimal param-

SchlickS 13.2 780.25 26.5 1043

| eter values.
Strauss 10.9 727.2% 59.3 1052 . .
Torrance 8.3 63125 1220 1029 We also tested our adaptive sampling method
Ward 207 48325 513 1038 with tabulated BRDF representations (Matusik et al.,

2003) since they can be evaluated. We further plan to
develop, as future work, a method to acquire BRDF
firstly our basic algorithm with no optimizations. A  data from an inexpensive 3D scanner, as a way to deal
single quadtree represents the unit disc domain aswith real world materials. We also plan to further re-
node regions given an incident direction. Its depth, duce both sampling time and quadtree construction
and so its memory, depends on the nmax parametettime by using more optimized sequential programs,
(see equation 7). Table 3 shows the cost of a single SIMD instructions sets or parallel graphics hardware.
guadtree when the nmax param changes. Memory

increments when many quadtrees are calculated and

stored. Table 2 shows the cost in KB for 90 quadtrees

and for each BRDF taking nmax as 2. Avarage value ACK NOWLEDGEMENTS

of our method is 0.81 MB compared with 2.67 MB

of the factorized BRDF.
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