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Abstract: This paper presents an interactive modelling system of uniform polyhedra including regular polyhedra, 
semi-regular polyhedra, and intersected concave polyhedra. In our system, user can virtually “make” and 
“handle” them interactively. The coordinate of vertices are computed without the knowledge of faces, solids, 
or metric information, but only with the isomorphic graph structure. After forming a wire-frame polyhedron, 
the faces are detected semi-automatically through user-computer interaction. This system can be applied to 
recreational mathematics, computer assisted education of the graph theory, and so on. 

1 INTRODUCTION 

This paper presents an interactive modelling system 
of uniform polyhedra using simulated elasticity. 
Uniform polyhedra include five regular polyhedra 
(Platonic solids), thirteen semi-regular polyhedra 
(Archimedean solids), and four regular concave 
polyhedra (Kepler-Poinsot solids). Alan Holden is 
describing in his writing, “The best way to learn 
about these objects is to make them, next best to 
handle them (Holden, 1971).” Traditionally, these 
objects are made based on the shapes of faces or 
solids. Development figures and a set of regular 
polygons cut from card boards can be used to 
assemble them. Kepler-Poinsot solids can be formed 
by stellation of faces of “core” polyhedra. 
“PolyFormes” is an application program for dialog-
based declarative modelling of polyhedra (Martin, 
1999). These methods are based on faces. On the 
other hand, some semi-regular polyhedra can be 
formed by truncation of other solids. Kepler-Poinsot 
solids can be also formed by faceting of solids of 
“case” polyhedra. These methods are based on 
solids (Coxeter, 1973). 

In our system, user can virtually “make” and  
“handle” all of the uniform polyhedra without the 
knowledge of faces, solids, or metric information, 
but only with the isomorphic graph structure. After 
forming a wire-frame polyhedron with the vertices 
and the edges, the faces are detected semi-
automatically through user-computer interaction. 

2 UNIFORM POLYHEDRA 

2.1 Platonic Solids 

Five Platonic solids are listed in Table 1. The 
symbol nmP  indicates that the number of faces 
gathering around a vertex is n, and each face is m-
sided regular polygon. 

Table 1: The list of Platonic solids. 

Symbol Polyhedron Vertices Edges Faces 

33P  Tetrahedron 4 6 4 

34P  Cube 8 12 6 

43P  Octahedron 6 12 8 

35P  Dodecahedron 20 30 12 

53P  Icosahedron 12 30 20 
 

Platonic solids, or regular solids, are convex 
polyhedra with faces that are regular and congruent 
polygons, while their vertices lie on the circum-
sphere, their vertex figures are also regular and 
congruent. 

2.2  Archimedean Solids 

Thirteen Archimedean solids are shown in Figure 1. 
Archimedean solids, or semi-regular solids, are 
surrounded by several sorts of regular polygons, and 
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their vertex figures are not regular but congruent 
polygons. Their vertices lie on the circum-sphere. 
Some of Archimedean solids can be obtained by 
truncation of other polyhedra.  

2.3 Kepler-Poinsot Solids 

Four Kepler-Poinsot solids are shown in Figure 2. 
3(5/2)K  (great stellated dodecahedron) and 5(5/2)K  

(small stellated dodecahedron) are regular concave 
polyhedra with pentagrams (5/2) as faces. 

 
       ( a ) 2(3 4)A ⋅            ( b ) 4 6 10A ⋅ ⋅            ( c ) 4 6 8A ⋅ ⋅  

 
                       ( d ) 2(3 5)A ⋅           ( e ) 3 4 5 4A ⋅ ⋅ ⋅  

 
        ( f ) 33 4A ⋅               ( g ) 43 4A ⋅             ( h ) 43 5A ⋅  

 
                        ( i ) 23 8A ⋅             ( j ) 23 10A ⋅  

 
         ( k ) 25 6A ⋅              ( l ) 24 6A ⋅               (m) 23 6A ⋅  

 

Figure 1: Thirteen Archimedean solids generated by the 
system. 

 
                  ( a ) 5/25K                        ( b ) 5/23K   

 
                 ( c ) 3(5/2)K                      ( d ) 5(5/2)K  

Figure 2: Four Kepler-Poinsot solids generated by the 
system. 

3 POLYHEDRAL GRAPH 

3.1 Polyhedral Graph 

Drawing graph is the first step of polyhedron 
modelling in the system. Polyhedral graphs 
isomorphic to Archimedean solids are illustrated in 
Figure 3-4. Kepler-Poinsot solids are isomorphic to 
icosahedron or dodecahedron.  

      
                ( a ) 2(3 4)A ⋅                       ( b ) 4 6 10A ⋅ ⋅  

        
                ( c ) 4 6 8A ⋅ ⋅                         ( d ) 2(3 5)A ⋅  

Figure 3: Polyhedral graphs isomorphic to Archimedean 
solids (1). (to be continued). 
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               ( e ) 3 4 5 4A ⋅ ⋅ ⋅                          ( f ) 33 4A ⋅  

    

                ( g ) 43 4A ⋅                          ( h ) 43 5A ⋅  

      

                 ( i ) 23 8A ⋅                          ( j ) 23 10A ⋅  

   

                 ( k ) 25 6A ⋅                           ( l ) 24 6A ⋅  

 
                                  (m) 23 6A ⋅  

Figure 4: Polyhedral graphs isomorphic to Archimedean 
solids (2). 

3.2 Simulated Elasticity 

We define three binary relations between two 
vertices:  

The relation adjacent  corresponds to the length 
of an edge in a 3 dimensional space. The relation 
neighbour  means that the length of path between 
two vertices is 2, and two vertices are 
neighbourhood of another vertex, and it corresponds 
to the shape of vertex figure in a 3 dimensional 
space. The relation diameter  corresponds to the 
circum-sphere.  

Virtual elastic forces are assumed between 
vertices according to Hooke’s law and three 
relations defined in the previous section. Let 
, ,a n dL L L  be natural length of virtual spring, and 

each lower suffix indicates “adjacent”, “neighbour”, 
or “diameter”. Let , ,a n dk k k  be spring constant, 
which varies from 0 to 1. Bold-faced 
, 0, 1i i p= −v  stands for the 3 dimensional 

coordinate of vertex iv V∈ . Then the total elastic 
potential Et          is given as follows: 
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4 DETECTION OF FACES 

After constructing polyhedral graph, and arranging 
vertices in 3-dimensional space using elastic 
potential, the next step is detecting and selecting 
faces. In the case of Platonic solids, Archimedean 
solids, prisms, and anti-prisms, common routine is 
available. 

The faces of Kepler-Poinsot solid are detected 
by separate routine. Selecting triangles from great 
icosahedron is common with selecting triangles 
from icosahedron. Selecting pentagrams from great 
stellated dodecahedron is common with selecting 
pentagons from dodecahedron. Lastly, selecting 
pentagon from great dodecahedron is common with 
selecting pentagram from small stellated 
dodecahedron. 

At this stage, the modelling of polyhedron is 
completed. The final step is rendering the wire-
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frame polyhedron with detected faces. In the case of 
Kepler-Poinsot solids, faces are intersecting each 
other. Then the process of hidden surface removal is 
required. In the case of presented system, the target 
machine is low cost PC with single CPU without 
graphics accelerators. We tried to calculate the 
geometric interference, and detected the exposed 
fragments. As an example, such fragments in a 
triangle of great icosahedron are obtained as is 
shown in Figure 5, where shaded region is outside of 
great icosahedron. 

Let , , , ,a b c r  be the position vector of each 

point in the figure: , , , ,OA OB OC OR , then they 
are expressed by a  and b  as follows, 
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Figure 5: Nine exposed fragments of triangle OAB∆  
surrounding the great icosahedron. 

5 SYSTEM OVERVIEW 

Figure 6 shows snapshots of GUI. In this example, 
depressed icosahedron is obtained. It means the 
elastic potential remains at a local minimum. It can 
be recovered interactively by pulling a proper vertex, 
or increasing the natural length of diameter, and so 
on. 

    
  ( a ) Graph input window       ( b ) Wire-frame window 

              
     ( c ) Polygon window               ( d ) Control tools 

Figure 6: Snapshots of GUI of the system. 

6 CONCLUSIONS 

This paper proposed an interactive modelling system 
of uniform polyhedra. Process of modelling is 
composed of following three steps. Firstly, a 
polyhedral graph is constructed by editing graph 
with several graph operations. Secondly, wire-frame 
polyhedron is formed by simulated elasticity with 
the relation of adjacent, neighbour, and diameter. 
Lastly, proper faces are detected semi-automatically 
through user-computer interaction. This system can 
be applied to recreational mathematics, computer 
assisted education of the graph theory, and so on. 
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