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Abstract: Product material integrity and surface appearance, in steel flat products manufacturing and processing, are 
important attributes that will affect product operation, reliability and customer confidence. Automated 
visual inspection has to be envisaged, but five major problems have to be overcome: (i) The variable nature 
of the defects, (ii) The high reflective nature of the metallic surfaces, (iii) The oil presence, (iv) The huge 
amount of visual data to be acquired and processed, and (v) The high speed in the section where inspections 
are performed. We have developed an automated cellular visual inspection system of flat products in a flat 
steel cutting factory. Among the approaches that the system uses to detect defects, we have included the 
two-dimensional Gabor filters. In this paper a detection procedure of defects in flat steel products based on 
Gabor filters is presented. The traditional methods based on the study of the grey-level histogram and shape 
analysis, have shown quite good results, but there are not good enough to achieve the level of success 
required. Experimental results show that a greater number of defects can be readily detected using the 
proposed approach.  

1 INTRODUCTION 

The steel coils produced by the iron and steel 
industry are rarely directly usable by the end users. 
Therefore, they must be reprocessed in cutting lines 
or processes to more manageable products with 
dimensions and features that the customer desires, 
but always with the highest quality. 

Figure 1: Automatic surface defect visual inspection 
system developed by CARTIF Foundation for 
GONVARRI Industrial (Spain). 

Automated visual inspection is the obvious 
alternative to the human inspector (Gayubo et al., 
2006a; Gayubo et al, 2006b). An automatic surface 
inspection system provides the following advantages 
(Obeso et al., 1997): 

 Uniform quality control. 
 Programmable quality control oriented to 

different acceptance levels for different 
standards. 

 Possibility of assigning different quality 
products to different customers, based on their 
requirements. 

We have developed an automated cellular visual 
inspection system of flat products in a flat steel 
cutting factory (Figures 1 and 2). Among the 
approaches that the system uses to detect defects, we 
have included the two-dimensional Gabor filters. In 
this work a detection procedure of defects in flat 
steel products based on Gabor filters is presented. 
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Figure 2: User interface. 

Automated visual inspection has to be envisaged, 
but five major problems have to be overcome: (i) 
The variable nature of the defects, (ii) The high 
reflective nature of the metallic surfaces, (iii) The oil 
presence, (iv) The huge amount of visual data to be 
acquired and processed, and (v) The high speed in 
the section where inspections are performed (Fig. 3). 

 

 

Figure 3: Coil slitting line (images courtesy of 
GONVARRI Group). 

The practice of detecting, analysing and 
classifying abnormal structures in a surface is called 
surface inspection (Chin, 1992). Deviations form the 
surrounding surface can be either design elements 
that must have been adequately fabricated or 
fabrications faults that ought not have been present. 
It is clear the immediate detection of surface defects 
is important. 

The number of surface defect types is large. Also 
the naming of similar defect may differ from plant to 
plant. Figure 4 shows examples of defect images. 

One of the main problems of this application is 
the huge amount of visual data to be acquired and 
processed. The development of electronics and 
information technology have made the actual image 
applications possible. However the on-line 
inspection is not an easy task due to the subtle 
characteristics of the defects, high reflective nature 
of the metallic surfaces, and the oil presence. 

A surface of flat steel products may be defined in 
terms of shape and reflectance, a defect may be 

described as a local aberration in shape and/or 
reflectance. The key is the ability to determine a 
deviation in the expected shape and reflectance of 
the surface.  

 

 
Figure 4: Surface defects. Pattern-type and roughness-type 
surface defects (rust, coat-less...). 

Among the approaches that the system uses to 
detect defects, we have included the two-
dimensional Gabor filters (Fig. 5). A two-
dimensional Gabor filter consists of a sinusoidal 
wave modulated by a gaussian envelope. It performs 
a localized and oriented frequency analysis of a two-
dimensional signal (Kamarainen, 2003). 
Experimental results show that a number of defects 
can be readily detected using the proposed approach. 

 

 
Figure 5: 2D-Gabor filters interface.  

2 DEFECT DETECTION 

2.1 Introduction 

Many methods have been proposed to extract 
features either directly from the spatial domain or 
from the spatial-frequency domain. In the spatial 
domain, the more simple features are first-order 
statistics such as mean, variance, skewness and 
kurtosis from the grey-level histogram (Fig. 6) of an 
image (Ramana and Ramamoorthy, 1996). 
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Figure 6: Thresholding. 

Thresholding is a very fast and simple method, 
but there are two major problems. First, it is often 
difficult to determine, automatically or even 
manually, the optimal threshold. Second, only in 
very simple images can a threshold segment all 
objects correctly. To perform local thresholding, an 
approach is to divide the image into square sub-
regions and calculate the threshold independently for 
each one. However, there may be some 
discontinuities between edges of different regions. 
To determinate the threshold there are two methods: 
consider it equal to the mean minus three standard 
deviations or choose the threshold according to the 
valley points and inflexion points of the histogram 
(Sahoo et al., 1988). 

Many work suggested that it may be possible to 
find better features, which are less sensitive to noise 
and intensity variation, in the spatial-frequency 
domain than those features extracted from the spatial 
domain (Wechsler, 1980). Measures of the shape of 
the spatial frequency spectrum such as location, size, 
and orientation of peaks in regions of spatial 
frequency using the 2D Fourier transform can be 
used to design the textural features. 

 

Figure 7: Fourier transform of a signal. 

The Fourier methods characterise the spatial-
frequency distribution, but they do not consider the 
information in the spatial domain. In the recent past, 
Gabor filters have been well recognised as a joint 
spatial/spatial-frequency representation for analysing 

images containing highly specific frequency and 
orientation characteristics. Daugman (Daugman, 
2002) showed that Gabor filters have optimal joint 
localisation in both the spatial and the spatial-
frequency domains. In addition, they are bandpass 
filters, which are inspired by a multichannel filtering 
theory for processing visual information in the early 
stages of the human visual system (Beck et al., 
1986). 

2.2 2D Gabor Filters Bank  

A two-dimensional Gabor filter consists of a 
sinusoidal wave modulated by a gaussian envelope. 
It performs a localized and oriented frequency 
analysis of a two-dimensional signal. The 
formulation in the spatial domain is the following: 
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where F is the central frequency of the filter, θ is the 
angle between the direction of the sinusoidal wave 
and the x axis of the spatial domain, σx and σy the 
standard deviations of the gaussian envelope 
respectively in the direction of the wave and 
orthogonal to it. These last two parameters 
(sometimes referred to as the smoothing parameters) 
represent the shape factor of the gaussian surface: 
they determine the greater or less selectivity of the 
filter in the spatial domain (Fig. 8). In the above 
formulation it is assumed that the angle between the 
wave direction and the axis of the gaussian envelope 
is zero  
 

 

Figure 8: Real part, imaginary part, magnitude and phase 
of Gabor filter in the spatial domain. F=0.09375; θ=0º; 
σx=6; σy=10. 

In frequency domain the Gabor filter can be written 
as follows (Fig. 9): 
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Figure 9: Real part, imaginary part, magnitude and phase 
of Gabor filter in the frequency domain. F=0.09375; θ=0º; 
σx=6; σy=10. 

Gabor filters seem to have important relations 
with the vision system of mammals. It has been 
shown that the response of cortical simple cells 
devoted to the processing of visual signal can be 
approximated with Gabor functions (Daugman, 
1985). 

A defect detection procedure based on Gabor filters 
is usually carried out through the following steps: 
1. design of a filter bank with filters at different 

frequencies and orientations; 
2. computation of the transformed images; 
3. extraction of a set of synthetic parameters 

(features) from the transformed images 
(definition of the feature space); 

4. definition of a proper distance in the feature 
space; 

5. detection through a suitable pattern detection 
algorithm. 

The design of the filter bank consists in the 
selection of a proper set of values for the filter 
parameters: F, θ, σx and σy. The possible 
combinations of the various parameters determine 
how the filter bank analyses the spatial and 
frequency domain. In frequency domain it is 
common practice to display the zones covered by the 
various filters by plotting the half-peak magnitude 
iso-curves, as shown in the figure 10. 

 

   
Figure 10: Half-peak iso-curve of the filter. 

The design of a proper Gabor filter bank is a key 
aspect of the problem, and it is also controversial. 
Various authors proposed different values of the 
parameters, based on mathematical and 
physiological considerations. In order to simplify the 
selection the Gabor filter bank, we made the 
following assumptions: uniform separation in 
orientation; constant ratio between the central 
frequency of two adjacent filters: 

• the central frequency of the filter at the highest 
frequency FM 

• the total number of frequencies nF 

• the total number of orientations nO 

• the ratio between the central frequencies of two 
adjacent filters kF 

• the value of the parameters σx and σy. 
In general the highest central frequency of the 

filter at the highest frequency is chosen such as that 
the half-peak iso-curve of the filter reaches the value 
of 0.5, which represents the Nyquist frequency. 
Setting G(u,v) = 1/2 in (2), it gives the equation of 
the half-peak magnitude iso-curve: 
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The maximum frequency value reached by the 
half-peak magnitude iso-curve of the filter at the 
highest frequency (FM) is: 
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The smoothing parameters, σx and σy, can be set 
of such way that the half peak magnitude iso-curve 
overlaps in greater or smaller measurement 
modifying in (7) the parameters Kx and Ky, called 
radial overlap and circumferencial overlap. Setting 
this values to one makes adjacent filters touch each 
other. 
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being BF and Bθ the frequency and orientation 
bandwitch, in octaves and radians respectively. The 
central frequency is affected by the value of σx, so 
the central frequency must be calculated as in (8). 
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So, first of all, we must set the radial overlap 
value and the frequency bandwitch, and then we 
calculate de central frequency and smoothing 
parameters. 

To compute the transformed images we have 
used the Convolution theorem, which says that the 
Fourier transform of a convolution is the point-wise 
product of Fourier transforms: 

( )),(),(),(),( 1 vuGvuFyxgyxf −ℑ=⊗  (9)
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There are several features of the filter response 
we could measure. We could use the real part, the 
imaginary part, the magnitude or the phase. We have 
chosen the magnitude because it contains more 
information and it is more robust. 

The detection method used is based on the 
concept of distance, as a measure of closeness of 
two points in the feature space. There several 
methods to measure the distance. The type of 
distance we adopted is called euclidean distance and 
can be calculated as follows: 
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xr and xs represent two generic points in the feature 
space of dimension N. 

2.3 Implementation 

The main objective of defect detection is to 
determinate if there is a defect inside an image. To 
carry out this objective we have divide the images 
into two groups: defected and non-defected images, 
and evaluate the response of the filters. 

The number of frequencies selected is eight and 
the number of orientations is also eight, so the filter 
bank is composed of 64 Gabor filters. We have 
adopted the approach to design the filter such as the 
half-peak magnitude iso-curves of adjacent filters 
touch each other and these iso-curves reaches the 
value 0,5 at the highest frequency. The size of then 
filter is 256x256, so the images acquired must be 
divided into pieces of the same size. The frequency 
bandwidth selected is ½ octaves. The tests carried 
out show us that these parameters reach the 
compromise between selectivity and dispersion. 

 

  

  
 

Figure 11: Defects types used in this paper. 

In each image without defect we have calculated 
the mean value response of each of the filters of the 
bank. Then we have calculated the euclidean 

distance between the mean value calculated and the 
maximum value reached in every image use for 
training. The defected images will have a higher 
response to some filters in some part of the image 
than the images without defects. 

Establishing an appropriate limit between images 
that contain defects and images with no defect we 
can achieve our goal. 

3 EXPERIMENTAL RESULTS 

We have studied six types of the defects commonly 
found in rolled steel: vertical scratch, rust, coat-less, 
indents, settlement marks and weld (Fig. 11). 

A total of 768 images were selected for training 
and another 768 were used for testing. In both of the 
groups half of the images contain a defect and in the 
other half there was no defect. We have 64 images 
of each type of defect resulting a total of 384 images 
contain a defect in each group. 

Figure 12: Segmentation based on the histogram for a 
settlement mark defect. 

The method used in segmentation of the images 
is based in the idea that different objects or regions 
in the image have significantly different grey levels. 
Thresholds are usually determined from the grey-
level histogram of an image. We have search for two 
thresholds, the upper and the lower, assuming that 
the zone of the image with no defect has a medium 
grey level. We have calculated the mean and 
standard deviation of the number of pixel outside the 
thresholds (Fig. 12). 
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Table 1: Mean and standard deviation of the percentage of 
pixel outside the thresholds. 

 Mean Standard 
Deviation 

Percentage 
of detection

No defect 0.195165 0.081513 95.3125 
Defect 3.131472 2.639977 91.9270 
Vertical scratch 2.340807 0.174513 97.6562 

Rust 5.254671 
4,546847 98.8281 

Coat-less 0.264038 0.091215 78.5156 
Indents 0.484261 0.146349 91,4062 
Settlement marks 8.31251 2.541135 86.3281 
Weld 2.132541 0.419870 98.8281 

 
As we can see in the chart above (Table 1), there 

are a 4.69 rate of false positives, and the defects are 
correctly detected in 91.93%. 

To improve the results obtained with the grey-
level histogram we have developed the Gabor filter. 
Observing the response of the these filters for 
training images (Fig.13), we have established the 
limit that separate the defect images and the no 
defect images. The test images have been used to 
determinate the goodness of the method. 

 

  

  
Figure 13: Some transformed images used in this paper.  

Table 2: Mean and standard deviation of the euclidean 
distance. 

 Mean Standard 
Deviation 

Percentage 
of detection

No defect 0.158103 0.035414 99.21875 
Defect 0.375900 0.101831 96.61458 
Vertical scratch 0.395899 0.076832 97.6562 

Rust 0.353493 0.130730 85.9375 
Coat-less 0.264038 0.010007 98.82812 

Indents 0.374794 0.046349 99.21875 
Settlement marks 0.407765 0.068066 98.82812 
Weld 0.459415 0.075339 99.21875 

 

The measure of the distance can be observed in 
the next chart (Table 2). We can see in this chart the 
mean value and the standard deviation of the 
euclidean distance between the mean value, obtained 
with the training images without defect, and the 
maximum value of then transformed image. In the 
third column we can see the percentage of defect 
detection obtained with the testing images. The first 
two rows show the results for no-defect and defect 
images. The rest of the rows show the results for 
each type of defect studied. 

We can see that we detect 96,61% of the defects, 
obtaining only a 0,78% of false positives. The defect 
of rust is the one that reaches the worst results, 
obtained almost 86% of right detection. The rest of 
defects are detected around 99%. 

4 CONCLUSIONS 

Quality control is a key process in steel flat products 
manufacturing and processing. Coil slitting and 
cutting is a paradigmatic process: often 200 meters a 
minute process speed is reached, so than human 
visual inspection is dramatically restricted.  

We have developed an automated cellular visual 
inspection system of flat products in a flat steel 
cutting factory (GONVARRI Burgos, Spain). 
Among the approaches that the system uses to detect 
defects, we have included the traditional methods 
and two-dimensional Gabor filters.  

The traditional methods based on the study of the 
grey-level histogram and shape analysis, have shown 
quite good results, but there are not good enough to 
achieve the level of success required. It has been 
necessary the implementation of new methods. The 
application of Gabor filters seem to be a good 
alternative to the traditional methods. 

The results obtained in the detection of six of the 
most common defects that appear over the surface of 
the steel have reached a rate of 96,61% of right 
detection, obtaining only a 0,78% of false positives.  
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