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Abstract: This paper is aimed at evaluating the performances of different measures which have been proposed in lit-
erature for robust matching. In particular, classical matching metrics typically employed for this task are
considered together with specific approaches aiming at achieving robustness. The main aspects assessed by
the proposed evaluation are robustness with respect to photometric distortions, noise and occluded patterns.
Specific datasets have been used for testing, which provide a very challenging framework for what concerns
the considered disturbance factors and can also serve as testbed for evaluation of future robust visual corre-
spondence measures.

1 INTRODUCTION

One of the most important tasks in computer vision is
visual correspondence, which given two sets of pixels
(i.e. two images) aims at finding corresponding pixel
pairs belonging to the two sets (homologouspixels).
As a matter of fact, visual correspondence is com-
monly employed in fields such as pattern matching,
stereo correspondence, change detection, image reg-
istration, motion estimation, image vector quantiza-
tion.

The visual correspondence task can be extremely
challenging in presence of disturbance factors which
can typically affect images. A common source of dis-
turbances can be related to photometric distortions be-
tween the images under comparison. These can be
ascribed to the camera sensors employed in the im-
age acquisition process (due to dynamic variations of
camera parameters such as auto-exposure and auto-
gain, or to the use of different cameras), or can be
induced by factor extrinsic to the camera, such as
changes of the amount of light emitted by the sources
or viewing of non-lambertian surfaces at different
angles. Other major disturbance factors are repre-
sented by distortions of the pixel intensities due to
high noise, as well as by the presence of partial oc-
clusions.

In order to increase the reliability of visual cor-

respondence many matching measures aimed at be-
ing robust with respect to the above mentioned
disturbance factors have been proposed in litera-
ture. Evaluation assessments have also been pro-
posed which compared some of these measures in par-
ticular fields such as stereo correspondence (Cham-
bon and Crouzil, 2003), image registration (Zitová
and Flusser, 2003) and image motion (Giachetti,
2000). Generally speaking, apart from classical
approaches which will be discussed in Section 2,
many robust measures for visual correspondence have
been proposed in literature (Tombari et al., 2007),
(Crouzil et al., 1996), (Scharstein, 1994), (Seitz,
1989), (Aschwanden and Guggenbuhl, 1992), (Martin
and Crowley, 1995), (Fitch et al., 2002), (Zabih and
Woodfill, 1994), (Bhat and Nayar, 1998), (Kaneko
et al., 2003), (Ullah et al., 2001). A taxonomy which
includes the majority of these approaches is proposed
in (Chambon and Crouzil, 2003).

This paper focuses on pattern matching, which
aims at finding the most similar instances of a given
pattern,P, within an image.In particular, this paper
aims at comparing traditional general purpose ap-
proaches together with proposals specifically con-
ceived to achieve robustness, in order to determine
which metric is more suitable to deal with distur-
bance factors such as photometric distortions, noise
and occlusions. More precisely, in the comparison
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we will consider the following matching measures:
MF (Matching Function), i.e. the approach recently
proposed in (Tombari et al., 2007), GC (Gradient
Correlation), i.e. the approach initially proposed in
(Scharstein, 1994) according to the formulation pro-
posed in (Crouzil et al., 1996) for the pattern matching
problem, OC (Orientation Correlation), proposed in
(Fitch et al., 2002). Moreover, we will consider the
SSD (Sum of Squared Differences) and NCC (Nor-
malized Cross Correlation) measures applied on gra-
dient norms (G-NCC and G-SSD), which showed
good robustness against illumination changes in the
experimental comparison described in (Martin and
Crowley, 1995). The approach relying on gradi-
ent orientation only, proposed in (Seitz, 1989) and
successively modified in (Aschwanden and Guggen-
buhl, 1992), has not been taken into account since, as
pointed out in (Crouzil et al., 1996), it is prone to er-
rors in the case of gradient vectors with small mag-
nitude. Considered traditional measures are NCC,
ZNCC (Zero-meanNCC) and SSD: NCC and ZNCC
showed good robustness with respect to brightness
changes, on the other hand SSD showed good insen-
sibility toward noise (Aschwanden and Guggenbuhl,
1992), (Martin and Crowley, 1995).

All the considered proposals are tested on3

datasets which represent a challenging framework
for what regards the considered distortions. These
dataset are publicly available1 and they might serve
as a testbed for future evaluations of robust match-
ing measures. Before reporting on the experimen-
tal evaluation, all compared measures are briefly de-
scribed. Furthermore, for what regards MF, the paper
also proposes some modifications to the original ap-
proach proposed in (Tombari et al., 2007), and ex-
ploits the proposed experimental evaluation to per-
form a behavioural analysis of this class of functions.

2 TRADITIONAL MATCHING
CRITERIA

Matching measures traditionally adopted in order to
compute the similarity between two pixel sets are
typically subdivided into two groups, given they are
based on anaffinity or distortion criterion. Affinity
measures are often based on correlation, with the most
popular metric being theNormalized Cross Correla-
tion (NCC). In a pattern matching scenario, beingP

the pattern vector, sizedM×N (width × height),I the
image vector, sizedW×H, andIxy the image subwin-
dowat coordinates(x,y) and having the same dimen-

1Available at: www.vision.deis.unibo.it/pm-eval.asp

sions asP, the NCC function at(x,y) is given by:
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As it can be seen, the cross-correlation between
P and Ixy is normalized by theL2 norms of the two
vectors, in order to render the measure robust to any
spatially constant multiplicative bias. By subtracting
the mean intensity value of the pattern and of the im-
age subwindow we get an even more robust matching
measure:
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whereP̄ and Īxy represent respectively the mean in-
tensity of P and Ixy. This measure is referred to as
Zero-mean NCC(ZNCC) and it is robust to spatially
constant affine variations of the image intensities.

As regards the distortion criterion, the classical
measures are based on theLp distance betweenP and
Ixy. In particular, withp= 2 we get theSum of Squared
Differences(SSD):

SSD(x,y) =
M

∑
i=1
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P(i, j)− Ixy(i, j)
)2 (3)

While all these measures are usually computed di-
rectly on the pixel intensities of the image sets, in
(Martin and Crowley, 1995) it was shown that by
computing these measures on the gradient norm of
each pixel a higher robustness is attained, i.e. for what
concerns insensitivity to illumination changes G-SSD
and G-NCC showed to perform well. In particular, if
we denote withGP(i, j) the gradient of the pattern at
pixel (i, j):

GP(i, j) =
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and similarly withGIxy(i, j) the gradient of the image

subwindow at pixel(i, j):
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the gradient norm, or magnitude, in each of the

two cases is computed as:
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i.e. || · || represents theL2 norm of a vector. Hence the
G-NCC function can be defined as:
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and the G-SSD function as:

G−SSD(x,y) =
M

∑
i=1

N

∑
j=1

(

||GP (i, j) ||− ||GIxy (i, j) ||
)2 (9)

Since (Martin and Crowley, 1995) recommends to
compute the partial derivatives for the gradient com-
putation on a suitably smoothed image, in our imple-
mentation they will be computed by means of the So-
bel masks.

3 THE MF MEASURE

In (Tombari et al., 2007) a matching measure was pro-
posed which is implicitly based on the so-called or-
dering constraint, that is, under the assumption that
photometric distortions do not affect the order be-
tween intensities of neighbouring pixels. This is anal-
ogous to the assumption that the sign of the differ-
ence between a pair of neighbouring pixels should not
change in presence of this kind of distortions. For
this reason the proposed measure correlates the dif-
ferences between a set of pixel pairs defined onP and
their correspondent ones onIxy. In particular, the pairs
in each set include all pixels at distance1 and2 one
to another along horizontal and vertical directions. In
order to compute this set, we define a vector of pixel
differences computed at a point(i, j) on P:
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and, similarly, at a point(i, j) on Ixy:
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Hence, the MF function proposed in (Tombari
et al., 2007) consists in correlating these two vectors
for each point of the pattern and the subwindow, and
in normalizing the correlation with theL2 norm of the
vectors themselves:
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where◦ represents the dot product between two
vectors, and the normalization allows the measure to
range between[−1,1].

Figure 1: The 3 considered sets of neighbouring pixel pairs.

It is a peculiarity of this method that, because of
the correlation between differences of pixel pairs, in-
tensity edges tend to determine higher correlation co-
efficients (in magnitude) with respect to low-textured
regions. Thus, this can be seen as if the measure
mostly relies on the pattern edges. For this reason,
MF can be usefully employed also in presence of high
levels of noise, as this disturbance factor can typi-
cally violate the ordering constraint on low-textured
regions, but seldom along intensity edges. Similar
considerations can be made in presence of occluded
patterns.

The set of pixel pairs originally proposed in
(Tombari et al., 2007) can be seen as made out of two
subsets: the set of all pixels at distance1 one to an-
other along horizontal and vertical directions, and the
set of all pixels at distance2 one to another along same
directions. Theoretically, the former should benefit of
the higher correlation given by adjacent pixels, while
the latter should be less influenced by quantization
noise that is introduced by the camera sensor. We will
refer to the MF measure applied on each of the two
subsets as, respectively,MF1 andMF2. For these last
two cases, once defined the pixel differences relative
to the case of distance1:

δP
1 (i, j) =

[

P(i−1, j)−P(i, j)

P(i, j −1)−P(i, j)

]

(13)

δIxy
1 (i, j) =

[
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Ixy(i, j −1)− Ixy(i, j)

]

(14)

and the pixel differences relative to the case of dis-
tance2:

δP
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]

(15)
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[
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]

(16)

it is straightforward to define the two novel measures
MF1 andMF2 as:

PERFORMANCE EVALUATION OF ROBUST MATCHING MEASURES

475



MF1(x,y) =

M

∑
i=1

N

∑
j=1

δP
1 (i, j)◦δIxy

1 (i, j)

√

M

∑
i=1

N

∑
j=1

δP
1 (i, j)◦δP

1 (i, j) ·

√

M

∑
i=1

N

∑
j=1

δIxy
1 (i, j)◦δIxy

1 (i, j)

MF2(x,y) =

M

∑
i=1

N

∑
j=1

δP
2 (i, j)◦δIxy

2 (i, j)

√

M

∑
i=1

N

∑
j=1

δP
2 (i, j)◦δP

2 (i, j) ·

√

M

∑
i=1

N

∑
j=1

δIxy
2 (i, j)◦δIxy

2 (i, j)

A graphical representation of the3 different pixel
pair sets used byMF1,2, MF1 andMF2 is shown in Fig. 1.
We believe that it is interesting to exploit the perfor-
mance evaluation proposed in this paper also with the
aim of determining if there is an optimal set between
these3 or if, conversely, the measure has the same be-
haviour on all sets. This issue will be discussed in
Section 6.

4 THE OC MEASURE

The OC measure (Fitch et al., 2002) is based on the
correlation of the orientation of the intensity gradient.
In particular, for each gradient of the patternGP(i, j)

a complex number representing the orientation of the
gradient vector is defined as:

OP(i, j) = sgn(GP
i (i, j)+ ι GP

j (i, j)) (17)

with ι denoting the imaginary unit and where:

sgn(x) =

{

0 i f |x| = 0
x
|x| otherwise

(18)

Analogously, a complex number representing the
orientation of the image subwindow gradient vector
GIxy(i, j) is defined as:

OIxy(i, j) = sgn(G
Ixy
i (i, j)+ ι G

Ixy
j (i, j)) (19)

As proposed in (Fitch et al., 2002), the partial
derivatives for the gradient computation are calcu-
lated by approximating them with thecentral differ-
ences. Hence, the OC measure betweenP and Ixy is
defined as the real part of the correlation between all
gradient orientations belonging toP andIxy:

OC(x,y) = Re{
M

∑
i=1

N

∑
j=1

OP(i, j) ·O∗
Ixy

(i, j)} (20)

with ∗ indicating the conjugate of the complex vector.
(Fitch et al., 2002) proposes to compute the correla-
tion operation in the frequency domain by means of
the FFT by exploiting the correlation theorem in or-
der to achieve computational efficiency.

5 THE GC MEASURE

The GC measure, proposed in (Crouzil et al., 1996)
and derived from a measure introduced in (Scharstein,
1994), is based on two terms, referred to asdistinc-
tiveness(D) andconfidence(C), both computed from
intensity gradients:

D(x,y) =
M

∑
i=1

N

∑
j=1

||GP(i, j)−GIxy(i, j)|| (21)

C(x,y) =
M

∑
i=1

N

∑
j=1

(

||GP(i, j)||+ ||GIxy(i, j)||
)

(22)

The GC measure is then defined as:

GC(x,y) =
D(x,y)
C(x,y)

(23)

Its minimum value is0, indicating the pattern is
identical to the image subwindow. For any other pos-
itive value, the greater the value, the higher the dis-
similarity between the two vectors. In order to com-
pute the partial derivatives, (Crouzil et al., 1996) pro-
poses to use either the Sobel operator or the Shen-
Castan ISEF filter (Shen and Castan, 1992). For ease
of comparison with other measures (i.e. G-SSD and
G-NCC) in our implementation we will use the for-
mulation based on the Sobel operator.

6 EXPERIMENTAL
COMPARISON

This section presents the experimental evaluation
aimed at assessing the performances of the various
measures presented in this paper. The3 datasets,
available at: www.vision.deis.unibo.it/pm-eval.asp,
used for our experiments are characterized by a sig-
nificant presence of the disturbance factors discussed
previously, and are now briefly described.

Guitar. In this dataset,7 patterns were extracted
from a picture which was taken with a good camera
sensor (3 MegaPixels) and under good illumination
conditions given by a lamp and some weak natural
light. All these patterns have to be sought in10 im-
ages which were taken with a cheaper and more noisy
sensor (1.3 MegaPixels, mobile phone camera). Illu-
mination changes were introduced in the images by
means of variations of the rheostat of the lamp illumi-
nating the scene (G1−G4), by using a torch light in-
stead of the lamp (G5−G6), by using the camera flash
instead of the lamp (G7− G8), by using the camera
flash together with the lamp (G9), by switching off the
lamp (G10). Furthermore, additional distortions were
introduced by slightly changing the camera position
at each pose and by the JPEG compression.
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Table 1: Matching errors reported by the considered measures.

Guitar MP-IC MP-Occl Total

SSD 39 / 70 8 / 12 8 / 8 55 / 90

G-SSD 17 / 70 4 / 12 4 / 8 25 / 90

NCC 27 / 70 5 / 12 8 / 8 40 / 90

G-NCC 13 / 70 1 / 12 7 / 8 21 / 90

ZNCC 9 / 70 0 / 12 6 / 8 15 / 90

MF1 8 / 70 0 / 12 2 / 8 10 / 90

MF1,2 5 / 70 0 / 12 1 / 8 6 / 90

MF2 5 / 70 0 / 12 1 / 8 6 / 90

OC 13 / 70 1 / 12 1 / 8 15 / 90

GC 6 / 70 2 / 12 0 / 8 8 / 90

Mere Poulard - Illumination Changes. In dataset
Mere Poulard - Illumination Changes(MP-IC), the
picture on which the pattern was extracted was taken
under good illumination conditions given by neon
lights by means of a1.3 MegaPixels mobile phone
camera sensor. This pattern is then searched within12

images which were taken either with the same camera
(prefixed byGC) or with a cheaper,0.3 VGA camera
sensor (prefixed byBC). Distortions are due to slight
changes in the camera point of view and by different
illumination conditions such as: neon lights switched
off and use of a very high exposure time (BC− N1,
BC− N2, GC− N), neon lights switched off (BC− NL,
GC−NL), presence of structured light given by a lamp
light partially occluded by various obstacles (BC−ST1,
· · · , BC−ST5), neon lights switched off and use of the
camera flash (GC−FL), neon lights switched off, use
of the camera flash and of a very long exposure time
(GC−NFL). Also in this case, images are JPEG com-
pressed.

Mere Poulard - Occlusions. In the datasetMere
Poulard - Occlusions(MP-Occl) the pattern is the
same as in dataset MP-IC, which now has to be found
in 8 images taken with a0.3 VGA camera sensor. In
this case, partial occlusion of the pattern is the most
evident disturbance factor. Occlusions are generated
by a person standing in front of the camera (OP1, · · · ,
OP4), and by a book which increasingly covers part of
the pattern (OB1, · · · , OB4). Distortions due to illumi-
nation changes, camera pose variations, JPEG com-
pression are also present.

The number of pattern matching instances is thus
70 for theGuitar dataset,12 for the MP-IC dataset and
8 for the MP-Occl dataset, for a total of90 instances
overall. The result of a pattern matching process is
considered erroneous when the coordinates of the best

matching subwindow found by a certain measure are
further than±5 pixel from the correct ones.

Tab. 1 reports the matching errors yielded by
the considered metrics on the3 datasets. As it can
be seen, approaches specifically conceived to achieve
robustness generally outperform classical measures,
apart from the ZNCC which performs badly in pres-
ence of occlusions but shows good robustness in han-
dling strong photometric distortions. The two mea-
sures which yield the best performance are MF and
GC, with a number of total errors respectively equal to
6 and8. In particular, MF performs better on datasets
characterized by strong photometric distortions, con-
versely GC seems to perform better in presence of oc-
clusions.

For what regards the3 MF measures themselves,
it seems clear that the use of differences relative to
adjacent pixels suffers of the quantization noise intro-
duced by the camera sensor, hence they are less reli-
able than differences computed on a distance equal to
2. Moreover, as a consequence of the fact thatMF1,2

and MF2 yield the same results on all datasets,MF2

seems the more appropriate MF measure since it re-
quires only2 correlation terms instead of the4 needed
by MF1,2. Finally, for what regards traditional ap-
proaches, it is interesting to note that the application
of NCC and SSD on the gradient norms rather than on
the pixel intensities allows for a significantly higher
robustness throughout all the considered datasets.
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7 CONCLUSIONS AND FUTURE
WORKS

An experimental evaluation of robust matching mea-
sure for pattern matching has been presented. We
have compared traditional approaches with propos-
als specifically aimed at achieving robustness in pres-
ence of disturbance factors such as photometric dis-
tortions, noise, occlusions. The evaluation conducted
on a challenging dataset has pointed out that the best
performing metric is MF followed by GC, which were
able to achieve an error rate of respectively6.7% and
8.9%. The experiments have also shown that a mod-
ified version of the MF measure consisting of only
2 correlation terms instead of4 allows for achieving
equivalent results with respect to the original formu-
lation introduced in (Tombari et al., 2007).

Future works aims at extending the proposed com-
parison to other measures not specifically proposed
for the pattern matching problem, and also at enrich-
ing the dataset used for the evaluation with more im-
ages.
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