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Abstract: In this paper a novel algorithm for estimating the parametric form of the camera motion is proposed. A novel
stochastic vector field model is presented which can handle smooth motion patterns derived from long periods
of stable camera movement and also can cope with rapid motion changes and periods where camera remains
still. A set of rules for robust and online updating of the model parameters is also proposed, based on the
Expectation Maximization algorithm. Finally, we fit this model in a particle filters framework, in order to
predict the future camera motion based on current and prior knowledge.

1 INTRODUCTION 1

Video, in contrary with image, possesses valuable
information since it extends spatial information and
records the evolution of events over time. This dy-
namic property, has been extensively investigated by
the scientific community for semantic characteriza-
tion and discrimination of videos streams. In par-
ticular, considerable interest has been focused in ex-
tracting motion related information such as object
and camera motion. Moving objects trajectories have
been used for video retrieval in (Hu et al., 2007) as
well as, camera motion pattern characterization has
been efficiently applied for video data indexing and
retrieval in (Tan et al., 2000; Kim et al., 2000). In
(Duan et al., 2006), the motion vectors field is used
as a camera motion representation and the detected
motion pattern is classified using Support Vector Ma-
chines (SVMs) in one of the following classes: zoom,
pan, tilt and rotation. In (Tan et al., 2000) and (Kim
et al., 2000) camera motion estimation within video
shots is performed in the compressed MPEG video
streams, without full frame decompression, using the
motion vector fields acquired from the P- and B-
video frames. These methods rely on the exploitation
of motion vectors distribution or on a few representa-
tive global motion parameters. However, one of the
main shortcomings of these approaches is that they
are generally not resilient in the presence of mobile
objects of significant size and data outliers.

Camera motion can be assumed as a dynamic sys-

1Research was supported by the project SHARE: Mo-
bile Number FP6-004218.

tem, whose stateθt is described at timet by the
state vector:θt =

[

m1 m2 m3 m4 m5 m6
]T

where parameters{m1,m2,m3,m4,m5,m6} corre-
spond to the affine transform coefficients, containing
all the relevant information required to describe the
camera motion within frames. Our goal is to recur-
sively estimate the system stateθt from noisy mea-
surementsYt , obtained by an observation model. To
tackle this problem, we propose a novel stochastic
vector field model applied in a particle filters frame-
work.

2 PROBLEM FORMULATION

In order to measure the displacement between two
consecutive frames, we employ the motion vectors
derived by a motion compensation algorithm such as
block matching (Jain and Jain, 1981). A motion vec-
tor vi = [vi

x vi
y]

T represents the displacement of the
i-th block in relative coordinates between two consec-
utive video framesft−1 and ft as: x′i = xi + vi

x, y′i =
yi +vi

y where(xi ,yi) and(x′i ,y
′
i) are the coordinates of

i-th block center at frameft−1 and ft , respectively.
We can represent the displacement of theith block

by a 2D affine transform as:

[

x′i
y′i
1

]

=

[

m1 m2 m3
m4 m5 m6
0 0 1

][

xi
yi
1

]

⇔

[

vi
x

vi
y
0

]

=

[

m1−1 m2 m3
m4 m5−1 m6
0 0 0

][

xi
yi
1

]

. (1)
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We seek an affine transformation matrixM such
that to approximateBM ≈ B+ V, whereB is an×3
matrix (n is the number of blocks that each frame
has been divided to) containing the center coordi-
nates of each block. MatrixV = [vx vy 0] contains
the motion vectors, wherevx = [v1

x v2
x . . .vn

x]
T and

vy = [v1
y v2

y . . .vn
y]

T aren×1 vectors containing the
motion vectors residuals along to thex andy axes, re-
spectively.M = [Mx My e] is the 3×3 affine transfor-
mation matrix, whereMx = [m1 m2 m3]

T , My =
[m4 m5 m6]

T ande = [0 0 1]T .

3 ONLINE VECTOR FIELD
MODEL

The presentedOnline Vector Field Model(OVFM)
exploits temporal characteristics of camera motion.
OVFM is time-varying and comprises of three dif-
ferent componentsOVFMt = {St ,Wt ,Lt} which are
combined in a probabilistic mixture model.

3.1 Probabilistic Mixture Model

The stable componentSt = {St,x,St,y} learns a
smooth camera motion pattern obtained from a rela-
tively long period of the video sequence. The compo-
nentSt comprises of vectorsSt,x = [s1

t,x s2
t,x . . .sn

t,x]
T

andSt,y = [s1
t,y s2

t,y . . .sn
t,y]

T where valuessj
t,x andsj

t,y
contain the blockj displacement momentum along
thex andy axes, respectively. The wander component
Wt = {Wt,x,Wt,y}, identifies sudden motion changes,
and adapts with a short time observation sequence, as
a two frame motion change model. VectorsWt,x =

[w1
t,x w2

t,x . . .wn
t,x]

T and Wt,y = [w1
t,y w2

t,y . . .wn
t,y]

T

contain the motion vectors residuals, along thex and
y axes, respectively. Finally, the lost componentLt =
{Lt,x,Lt,y} is fixed and represents the ideal stationary
video scene.

We model the probability density function for the
St , Wt andLt components with the bivariate Gaussian
distribution N(v j ;µj

c,t ,∑
j
c,t) c ∈ {St ,Wt ,Lt}, where

∑ j
c,t is a 2×2 covariance matrix referred toc-th com-

ponentj-th motion vector containing the two random
variablesv j

x andv j
y, µj

c,t denotes the mean value of the
j-th motion vector. OVFMt combines probabilisti-
cally componentsSt , Wt andLt according to the for-
mula:

P(Yt |θt) =
n

∏
j=1

{

P(v j
t |S

j
t )+P(v j

t |W
j
t )+P(v j

t |L
j
t )

}

=
n

∏
j=1

{

∑
c=S,W,L

mj
c,t,xyN

(

v j
t ;µ j

c,t ,∑ j
c,t

)

}

, (2)

whereYt = [v1
t . . .vn

t ]
T is the observation data derived

for stateθt . The mixing probabilitiesmj
c,t,xy regu-

late the contribution that each componentj-th mo-
tion vector makes to the complete observation like-
lihood at timet andn is the number of motion vec-
tors.OVFMt is embedded in the particle filters frame-
work evaluating each potential future state of the sys-

tem. A state estimatêθi
t is generated by first drawing

a Gaussian noise sampleU i
t−1 and applying the state

transition functionθ̂i
t = Et−1(θi

t−1,U
i
t−1). Each state

estimateθ̂i
t determined by particlei is being evalu-

ated with respect to the available motion representa-
tion in OVFMt , by computing the observation likeli-
hood according to equation (2). Weights are assigned
to particles by applying the Sequential Importance
Re-sampling filter (SIR) proposed in (Gordon et al.,

1993), as:wi
t ∝ P(Yi

t |θi
t), wi

t =
wi

t

∑N
i=1 wi

t
.

3.2 Online Model Update

We assume thatOVFMt has limited memory over
the past motion observations and when newer infor-
mation is available, previous knowledge is forgot-
ten and is combined with newer observations using
the exponential envelopEt(k) = αe(−(t−k)/τ) where
τ = ns/ log2, ns is the envelope’s half life in video
frames and parameterα is defined asα = 1− e−1/τ

in order the ownership posterior probabilities and the
mixing probabilities to sum to 1. The posterior own-
ership probabilitiesOc,t denote the contribution that
each component motion vector makes to the complete
observation likelihood. Ownerships are evaluated by
applying the EM algorithm in (Dempster et al., 1977)
as:

O j
c,t,xy ∝ mj

c,t,xyN(v j
t ;µj

c,t ,∑
j
c,t),

O j
c,t,x ∝ mj

c,t,xN
(

v j
t,x;µ

j
c,t,x,(σ

j
c,t,x)

2
)

O j
c,t,y ∝ mj

c,t,yN
(

v j
t,y;µ

j
c,t,y,(σ

j
c,t,y)

2
)

(3)

whereN
(

v j
t,x;µ

j
c,t,x,(σ

j
c,t,x)

2
)

is the normal den-

sity function. The ownerships are subsequently used
for updating the mixing probabilities as:

mj
c,t+1,x = αO j

c,t,x +(1−α)mj
c,t,x,

mj
c,t+1,y = αO j

c,t,y +(1−α)mj
c,t,y

mj
c,t+1,xy = αO j

c,t,xy+(1−α)mj
c,t,xy. (4)

We compute the new mean values and the new co-
variance matrices for each motion vector by utilizing
the first and second order data moments computed as:
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M j
1,t+1,x = αO j

S,t,xv
j
t,x +(1−α)M j

1,t,x,

M j
1,t+1,y = αO j

S,t,yv
j
t,y +(1−α)M j

1,t,y

M j
1,t+1,xy = αO j

S,t,xyv
j
t,xv

j
t,y +(1−α)M j

1,t,xy

M j
2,t+1,x = αO j

S,t,x(v
j
t,x)

2 +(1−α)M j
2,t,x,

M j
2,t+1,y = αO j

S,t,y(v
j
t,y)

2 +(1−α)M j
2,t,y. (5)

The stable component is updated using the first or-
der data moments as:

sj
t+1,x = µj

S,t+1,x =
M j

1,t+1,x

mj
S,t+1,x

,

sj
t+1,y = µj

S,t+1,y =
M j

1,t+1,y

mj
S,t+1,y

. (6)

The stable component new covariance matrices
are evaluated as:

(σ j
S,t+1,x)

2 =
M j

2,t+1,x

mj
S,t+1,x

− (sj
t+1,x)

2,

(σ j
S,t+1,y)

2 =
M j

2,t+1,y

mj
S,t+1,y

− (sj
t+1,y)

2

(σ j
S,t+1,xy)

2 =
M j

1,t+1,xy

mj
S,t+1,xy

− (sj
t+1,x)(s

j
t+1,y). (7)

The wander component contains the current mo-
tion vectors, since it adapts as a two frame motion
change model, while covariance matrices for the wan-
der and lost components are updated according to sta-
ble component’s covariance matrices in order to avoid
some prior preference in either component.

4 EXPERIMENTAL RESULTS

We have evaluated the efficiency of our algorithm
through experimental testing. Experiments have been
conducted in a dataset comprised of infrared video
streams captured by a hand-held video camera. We
present the results obtained by applying our method in
a video sequence containing 485 frames, where cam-
era performs a 360 degrees spin. Figure 1 presents
the variation of the estimated affine coefficients de-
scribing the translation over thex axis (dotted black
line) andy axis (solid gray line) as the video stream
evolves, while at specific moments the respective
video frames are provided for visual confirmation of
the obtained results. As it is depicted both parameters
balances around zero during the first 25 frames since
the camera remains almost still. A radical incense-
ment in the coefficient describing translation over the

x axis occurs from frame 26 and until the end of the
video stream since camera starts to spin. On the other
hand, the coefficient that corresponds to translation
over they axis continuously balances around zero
since there is minimum movement towards that direc-
tion.

0 50 100 150 200 250 300 350
400 450 500

-1

-0.5

0

0.5

1

1.5

2

2.5

Frame index

T
ra

n
s
la

ti
o

n
fa

c
to

r

Translation in x axis
Translation in y axis

Figure 1: Variation of the translation affine coefficients.

5 CONCLUSIONS

n this paper a novel camera motion estimation method
based in motion vector fields exploitation is pro-
posed. The features that distinguish our method from
other proposed camera motion estimation techniques
are: 1) the integration of a novel stochastic vector
field model, 2) the incorporation of the vector field
model inside a particle filters framework enabling the
method to estimate the future camera movement.
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