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Abstract: This paper proposes a sequential image reconstruction algorithm for the exact reconstruction of an image 
from a limited number of projection angles. Specifically, four projection axes oriented at coprime ratio view 
angles are used. The set of proper values for the view angles as well as the overall number of samples on the 
projection axis are explicitly defined and are related only to the dimensions of the image. The slopes of the 
four projection axes are calculated according to the chosen view angle and are symmetrically oriented with 
respect to the horizontal and the vertical axis. The reconstruction is a non-iterative, one pass process based 
on a decomposition sequence which defines the order in which the image pixels are restored. Several 
simulation results are provided that demonstrate the feasibility of the proposed method. 

1 INTRODUCTION 

Computerized tomography (CT) is an important and 
effective tool for a large number of imaging 
applications allowing the observation of the internal 
structure of objects. The majority of applications 
refer to the medical sciences including x-ray 
tomography, magnetic resonance imaging, electron 
microscopy tomography, and diagnostic radiology. 
(CT) is also extensively used in the industry for non-
destructive evaluation allowing the determination of 
defects and abnormalities in industrial objects. In 
general, the object is reconstructed from the 
projection data acquired by projecting it into several 
fairly equidistant view angles. However, there are 
several cases in which projection data can be 
acquired only in a limited range of projection view 
angles. The limited angle tomography problem 
concerns a wide range of applications in surgical 
imaging, dental radiology and positron emission 
mammography as well as in electron microscopy 
and in astronomy. It is well known that applying the 
conventional filtered backprojection reconstruction 
method and assuming zero values for the missing 
view angles produces approximations of the original 
image containing significant artefacts (Natterer, 
2001). Several approaches have been proposed that 

address this problem including sinogram techniques, 
Bayesian methods, projections onto convex sets, 
maximum entropy techniques and many others. 
Recently, Rantala et al (Rantala, 2006) addressed the 
reconstruction from limited angle data by using a 
wavelet expansion approximation and Besov space a 
priori information in order to compute a maximum a 
posteriori estimation for the original image. A pre-
thresholding method is also proposed in which 
thresholding is applied to the wavelet coefficients 
prior to the computation of the reconstruction. 
Delaney and Bresler (Delaney, 1998) formulate the 
reconstruction problem as a regularized weighted 
least-squares optimization problem, and propose a 
family of regularization functionals that are meant to 
apply a constraint of piecewise smoothness on the 
image. Clackdoyle et al (Clackdoyle, 2004) focus on 
2-D reconstruction processes where data from entire 
projection directions are unmeasured or unavailable 
and state that region-of-interest reconstruction from 
these truncated projections is possible under certain 
conditions. Both direct and statistically based 
(iterative) reconstruction algorithm can be used for 
the image reconstruction. Schule et al (Schule, 2005) 
describe how multi-valued objects can be 
reconstructed by combining binary decisions. They 
use convex-concave regularization to improve the 
reconstruction quality as well as the EM-algorithm 
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to motivate the adaption of the absorption 
coefficients as hidden data estimation. 

In this paper we propose a method for exact 
image reconstruction when a limited number of 
projections axes (i.e. four) is available that consists 
of projection samples with higher resolution than the 
pixels of the reconstructed image. Reconstruction 
under such conditions may occur in cases where it is 
very hard to obtain projections; however, it is 
possible in these projections to use high resolution 
detectors, or in cases that is not necessary to 
reconstruct high resolution images. Examples of 
such cases are in surgical imaging, in imaging 
nuclear waste cites or in non destructive testing. 
More specifically, we propose a method that allows 
the exact reconstruction of an image assuming four 
projection axes oriented at coprime ratio view 
angles. The original grayscale image is projected 
into the four projection axes and the collected 
projection data are stored in an accumulator array. 
The set of proper values for the view angle as well 
as the overall number of samples on the projection 
axis are related only to the dimensions of the image. 
The slopes of the four projection axes are calculated 
according to the chosen view angle and are 
symmetrically oriented with respect to the horizontal 
and vertical axes. The reconstruction is a non-
iterative, one pass process that uses a decomposition 
sequence which defines the order in which the image 
pixels are restored. The decomposition sequence is 
determined so that, a unique correspondence 
between a pixel in the exterior of the image and a 
projection ray that intersects only this pixel, is 
preserved during the reconstruction process. 
Initially, the determination of the view angle and the 
decomposition sequence is based on the pixels in the 
1st octant of the image. However, during the 
reconstruction process, the symmetrical geometric 
properties of the pixels in the other octants are used 
in order to restore all the image’s pixels. 

The rest of this paper is organized as follows: 
Section 2 presents an initial approach to determine a 
proper view angle that allows the exact 
reconstruction of the image. Besides the view angle, 
certain projection parameters are also defined that 
determine the geometry of the reconstruction 
utilization. In section 3 we extend the methodology 
in order to determine a set of several other coprime 
ratio view angles that can also be used in the 
proposed reconstruction scheme. We provide 
generalized versions of the projection parameters 
that are related only to the image dimensions and the 
slope of the projection axis. Time and memory 
complexity issues are also considered and the 

applicability of the proposed method using various 
projection view angles is also demonstrated. Finally, 
section 4 draws the conclusion. 

2 AN INITIAL APPROACH FOR 
EXACT IMAGE 
RECONSTRUCTION 

2.1 Accumulator Array 

Without loss of generality let us suppose an input 
image I of size N×N pixels where N is assumed to be 
an even positive integer. A pixel in the input image 
at position (i,j) has grayscale (intensity) value I(i,j), 
with i, j = −N/2…N/2−1, and is assumed to be a 
square area of unit size with constant intensity value.  
The projection data obtained by projecting the image 
into Kθ projection axes is stored in an accumulator 
array C. Each projection axis consists of a finite 
number of projection rays sl where l=1,2,…,Kl. 
Clearly, each sample in array C(θ,s) corresponds to a 
projection ray identified by the combination of the 
slope θk with the displacement value sl. If Iθ,s denotes 
the set of image pixels that a projection ray rθ,s 
intersects, then for each pixel (i,j)∈Iθ,s we define the 
weighting factor wθ,s(i,j) to be the area of the portion 
of rθ,s inside pixel (i,j). Thus, each sample of C is 
calculated as 

C(θ,s)=  ∑
∈ sIji

s jiwjiI
,),(

, ),(),(
θ

θ  (1) 

2.2 Projection Parameters 
Determination 

The image is divided into 8 octants as shown in Fig. 
1 where the gray shaded pixels denote the 1st octant. 
A pixel (i,j) in the 1st octant has coordinates 
0≤i≤N/2−1, 0≤j≤i.  The black pixels in Fig. 1 denote 
pixels in all octants that have symmetrical geometric 
properties. There are also Kθ=4 projection axes 
shown at slopes 

θk =( uuuu −+− πππ ,
2

,
2

, )   for k=1…Kθ (2) 

where u is the projection view angle. The following 
discussion refers to pixels in the 1st octant and will 
be later generalized for the pixels in all octants based 
on the symmetrical positioning of the pixels 
relatively to the image’s center. 
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Let us consider the four instances shown in Fig. 
2 as the first steps of a decomposition sequence 
regarding the pixels in the 1st octant. By convention, 
the diagonal pixels are attributed to the odd octants. 
The decomposition sequence refers to pixels in the 
last column of the 1st octant, namely pixels (i,i−n), 
where i=N/2−1 and n=0…i denotes an positive offset 
from the diagonal. Our intention is to identify the 
width of the projection ray as well as its 
displacement on the projection axis that provide the 
largest possible intersection area without intersecting 
any other pixel of the current or the adjacent octant 
(octants 1 and 2 in this case). Lines r1 and r2 are 
perpendicular to the projection axis and define the 
boundaries of the projection ray. For each n, the 
intersection between projection ray rθ,s and pixel 
(N/2−1, N/2−1−n) is considered. For all forthcoming 
values of n, the pixel just examined and its 
counterpart in the 2nd octant are ignored. Hence, in 
Fig. 2b pixel (i,i) is ignored, and pixel (i,i−1) is 
considered. Clearly, any line r2 further away from 
the origin does not affect the intersection area. On 
the other hand, if line r1 is shifted in parallel towards 
the origin then pixels (i−1,i) and  (i,i−2) are also 
intersected by projection ray rθ,s which is 
undesirable. Again, in the following steps pixel 
(i,i−1) as well as its counterpart in 2nd octant, pixel 
(i−1,i), are ignored. 

The process is repeated in Figs. 2c and 2d for 
pixels (i,i−2) and (i,i−3), respectively. As shown in 
Fig. 2d line r1 is determined by points p1 and p3 and 
is the closest to the origin line for which the 
projection ray intersects only pixel (i,i−n). Line r2 is 
a line parallel to r1 that intersects the upper right 
vertex of pixel (i,i−n), namely point p2. It can be 
noticed that for n>1 point p3 corresponds to the 
upper right vertex of pixel (i−1,i−1) while points p1 
and p2 are related to n. Setting i=N/2−1 and n=i, and 
based on the geometry of the utilization as shown in 
Fig. 2d allows the determination of the projection 
parameters 

u=arctan(2/(N-2)),   d=2/ 842 +− NN ,   
w=1/(N-2),   Kp=Ν/2   and   Kl = 2/2N  

(3) 

where u is the view angle of the projection axis, d 
denotes the width of each projection ray, w is the 
area between any pixel and the furthest from the 
origin projection ray that intersects it, while Kp and 
Kl denote the number of rays that intersect a pixel 
and the overall number of samples on the projection 
axis, respectively. These parameters are related only 

to the image dimension N. The weighting factor 
wθ,s(i,j) in (1) equals 

{ }
⎩
⎨
⎧ ==

=
otherwise2

orif
),(, w

ssssw
jiw fc

sθ  (4) 

where sc and sf denote the nearest and furthest from 
the origin projection ray that intersect pixel (i,j), 
respectively. 

2.3 Image Reconstruction 

Let us suppose that the original image is projected 
onto the four projection axes each one consisting of 
Kl samples. The overall projection data, i.e. KθKl 
samples, are stored in accumulator array C. In the 
following we present how the original image can be 
exactly reconstructed from the samples in array C. 
Let IR denote the reconstructed image. In section 2.2 
we stated that the main criterion for the 
determination of the projection parameters is that the 
furthest from the origin projection ray that intersects 
a pixel does not intersect the upper right area w of 
any other pixel in the same octant. Thus for each 
pixel (i,j) there is a specific sample at slope θk and 
displacement value sl that corresponds to this 
projection ray. This sample is used in order to 
determine the corresponding pixel’s grayscale value 
IR(i,j). Having obtained its value, the pixel’s 
contribution is removed from the accumulator array 
i.e., all the samples of C affected by this pixel 
decrease their value by an amount proportional to 
the weighting factor wθ,s(i,j). 

The order in which the pixels are examined is 
given by a decomposition sequence T1{t} initially 
defined for the pixels in the 1st octant. The sequence 
T1{t}  contains the pixels of the 1st octant sorted 
column wise from the periphery to the inner of the 
image, i.e. pixels (N/2−1, N/2−1), (N/2−1, N/2−2), 
…, (N/2−1, 0),  (N/2−2, N/2−2), (N/2−2, N/2−3),… 
etc, down to (0,0). For each pixel of the 
decomposition sequence its symmetric counterparts 
in the other octants are also examined before the 
decomposition continues with the next sequence 
element. The reconstruction process starts with the 
first member of T1{t}, pixel (i,j)=(N/2−1, N/2−1). 
Let ),( jis f  denote the furthest from the origin 
projection ray of projection axis θ1 that intersects 
pixel (i,j). For θ̂ =θ1 and ŝ = ),( jis f  projection ray 

sr ˆ,θ̂  intersects only pixel (i,j). The accumulator array 

sample C( θ̂ , ŝ ), that holds the value of projection 
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ray sr ˆ,θ̂ , equals the weighted portion ),(ˆ,ˆ jiw sθ  of 

pixel’s (i,j) grayscale value. Hence, pixel IR(i,j) in 
the reconstructed image can be calculated as 

IR(i,j)= 
),(

)ˆ,ˆ(

ˆ,ˆ jiw
sC

sθ

θ   for θ̂ =θ1 and ŝ = ),( jis f  (5) 

After the determination of IR(i,j) the contribution of 
pixel (i,j) is removed from the other samples of C. 
Specifically, if Pθ(i,j) denotes the set of projection 
rays rθ,s that intersect pixel (i,j) at any angle θk then 
the accumulator array is updated as follows 

C(θ,s) ← C(θ,s)−IR(i,j)wθ,s(i,j) (6) 

for {(θ,s) : rθ,s∈ Pθ(i,j)}.  
So far, we considered pixels in the 1st octant. 

Applying proper re-indexing allows the 
manipulation of pixels in all other octants. Thus, 
before continuing with the next member of T1{t} the 
above process is applied to pixels in the other 
octants that are symmetrical to pixel (i,j). There are 
four or eight of them depending on whether pixel 
(i,j) lies on the diagonal axis or not. Thus, if MT(i,j) 
denotes the set of pixels that are symmetrical to 
pixel (i,j) then 

{ }

{
}⎪

⎪
⎩

⎪
⎪
⎨

⎧

≠−−−−−−−−
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=−−−−−−−−

=

jiji,ij,i,j
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if)1( ),1( ),11(
),11( ),,1( ),,1( ),,( ),,(

if)1,(),1,1(),,1(),,(

),(  (7) 

The process continues with the next element of the 
decomposition sequence until all the pixels in all 
octants are examined. Finally, the accumulator array 
becomes empty and the reconstructed image equals 
the original one, that is, corresponding pixels in I 
and IR have identical intensity values. 

3 GENERALIZATION FOR 
RATIONALLY SLOPED 
PROJECTION AXES 

In this section we show that the determination of the 
decomposition sequence T1{t} by sorting the pixels 
column-wise from the periphery to the inner of the 
image is not unique. In fact, it corresponds to a 
special case of a general set of parameter settings 
that allow the reconstruction of the image from 
several other projection axes that are rationally 
sloped. 
 

3.1 Projection Slope Determination 

In the following by projection line we mean a line 
that defines the border between adjacent projection 
ray, e.g. lines r1 and r2 in Fig.2. Also, the term 
lattice points refers to points on the image plane that 
correspond to the upper right vertex of the pixels in 
the 1st octant. Let p3(a)=(N/2−a, N/2−a) be a lattice 
point corresponding to the upper right vertex of a 
diagonal pixel with offset a relatively to lattice point 
(N/2,N/2). Points p3(a) and p1=(N/2,0) form a 
projection line with slope 

m=
)(
)(

,1,3

,1,3

app
app

xx

yy

−

−
=1−

a
N
2

 (8) 

The view angle u of a projection axis perpendicular 
to m is given by 

u=arctan(−
m
1 )=arctan ⎟

⎠
⎞

⎜
⎝
⎛

− aN
a
2

2  (9) 

Since the range of view angles in the 1st octant is 
0≤u≤π/4 it follows from (9) that valid integer values 
for offset a are in the range 

a∈{1… ⎣ ⎦4/N } (10) 

where symbol ⎣ ⎦x  stands for the largest integer less 
than or equal to x. 

Our intention in the selection of a proper slope m 
(which in turn affects the value of the perpendicular 
view angle u) is to form a utilization of adjacent 
projection rays in such a way that the upper right 
area of each pixel in the 1st octant is intersected by 
only one projection ray. Reconsidering the example 
in Fig. 2d it is clear that the slope of the projection 
ray is m=−3 which follows from (8) for N=8 and 
a=1. It can be noticed that for a=1, projection line 
l=r1 intersects only one lattice point in the 1st octant, 
that is p3(a)=(N/2−1, N/2−1). This is not the case for 
all values of a. Our main requirement that only one 
projection ray intersects each pixel’s upper right area 
can be interpreted as a requirement for the projection 
line l connecting points p3(a) and p1 to intersect only 
one lattice point. Indeed, if line l intersects more 
than one lattice points then the projection ray that 
follows l intersects the upper right area of more than 
one pixel in this octant. This can be clearly seen in 
the examples of Fig. 3b and 3d. Therefore, from all 
⎣ ⎦4/N  possible values of offset a we concern only 
those for which point p3(a) is mutual visible from 
point p1 as in the case of Fig. 3a and 3c. 
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Typically, two lattice points (xa,ya) and (xb,yb) are 
mutually visible if the line segment joining them 
contains no further lattice points (Boca, 2000). 
Moreover, they satisfy the relation gcd(xb−xa, 
yb−ya)=1, where gcd(a,b) denotes the greatest 
common divisor of a and b. In our case this 
corresponds to 

gcd(p1,x−p3,x, p1,y−p3,y)=gcd(a,a−N/2)= 
=gcd(a,N/2)=1 (11) 

This is an important relation in our method since it 
states that p3(a) and p1 are mutually visible if offset 
a is coprime to N/2. Let FN denote the set of all 
values of a for which the above relation holds, that is 

FN= ⎣ ⎦{ }1)2/,gcd(and4/: =≤ NaNaa  (12) 

The cardinality Ka of FN is given by the Euler 
function φ(n). Function φ(n), also known as totient 
function (Finch, 2003), is defined as the number of 
positive integers less than or equal to n that are 
relatively prime to n, that is 

φ(n)= #{a∈N: a≤n and gcd(a,n)=1} (13) 

where 1 is counted as being relatively prime to all 
numbers. For a prime p it is φ(p)=p−1 since all 
numbers less than p are relatively prime to p. Since 
a≤ ⎣ ⎦4/N  the overall number of proper offset values 
is 

Ka=
( )

2
2/Nϕ  (14) 

Indeed, for N=16, it is FN={1,3}, Ka=2 and (8) gives 
m=−7/1 and m=−5/3 as shown in Fig. 3a and 3c. 
Summarizing, if the image is projected on a 
projection axis at angle u given by (9) for a∈FN then 
each projection ray does not intersect the upper right 
area of more than one pixel in the 1st octant. 

3.2 Determination of the other 
Projection Parameters 

The width d of the projection ray is given by the 
width of the broadest projection ray that does not 
contain any lattice points of the 1st octant in its 
interior. Indeed, if one or more lattice points are 
contained in the projection ray then the upper right 
area of more that one pixels are intersected by this 
specific projection ray, which contradicts our main 
hypothesis. It can be shown that, if the projection 
lines have a direction tanθ=m=a/b, with gcd(a,b)=1 
then there are projection ray paths of width d>0 
containing no lattice points (Olds, 2001). The width 
of the broadest such ray is 

d =
22 ba

bqap

+

+
=

22

),gcd(

ba

ba

+
=

22

1

ba +
 (15) 

We have already defined point p3(a) as a lattice 
point in the diagonal with offset a from point (N/2, 
N/2). Hence b= N/2−a and the above equation results 
to 

d =
22 84

2

aaNN +−
 (16) 

This equation provides the width of each projection 
ray (and consequently the width of the samples on 
the projection axis) as a function of offset a. 
According to Fig. 4 the area of the triangle that 
forms the intersection between a projection ray and 
the upper right area of a pixel equals 

w=
2

))(( KLML
=

uu
d

cossin2

2
=

u
d

2sin

2
 (17) 

Using equations (9) and (16) this can be written as a 
function if a as 

w=
⎟
⎠
⎞

⎜
⎝
⎛

−
+− )

2
2arctan(2sin)84(

4
22

aN
aaaNN

= 

=
aaN )2(

1
−

 

(18) 

The intersection area wθ,s(i,j) between any pixel (i,j) 
and a projection ray perpendicular to angle θk and 
displacement s can be calculated as a multiple of w. 
Indeed, as shown in Fig. 4, any intersection area can 
be constructed as a sum of one or more right 
triangles of area w. For a projection axis at angle 
tan(θ)=a/b, where a, b are coprime numbers with 
a<b and b≠0, the displacement k inside the pixel’s 
area is 

k=
⎩
⎨
⎧ ≤≤−

otherwise0
if fcc sssss

 (19) 

with sc=aj+bi and sf =sc+Kp−1. The number of 
triangles inside the projection area is given by 

m(k)=
⎪
⎩

⎪
⎨

⎧

−≤≤−−
<≤
<≤+

1if1)(2
if2

0if12

pp KkbkK
bkaa
akk

 (20) 

Hence, the intersection area in the k-th displacement 
is 

wθ,s(i,j)= m(k)w (21) 
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Equation (18) implies also that for given image 
dimension N, the area w is maximum for a=1 and 
decreases as a reaches ⎣ ⎦4/N . Regarding the 
parameters Kp and Kl it follows from Fig. 4 that 

Kp= d
CF )(

=
d

uu )sin()cos( +
=

2
N  (22) 

and 

Kl =ΝKp= 2

2N  (23) 

These relations are in accordance with (3) and show 
that the number of projection ray intersecting each 
pixel as well as the overall number of samples in the 
projection axis do not dependent on offset a. 

3.3 Image Reconstruction 

The reconstruction methodology described in section 
2.3 can be applied for any value of a∈FN. Indeed, 
equations (9), (16) and (18) provide the view angle 
u, the width of the projection ray d and the 
intersection area w as a relation of image dimension 
N and offset a. Thus, if the original image is 
projected onto four projection axes whose 
parameters are defined by these relations then the 
original image pixels can be recovered from 
accumulator array C. The process described in 
section 2.3 can be considered as a special utilization 
using parameter settings calculated for a=1. 
However there is a significant difference concerning 
the decomposition sequence. In section 2.3 sequence 
T1{t} is defined by the pixels of the 1st octant sorted 
column-wise from the periphery to the inner of the 
image. In its general form, the decomposition 
sequence Ta{t} holds the pixels of the 1st octant 
sorted decreasingly according to their sf value, that is 
the furthest from the origin projection ray that 
intersects each pixel. Fig. 5 depicts two 
decomposition sequences for N=16. On the left 
example, it is a=1 while on the right example, the 
offset is a=3 resulting to a different re-ordering of 
the pixels in the decomposition sequence.  

Fig. 6 depicts the reconstruction of the well 
known phantom image (Shepp, 1974) of size 
N×N=256×256 pixels using three different view 
angles. The image is projected into four projection 
axes given by (2) which are symmetrically oriented 
with respect to the horizontal and vertical axis, as 
shown in Fig. 1. In all the cases the pixels in the 
periphery of the image are reconstructed first 
followed by the pixels in the center of the image. For 
each pixel in the decomposition sequence its 

symmetrical pixels in the other octants are also 
reconstructed leading to a symmetrical outer-to-
inner reconstruction of the image. However, the 
order in which the pixels are considered depends on 
the view angle u which, in turn, is directly related to 
the applied offset value. In the left column of Fig. 6 
the image is reconstructed using an offset value a=1 
which corresponds to a view angle u=0.45o. It can be 
clearly seen that pixels are reconstructed column-
wise or row-wise, depending on the octant in which 
the process is applied. In the middle and the right 
column the offset values are a=23 and a=63, 
corresponding to view angles u=12.36o and 
u=44.10o, respectively. The later is the highest value 
of a that can be used for the given image dimensions 
according to (12). Clearly, there is a different 
decomposition sequence for any of the Ka available 
values of a, but all of them lead finally to the exact 
reconstruction of the original image. It should be 
also noticed, that if N=2p where p a prime number 
then according to (14) there is a maximum of 

Ka=(p−1)/2=(N−2)/4 (24) 

available offset values and consequently (N−2)/4 
different view angles u according to which the four 
projection axes can be oriented. 

3.4 Complexity and Applicability 

Let n=N2 denote the overall number of pixels in the 
image. The memory requirements of the proposed 
methods is O(n). Indeed, the accumulator array 
requires KθKl=4(n/2) =2n memory units and there 
are n/8 entries in decomposition sequence }{tTa . 
Considering time complexity, the most consuming 
processes are the decomposition sequence 
determination and the reconstruction process. 
Although sorting the pixels during the determination 
of }{tTa  is O(n2) in the worst case, the average time 
is O(nlogn) (Havil, 2003). The complexity for the 
reconstruction process is related to the 
decomposition of the accumulator array C which is 
O(n n ). It should be noticed that }{tTa  is not 
related to the image’s contents. Therefore, it is not 
necessary to determine the decomposition sequence 
each time an N×N image is considered. Instead, it 
can be determined once for a given set of parameter 
settings N and ak and then retrieved from a lookup 
table anytime an image with the same parameters is 
considered. 
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4 CONCLUSIONS 

In this paper we presented a sequential 
reconstruction method that allows the exact 
reconstruction of an image when it is projected into 
four projection axes which are symmetrically 
oriented with respect to the horizontal and the 
vertical axis at coprime ratio view angles. Analytical 
relations are provided that determine the parameter 
settings, namely the set of proper view angles, the 
density of samples in each projection axis and the 
intersection area between a pixel and a projection 
ray. The chosen view angle affects the 
decomposition sequence which determines the order 
in which the pixels are restored. The image is 
reconstructed by a one pass decomposition process 
where the external pixels are restored first followed 
by the pixels in the image’s center. It should be 
noticed that we addressed the proposed method as a 
quantitative reconstruction process problem and did 
not considered optimization of noise propagation. 
Future work includes a detailed analysis of the 
algorithm’s behavior when noisy data are present as 
well as the formulation of the proposed method in an 
increasingly detailed hierarchical reconstruction 
approach.  
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Figure 1: The image is divided into eight octants. The gray 
shaded pixels denote the 1st octant. The black pixels 
denote pixels with symmetrical geometric properties. 
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Figure 2: Intersection of a projection ray and the pixel (i, 
i−n) in the 1st octant of an N×N=8×8 pixels image. Four 
cases are shown where i=N/2−1 and n=0, 1, 2 and 3, 
respectively. In each case the light shaded strip depicts the 
projection ray and the dark shaded area denotes the 
intersection between the pixel and the projection ray. 
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Figure 3: The number of pixels whose upper right area is 
intersected by a projection line equals the number of 
lattice points of the 1st octant joining the line segment l 
between p3(a) and p1 (denoted by a circle). There is a 
unique such pixel if offset a is coprime to N/2 (subfigures 
(a) and (c)), and more than one, otherwise (subfigures (b) 
and (d)). In any case the dark shaded area denotes the 
intersection between the upper right area of a pixel and the 
projection ray. 
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Figure 4: Each pixel is intersected by Kp projection rays. 
The dark shaded area denotes the intersection between 
pixel (i,j) and the projection ray sf that is the furthest from 
the origin ray that intersects the pixel. 
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Figure 5: Decomposition sequence Ta{t} of an 
N×N=16×16 sized image for (a) a=1 and (b) a=3. In each 
case the pixels are sorted according to the furthest from 
the origin projection ray that intersects them. 
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Figure 6: Reconstruction of a 256×256 phantom image 
using three different projection angles. The offset values 
are (a) a=1, (b) a=23 and (c) a=63. In each case, the 
symmetrical orientation of the four projection axes around 
the horizontal and the vertical axis result to an outer-to-
inner reconstruction of the image. 
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