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Abstract: We present approximation algorithms for point-to-surface registration problems which have applications in
medical navigation systems. One of the central tasks of such a system is to determine a “good” mapping (the
registration transformationor registrationfor short) of the coordinate system of the operation theatre onto the
coordinate system of a 3D modelM of a patient, generated from CR- or MRT scans.
The registrationϕ is computed by matching a 3D point setP measured on the skin of the patient to the 3D
modelM. It is chosen from a classR of admissible transformations(e.g., rigid motions) so that it approxi-
mately minimizes a suitable error functione (such as the directed Hausdorff or mean squared error distance)
betweenϕ(P) andM, i.e.,ϕ = argminϕ′∈R e(ϕ′(P),M). A common technique to support the registration pro-
cess is to determine either automatically or manually so-calledcharacteristic pointsor landmarks, which are
corresponding points on the model and in the point set. Since corresponding characteristic points are supposed
to be mapped onto (or close to) each other, this reduces the number of degrees of freedom of the matching
problem.
We provide approximation algorithms which compute a rigid motion registration in the most difficult setting
of only a single characteristic point.

1 INTRODUCTION

Most neurosurgical and an increasing number of oto-
laryngological operations currently require the sup-
port of medical navigation systems. The purpose of
these systems is to provide an augmented image of
the patient, e.g., the correct projection of the used in-
strument into a 3D model of the area of interest, such
as the patient’s skull. To compute this projection, a
good transformation has to be determined which maps
the coordinate system of the operation field to the co-
ordinate system of the model. Such transformations
are calledregistrations, and their approximation is the
central task we are investigating in this paper.
Several approaches are known to solve this problem.
Some of the methods currently used in practice are
based on fiduciallandmarks. Such landmarks are ar-
tificial markers, e.g., plastic cylinders containing a
metal ball, which are attached to the skin of the pa-
tient and can automatically be detected in the model.
In the beginning of the surgery these marker positions
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are gauged with a traceable device. Then the registra-
tion is determined by mapping the measured points to
the landmarks in the model.
Other solutions are based on geodesics and local ge-
ometry as in (Wang et al., 2000). A feature-based ap-
proach using thin-plate splines is presented in (Chui
and Rangarajan, 2003) and applications in transcra-
nial magnetic stimulation by point-to-surface regis-
tration using ICP are discussed in (Matthäus et al.,
2006). These methods are either heuristics and there-
fore cannot provide guarantees on the quality of the
result or are very sensitive to lost, misplaced or dis-
placed landmarks.
In recent years algorithms have been developed which
solve this registration problem by using so-called
characteristic points, which are gauged along with
an arbitrary set of points from the skin of the pa-
tient. Characteristic points are unique points in the 3D
model with special anatomic properties, as the root of
the nasal bone and give hints for the correct placement
of the measured points.
The most general and difficult variant of rigid point-
to-surface registration with characteristic points is the
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scenario where only a single characteristic point can
be measured in the operation field. These scenarios
occur for example when the target area is only partly
scanned or in case of an emergency operation when
too much surface tissue is damaged.
Rigid motions inR

3 have six degrees of freedom.
The general strategy of our algorithms can be sum-
marized as follows: first the translational component
of the rigid motion is fixed by mapping the measured
characteristic point onto the characteristic point on the
surface. The remaining degrees of freedom are deter-
mined by iteratively choosing the direction~d of a ro-
tation axis through the characteristic points from a set
of allowed directions (two degrees) and the last degree
is determined by rotating around this axis. The last
part, the rotation around the axis, is computed by us-
ing an algorithm presented in (Dimitrov et al., 2006)
(an outline of this algorithm is given later). After eval-
uating the quality of such a registration, the size of
the set of allowed directions is reduced by excluding
a neighborhood around~d based on the quality of the
computed registration and a new direction is chosen.
This process terminates after a certain constraint is
fulfilled, see section 1.4.

1.1 Problem Description and Notation

Let S ⊂ R
3 be a surface consisting ofn triangles, rep-

resenting the anatomic model of the patient, and let
P⊂ R

3 be a point set consisting ofk points measured
from the patient (usuallyk ≪ n). Furthermore let
Sc ⊂ S be a set of points on the surface (which will
be calledcharacteristic points). We think of points
s∈ Sc as representing some characteristic anatomic
feature of the patient (e.g., the root of the nasal bone).
The corresponding set of characteristic points in the
measured point setP is calledPc ⊂ P.

Definition 1.1 (optimal registration for a transforma-
tion class). Given a triangulated surfaceS , a point
set P and characteristic points on the model Sc ⊂ S
and in the point set Pc ⊂ P. A transformation topt is
calledoptimalfor a transformation classT if

topt ∈ argmin
t∈T

(

max
(

~H(t(Pc),Sc), ~H(t(P),S )
))

Here,~H(A,B) denotes the directed Hausdorff dis-
tance of a compact setA ⊂ R

3 to a compact set
B⊂ R

3. It is defined as

~H(A,B) := max
a∈A

min
b∈B

‖a−b‖,

where‖a−b‖ is the Euclidean distance ofa andb in
R

3.

We investigate a slightly modified problem by
looking at scenarios whereSc = {s} as well asPc =
{p} consist of a single characteristic point and where
the transformation class is restricted to the class of
all rigid motionst which mapp upons. A solution
minimizing the directed Hausdorff distance ofP to S
under this restriction is called semioptimal.

Definition 1.2 (semioptimal matching with a single
characteristic point). Let p and s be the characteristic
points of P andS , respectively, and letTs ⊂ T be the
set of rigid motions that map p onto s, i.e., t(p) = s.
A matching tsopt is calledsemioptimalif

tsopt = argmin
t∈Ts

~H(t(P),S ).

1.2 Solving the Problem with Two
Characteristic Points

A related matching problem where bothP andS have
two characteristic points was considered in (Dimitrov
et al., 2006). Since the correspondence between two
pairs of characteristic points is not enough to resolve
all six degrees of freedom of rigid motions inR3, the
semioptimal matchingwith two characteristic points
was considered, which has only one degree of free-
dom.

Definition 1.3 (semioptimal matching for two charac-
teristic points). Let p1, p2 and s1,s2 be the character-
istic points of P andS , respectively, and letTs ⊂ T
be the set of rigid motions which centrically align the
line segmentp1, p2 with the line segments1,s2. A
matching tsopt is calledsemioptimalif

tsopt = argmin
t∈Ts

~H(t(P),S ).

p1+p2

2
=

s1+s2

2

p1

p2

s1

s2

Figure 1: Pointsp1, p2, s1, s2 are centrically aligned, if all
points lie on a line and the midpoints of the line segments
p1, p2 ands1,s2 lie upon each other.

After centrically aligningp1 to s1 andp2 to s2 (see
Figure 1) only the rotational part oftsopt around the
axis s1,s2 has to be determined. An algorithm for
computing such a semioptimal matching (Dimitrov
et al., 2006) runs inO(knlog2kn) time. We refer to
this algorithm asAlg2. It was shown that the quality
of the semioptimal matching (compared to the opti-
mal matching) depends on the relative spread of the
characteristic points with respect toP. In our setting
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this algorithm provides a 4-approximation to the op-
timum.
We restrict our attention to semioptimal solutions be-
cause perturbation-based approximation schemes can
be used to compute solutions that are arbitrary close
to the optimum starting from a semioptimal configu-
ration (Dimitrov et al., 2006).

1.3 The General Strategy

In the following sections we present algorithms,
which approximate the registration problem with a
single characteristic point by sequentially fixing the
degrees of freedom of the desired registration. The
first three degrees, the translational part of the regis-
tration is determined by taking the vector difference
of the characteristic pointsp ands. The remaining
three degrees are computed in an iterative fashion.
The remaining degrees of freedom can be described
as determining the direction of a rotation axis through
s and the rotation around this axis. We repeatedly
choose an axis and determine the best rotation around
this axis. By evaluating the quality of this registra-
tion we are able to exclude an area around the rota-
tion axis from the parameter space and pick the next
axis. For the last part, the rotation around an axis
through the characteristic points, we introduce the no-
tion of virtual characteristic points. Virtual character-
istic points are auxiliary points inP and onS which
extend the input for the one-point case to an input for
Alg2. Given the characteristic pointp∈ P, we choose
as the virtual characteristic point the furthest point
p̂ = argmaxp′∈P‖p− p′‖ to p in P. For the virtual
characteristic point in the model space we repeatedly
choose points ˆs with distance‖p− p̂‖ to s. The line
segments, ŝ is the axis around whichP is rotated. This
process is iterated until a certain quality constraint is
fulfilled.

Definition 1.4 (distance function). Let
Alg2 (S ,P,(s, ŝ),(p, p̂)) be the set of rigid mo-
tions computed by Alg2 if p̂ and ŝ are added to the
input as virtual characteristic points for P andS
respectively. Thedistance function~Hsopt : R

3 → R is
defined as

~Hsopt(ŝ) := min
t∈Alg2(S ,P,(s,ŝ),(p,p̂))

~H(t(P),S ).

The termquality of a transformationandquality
of a virtual characteristic pointis defined dual to the
term distance function: the quality is maximized, if
the distance function is minimized and vice versa.

1.4 The Approximation Settings with a
Single Characteristic Point

After fixing the translational part of the registration
two tasks remain: finding a rotation axis and finding
the right rotation around this axis. We call the set
of allowed directions for the rotation axis thesearch
space. For a characteristic points a search spaceR
can be represented as the set of virtual characteristic
pointsŝ∈R

3 for S , where each direction is defined by
the line segment throughs andŝ. For a search space
R let εR = minŝ∈R~Hsopt(ŝ) be the quality of the best
possible solution for the rotation around this axis as
determined byAlg2.
We present approximation algorithms for the follow-
ing two problems in two scenarios: In the first sce-
nario the search space is given by the intersection of
a sphereSr with radiusr = ‖p− p̂‖ centered inswith
the surfaceS , in the second scenario the search space
is given as the set of all points onSr . In the first sce-
nario we only consider registrations that map ˆp ex-
actly intoS where in the second scenario we also in-
vestigate transformations which map ˆp closeto S .

Problem 1.1. For an approximation parameter∆, de-
termine the setQ ⊂ R of virtual characteristic points
such that

max
ŝ∈Q

~Hsopt(ŝ) ≤ εR+ ∆.

The second problem arises in applications, where
an absolute upper bound for the quality of the regis-
tration is required:

Problem 1.2. For an upper bound∆ for the quality of
a matching, determine the setQ ⊂ R of virtual char-
acteristic points such that:

∀ŝ∈ Q : ~Hsopt(ŝ) ≤ ∆.

0
0

H(C(λ)) H(C(λ))

a)

b)

ǫR

ǫR + ∆

RR

⊂ Q ⊂ Q ⊂ Q⊂ Q ⊂ Q

Figure 2: a) Illustration of Problem 1.1b) Illustration of
Problem 1.2.

Using the initial translation ofP which mapsp
ontos, the computed setQ of valid directions for the
rotation axis, and their corresponding rotation angles
(computed byAlg2) we report a dense representation
of all rigid registrations which satisfy the properties
stated above.
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2 THE SEMIOPTIMAL
SOLUTION FOR A SINGLE
CHARACTERISTIC POINT

The following proposition gives a guaranty on the
quality of the semioptimal matching with a single
characteristic point.

Proposition 2.1. Any semioptimal matching in the 1-
point case is a2-approximation of the optimal match-
ing.

Proof. Let εopt be the value of the optimal solution
topt and letta be the translation that mapstopt(p) tos=
tsopt(p). Since‖topt(p)− s‖ = ‖topt(p)− tsopt(p)‖ ≤
εopt, the transformationta◦ topt moves each point ofP
at mostεopt far from its optimal position. Therefore,
~H(tsopt(P),S ) ≤ ~H(ta ◦ topt(P),S )

≤ ~H(topt(P),S )+ εopt
≤ 2εopt

Computing the semioptimal matching exactly.Let
t be a translation that mapsp to s, and letΓ be the set
of all rotations around the points. We are looking for
the rotationrs = argminr∈Γ ~H(r ◦ t(P),S ). We denote
by B j the ball with centert(p) and radius‖p− p j‖,
for p j ∈ P\ {p}. Let f j denote the distance function
betweenB j andS . The functionf j is the lower enve-
lope of then distance functions betweenB j and each
triangle fromS . Findingrs corresponds to computing
a minimum of the upper envelopef of the functions
f1, . . . , fk−1.

To determine the description complexity off , it is
necessary to apply the theory ofDavenport-Schinzel
sequences(Agarwal and Sharir, 1995). Because the
detailed analysis is beyond the scope and space of this
paper, we only mention the main facts. Since each
function f j is the lower envelope ofn distance func-
tions between a ball and a triangle, it can be described
piecewise by trivariate polynomials of degree 4. The
complexity of the lower envelope ofn such polynomi-
als is related to Davenport-Schinzel sequence whichs
maximal length is bounded from above bỹO(n3),
whereÕ is standardO-notation that ignores the pa-
rameters that influence the constant of proportional-
ity, see (Agarwal and Sharir, 1995, Theorem 7.17)
for details. Thus,f is an upper envelope of̃O(n3k)
trivariate polynomials of degree 4, and its combinato-
rial complexity isÕ(n9k3). The envelopef can be
computed in a randomized expected timeÕ(n9k3),
see (Agarwal and Sharir, 1995, Theorem 7.25) for de-
tails.

Moreover the time complexity presented above
holds only under the assumption that there is an ap-

propriate computational model that is able to find the
zeros of trivariate polynomials of degree 4 in a con-
stant time. Since no analytical or any other kind of
solution that needs a constant time to solve that prob-
lem is known, we therefore draw our attention to ap-
proximation algorithms.

3 APPROXIMATING THE
REGISTRATION FOR A
SINGLE CHARACTERISTIC
POINT

In this section we present algorithms that convert the
input for the one-point problem to instances of the
two-point problem by selecting appropriate virtual
characteristic points. These instances are then solved
using algorithmAlg2.
The central task is to find a suitable position for the
virtual characteristic point ˆs on S . Suitable in this
context means, that under the restriction thatp is
mapped ontos and p̂ mapped to ˆs the distance func-
tion for Alg2 is minimized. We show that the slope
of the distance function in the parameter space with
regard to the selected virtual characteristic point ˆs is
bounded to lie within[−1,1] and how this fact can be
used to exclude parts of the search space.

3.1 The Lipschitz Constant of the
Distance Function

Lemma 3.1. Let S ,s,P, p be as above. For any two
pointsŝ1, ŝ2 ∈ R

3 with ‖s− ŝ1‖ = ‖s− ŝ2‖ = ‖p− p̂‖
the following holds:

∣

∣

∣

~Hsopt(ŝ1)− ~Hsopt(ŝ2)
∣

∣

∣
≤ ‖ŝ1− ŝ2‖.

Proof. Assume thatt ∈ A(S ,P,(s, ŝ1),(p, p̂)) is one
of the transformations mappingp to sand p̂ to ŝ1 and
let ρ be a rotation arounds mapping ˆs1 to ŝ2. Since
p̂ is a farthest point fromp, we have for any point
p′ ∈ P:

‖ρ◦ t(p′)− t(p′)‖ ≤ ‖ρ◦ t(p̂)− t(p̂)‖ = ‖ŝ1− ŝ2‖.

Consequently ~Hsopt(ŝ2) ≤ ~H(ρ ◦ t(P),S ) ≤
~H(t(P),S ) + ‖ŝ1 − ŝ2‖ = ~Hsopt(ŝ1) + ‖ŝ1 − ŝ2‖.
A symmetric argument provides that~Hsopt(ŝ1) ≤
~Hsopt(ŝ2)+‖ŝ1− ŝ2‖.

Let Sr be the sphere centered ins with radius
r = ‖p− p̂‖. Lemma 3.1 states that moving a virtual
characteristic point ˆs1 to a pointŝ2 onSr , changes the
value of the distance function by at most‖ŝ1 − ŝ2‖.
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This bound on the Lipschitz constant of the distance
function can be used to exclude parts of the parame-
ter space around a virtual characteristic point, because
it describes by which amount the fuction value can
change within the neighborhood around this point.

3.2 Approximation Strategies for
One-dimensional Search Spaces

To illustrate the idea of our approximation techniques
we first consider the case where the search spaceR is
one-dimensional. We are interested in virtual charac-
teristic points ˆs that are‖p− p̂‖ close tos. Therefore,
we choose this search space to be the intersectionC
of the triangulated surfaceS with Sr . This is the sce-
nario where all virtual characteristic points ˆs∈ C map
p̂ exactly onto the surface.

The intersectionC consists of a set of curves and
each curve consists of a sequence of circular patches
(possibly closed), where each patch results from the
intersection of the sphereSr with a single triangle
of the model. The task is to determine those parts
on each curve that providegood virtual characteris-
tic points. Good virtual characteristic points ˆs have
the property that either|~Hsopt(ŝ)− εR| ≤ ∆ (Problem
1.1) or that~Hsopt(ŝ) is below a given threshold (Prob-
lem 1.2). This is achieved by probing several points
on the curve and, depending on the value of the dis-
tance function for these virtual characteristic points,
exclude parts of the neighborhood around these points
from R.
Let qC be an endpoint of curveC ∈ C (if C is
closed, we cutC open at an arbitrary positionqC) and
parametrize each point onC by its arclength toqC. Let
C(λ) denote the point onC with arclengthλ from qC.
Recall that according to Lemma 3.1 moving a point ˆs
by ∆λ on Sr changes the quality of the registration by
at most∆λ.

Corollary 3.1. For two points C(λ),C(λ + ∆) on a
curve C⊂ Sr with an arclength distance of∆, the fol-
lowing holds (see Fig. 3 a):

∣

∣

∣

~Hsopt(C(λ))−~Hsopt(C(λ + ∆))
∣

∣

∣
≤ ∆

Depending on the quality of a probe point ˆs one
can exclude parts of its neighborhood in the parameter
space. This can be used to bound the value of the dis-
tance function between two probe points, as accord-
ing to Lemma 3.1 the scope in any point of the graph
lies within [−1,1].

Solving Problem 1.1: The Lipschitz constant of the
distance function can be used to bound the number of
samples needed to provide an absolute approximation

∆

≤ ∆

0 λ 0

λ

∆

2(∆− ǫλ′′)2(ǫλ′ −∆)

λ
′

λ
′′

H(C(λ)) H(C(λ))

a) b)

Figure 3: a) The quality of two points with arclength dis-
tance∆ differs by at most∆, b) The ex- and inclusion areas
for two probing positions with parameterλ′ (left exclusion
area) andλ′′ (right inclusion area).

to εR = minŝ∈R~Hsopt(ŝ). The idea is to sample and test
a setQ ⊂ R of virtual characteristic points untilεR is
known to differ by at most∆ from the best quality
of a sampled point. The number of samples needed
to ensure that min̂s∈Q ~Hsopt(ŝ)− εR≤ ∆ is maximal if
the distance function is constant onC. We have that:

max
λ′∈[λ,λ+∆]

∣

∣

∣

~Hsopt
(

C(λ′)
)

−mλ

∣

∣

∣
≤ ∆

wheremλ = min
{

~Hsopt(C(λ)), ~Hsopt(C(λ + ∆))
}

.

Corollary 3.2. Let the set of curvesC = {C0, . . . ,Ci}
induced by the intersection ofS and Sr with a total
arclength of L be the search space R. Providing that

minŝ∈Q

(

~Hsopt(ŝ)− εR

)

≤ ∆ there is a probe setQ

which size is bounded by O
(

L
∆
)

.

Solving Problem 1.2: The second section deals
with determining all virtual characteristic points ˆs
and their corresponding registrations which satisfy
~Hsopt(ŝ) ≤ ∆ for a given quality∆. As in the previ-
ously discussed problem the bound on the slope of
the distance function allows us to exclude a neighbor-
hood of a probe ˆs from the search space or to include
a neighborhood to the solution, depending on the dif-
ference~Hsopt(ŝ) − ∆. Let C(λ) be a sample point
on a curveC with parameterλ and distance value
~Hsopt(C(λ)) = ελ. The size of the in- or exclusion
area depends on the difference ofελ and∆ (see also
Fig. 3 b):

ελ −∆ > 0: The quality of the best registration if
C(λ) is chosen as the virtual characteristic point
for S is above∆. The next sample points ˆs on C
with the property that~Hsopt(ŝ)≤∆ have a distance
to C(λ) of at least|ελ −∆| in parameter space.

ελ −∆ ≤ 0: The pointC(λ) and all points ˆs in its
∆ − ελ neighbourhood have the property that
~Hsopt(ŝ) ≤ ∆ and can therefore be included in the
solution set.
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Robustness. This approach is sensitive to noise on
P, especially to the influence of noise on the dis-
tancer = ‖p− p̂‖, which determines the radius of the
sphereSr . A slight pertubation ofp or p̂ could pre-
vent Sr from intersectingS , which leaves the set of
possible virtual characteristic points empty.

3.3 Approximation Strategies for
Two-dimensional Search Spaces

In this section we describe variants of the approxima-
tion strategies of Section 3.2 and extend the search
spaceR to the whole sphereSr . By fixing a virtual
characteristic point ˆs∈Sr we determine an axisl = s, ŝ
around whichP is rotated to find the best semiopti-
mal solutions. Using this search space increases the
robustness of our approach against noise onP.

Solving Problem 1.1: We want to determine a set
Q ⊂ R of virtual characteristic points, such that
minq∈Q ~Hsopt(q)−minq∈R~Hsopt(q)≤ ∆. Such a probe
setQ has the property that the search spaceSr is com-
pletely contained in the union of all balls with radius
∆, centered in a sample pointq∈ Q . In other words
any probe setQ ⊂ Sr satisfying

∀a∈ Sr ∃ŝ∈ Q ‖a− ŝ‖ ≤ ∆

is a valid probe set.

Corollary 3.3. There is a non empty sample setQ
which provides thatminŝ∈Q ~Hsopt(ŝ)− εR≤ ∆ for R=

Sr whose size is bounded byO
(

r2

∆2

)

, for r = ‖p− p̂‖.

Solving Problem 1.2: As in the previous section we

want to compute the setQ =
{

ŝ∈ Sr |~Hsopt(ŝ) ≤ ∆
}

.

To this end, we sample points ˆs of Sr and depending
on the value of~Hsopt(ŝ) exclude regions in the neigh-
borhood of ˆs from the search space or add a region to
the solution. Recall that~Hsopt(ŝ2) ≥ ~Hsopt(ŝ1)−∆ for
anyŝ2 with ‖ŝ1− ŝ2‖ ≤ ∆ and if~Hsopt(ŝ1)−∆ < 0, all
pointsŝ2 in the intersection ofSr with a ball centered
at ŝ1 with radius∆− ~Hsopt(ŝ1) have the property that
~Hsopt(ŝ2) ≤ ∆ and can therefore be included in the
solution set. These observations lead to Algorithm 1.

Algorithm 1 : Computing the set of virtual char-
acteristic points providing an absolute error reg-
istration

Data: The modelS , its characteristic point
s∈ S , the set of measured pointsP, their
characteristic pointp∈ P, an absolute
error approximation value∆.

Result: The setQ of virtual characteristic
points realizing a distance function
value of at most∆.

// initializing the result set
Q := /0;1

// candidate probe set to Sr
M := Sr ;2

while M 6= /0 do3

// select a random point
ŝ := takeRandomPoint(M);4

if ~Hsopt(ŝ)−∆ > 0 then5

// exclude neighborhood

M := M \
(

Sr ∩Ball(ŝ, ~Hsopt(ŝ)−∆)
)

;77

else8

// include neighborhood
// compute intersection

I := Sr ∩Ball(ŝ,∆−~Hsopt(ŝ));1010

// remove I from search space
M := M \ I ;11

// add I to solution
Q := Q ∪ I ;12

end13

end14

return Q ;15

The functionBall(c, r) (lines 7 and 10) computes
a ball with radiusr centered inc.

Algorithm 1 computes all points ˆs on Sr with
~Hsopt(ŝ) ≤ ∆. The practicability of Algorithm 1 is
quite limited, as it needs to maintain an arrangement
of circles on a sphere which is by itself a challenging
problem. The methods currently known to compute
such arrangements are too time consuming to be used
in a medical navigation system (Cazals and Loriot,
2007).

4 AN IMPLEMENTATION FOR
TWO-DIMENSIONAL SEARCH
SPACES

As the computation of the arrangement of circles on
a sphere is complex and time consuming, we present
a simple and efficient implementation of Algorithm 1
which uses quadtrees (de Berg et al., 1997) to approx-
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imate the arrangement: The information about areas
that are excluded from the search space is maintained
not onSr but on six quadtrees which are placed on
each side of an axis-parallel cube surroundingSr .

4.1 The Implementation

The implementation proceeds round based and each
round consists of the following steps: Consider the
smallest axis parallel cubeBr which containsSr . First
a point ŝ is selected from a side ofBr by an heuris-
tic described later. Then this point is projected down
onto a point ˆs′ onSr . For ŝ′ we callAlg2 and compute
the distance value~Hsopt(ŝ′) and by taking the differ-
ence of~Hsopt(ŝ′)−∆ we determine the radius of the
in-/ exclusion balls around ˆs′. Finally this ball is pro-
jected back ontoBr and the quadtrees which maintain
the in- and excluded areas onBr are refined to approx-
imate the projected ball.

Sr

Mr

s

s

Mr

Sr

b)a)

bt

et

ŝt

ŝ
′

t

Figure 4: The ballbr with radius|~Hsopt(q′t )−∆| intersects
the sphereSr in a circle on which is then projected ontoBr .

In Detail. In each round of the algorithm we deter-
mine a facett of a quadtree and its center ˆst . The
probe point ˆs′t for this position is computed by inter-
sectingSr with the ray starting ins passing through
ŝt . The difference of~Hsopt(ŝ′t )−∆ defines the radius
of an inclusion (in case of~Hsopt(ŝ′t)− ∆ ≤ 0) or an
exclusion (in case of~Hsopt(ŝ′t )−∆ > 0) ball bt cen-
tered inŝ′t . All sample points ˆs in the intersection of
bt with Sr either fulfill ~Hsopt(ŝ) ≤ ∆ and can therefore
be added to the solution set or can be discarded other-
wise. This information has to be propagated onto the
sides ofBr in order to adjust the quadtrees on its sides.
To this end we determine the intersectionet of Br with
the cone, whose apex iss and that touches the border
of the intersection ofbt with Sr (see Fig. 4). All facets
of the quadtrees intersected byet are subdivided until
they are either not intersected byet anymore or have

an area below a reasonable threshold.
Note that the projection of points fromBr to Sr is not
distance preserving: two points on a side and close to
a corner ofBr have a larger distance to each other after
being projected ontoSr than two points that lie closer
to a midpoint of a side ofBr . This effect is compen-
sated by the backward projection ofbt onto the sides,
as the area ofet depends on the distance of ˆst to the
closest corner ofBr .
Figure 5 shows screen shots of the implementation at
the moment where the first inclusion area was found.

A Heuristic for Choosing the next Sample Point.
To determine which facet to choose for the next
sample point we introduce a max-area heuristic. Each
facet of the quadtree has a priority and in addition is
labeled either asincluded, excluded or unknown.
If the label of a facet isunknown, the priority is set
to the area of the facet and set to−∞ otherwise.
Each quadtree is initialized with one facet, a side of
Br , labeledunknown. All facets of the six quadtrees
with labelunknown are furthermore stored in a single
max priority queue (the order of facets with the same
priority is arbitrary). Facets that are covered byet are
labeled eitherincluded or excluded, depending on
whetheret is an in- or exclusion area. Facets labeled
included are added to the solution set. In each round
the facet with the highest priority is chosen, as we
expect the area of sample points with quality to be
small and accordingly the exclusion areas to be large.
Facets that are completely covered byet are la-
beled corresponding to the sign of the difference
~Hsopt(ŝ′t)−∆. All new facets that are not intersected
by et are labeledunknown and are inserted into the
priority queue, according to their area.

The algorithm terminates after either all leaves are
labeled or under the given threshold or a certain num-
ber of rounds is reached.

4.2 Evaluation

We implemented the algorithm as described in Sec-
tion 4.1 and evaluated the performance on a intel-core
2 duo computer with 2GB central memory. The com-
putations on a model with about three thousand tri-
angles and a point setP consisting of 8 points, both
scaled to fit into the unit cube, took on average 25.31
seconds.
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Figure 5: Screen shots of the implementation in the moment where the first inclusion area is found:a) the modelS , its
characteristic points and the sphereSr . b) the back of the model and the exclusion (dark gray/red) and inclusion (light
gray/green) balls, some exclusion areas are hidden by the model c) the projected error balls, parts of the surrounding cube
Br with the quadtree structure on its sidesd) a part of the model in the lower left corner and the quadtree refinement with
included (light gray/green) and excluded areas (dark gray/red).
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