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Abstract: We present approximation algorithms for point-to-surface registration problems which have applications in
medical navigation systems. One of the central tasks of such a system is to determine a “good” mapping (the
registration transformatioror registrationfor short) of the coordinate system of the operation theatre onto the
coordinate system of a 3D moddl of a patient, generated from CR- or MRT scans.

The registrationp is computed by matching a 3D point d&imeasured on the skin of the patient to the 3D
modelM. It is chosen from a clasg of admissible transformation&.g., rigid motions) so that it approxi-
mately minimizes a suitable error functier(such as the directed Hausdorff or mean squared error distance)
betweenp(P) andM, i.e.,¢ = argminy 4 &(¢’(P),M). A common technique to support the registration pro-
cess is to determine either automatically or manually so-catedacteristic pointor landmarks which are

corresponding points on the model and in the point set. Since corresponding characteristic points are supposed

to be mapped onto (or close to) each other, this reduces the number of degrees of freedom of the matching
problem.

We provide approximation algorithms which compute a rigid motion registration in the most difficult setting
of only a single characteristic point.

1 INTRODUCTION are gauged with a traceable device. Then the registra-
tion is determined by mapping the measured points to
Most neurosurgical and an increasing number of oto- the landmarks in the model.
laryngological operations currently require the sup- Other solutions are based on geodesics and local ge-
port of medical navigation system&he purpose of ometry as in (Wang et al., 2000). A feature-based ap-
these systems is to provide an augmented image ofproach using thin-plate splines is presented in (Chui
the patient, e.g., the correct projection of the used in- and Rangarajan, 2003) and applications in transcra-
strument into a 3D model of the area of interest, such nial magnetic stimulation by point-to-surface regis-
as the patient’s skull. To compute this projection, a tration using ICP are discussed in (Matthaus et al.,
good transformation has to be determined which maps2006). These methods are either heuristics and there-
the coordinate system of the operation field to the co- fore cannot provide guarantees on the quality of the
ordinate system of the model. Such transformations result or are very sensitive to lost, misplaced or dis-
are calledegistrations and their approximationis the placed landmarks.
central task we are investigating in this paper. In recent years algorithms have been developed which
Several approaches are known to solve this problem.solve this registration problem by using so-called
Some of the methods currently used in practice are characteristic pointswhich are gauged along with
based on fiducidbndmarks Such landmarks are ar- an arbitrary set of points from the skin of the pa-
tificial markers, e.g., plastic cylinders containing a tient. Characteristic points are unique points in the 3D
metal ball, which are attached to the skin of the pa- model with special anatomic properties, as the root of
tient and can automatically be detected in the model. the nasal bone and give hints for the correct placement
In the beginning of the surgery these marker positions of the measured points.
The most general and difficult variant of rigid point-
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APPROXIMATE POINT-TO-SURFACE REGISTRATION WITH A SINGLE CHARACTERISTIC POINT

scenario where only a single characteristic point can ~ We investigate a slightly modified problem by
be measured in the operation field. These scenarioslooking at scenarios whel® = {s} as well asP; =
occur for example when the target area is only partly {p} consist of a single characteristic point and where
scanned or in case of an emergency operation whenthe transformation class is restricted to the class of
too much surface tissue is damaged. all rigid motionst which mapp upons. A solution
Rigid motions inR3 have six degrees of freedom. minimizing the directed Hausdorff distance®to s
The general strategy of our algorithms can be sum- under this restriction is called semioptimal.

marized as follows: first the translational component pgfinition 1.2 (semioptimal matching with a single

of the rigid motion is fixed by mapping the measured characteristic point)Let p and s be the characteristic
characteristic point onto the characteristic point on the points of P ands, respectively, and lets 7 be the
surface. The remaining degrees of freedom are deter-get of rigid motions that map,p onto's, i.e(pt = s.

mined by iteratively choosing the directiohof aro- A matching gop is calledsemioptimaif

tation axis through the characteristic points from a set o

of allowed directions (two degrees) and the last degree tsopt = argmir] (t(P),s).
S

is determined by rotating around this axis. The last
part, the rotation around the axis, is computed by us- 1 2 Solving the Problem with Two
ing an algorithm presented in (Dimitrov et al., 2006) ‘s .

(an outline of this algorithm is given later). After eval- Characteristic Points
uating the quality of such a registration, the size of
the set of allowed directions is reduced by excluding
a neighborhood aroundi based on the quality of the
computed registration and a new direction is chosen.
This process terminates after a certain constraint is
fulfilled, see section 1.4.

A related matching problem where bd@tands have

two characteristic points was considered in (Dimitrov
et al., 2006). Since the correspondence between two
pairs of characteristic points is not enough to resolve
all six degrees of freedom of rigid motionsRR¥, the
semioptimal matchingvith two characteristic points

. L. . was considered, which has only one degree of free-
1.1 Problem Description and Notation ddfi. Y J

3 - . Definition 1.3 (semioptimal matching for two charac-
Lets C R° be a surface consisting oftriangles, rep- teristic points) Let and be the character-
resenting the anatomic model of the patient, and let . b P, P2 1,%

P C 2 be a pointset consisting afpoints measured o8 BTE DAL PR BRI L L
from the patient (usuallk < n). Furthermore let 9 yalg

S C 5 be a set of points on the surface (which will line segmen(pr, Pz with the line segmertiy, . A

be calledcharacteristic points We think of points matching §optis calledsemioptimaif
s € & as representing some characteristic anatomic tsopt = arg minH (t(P),s).
feature of the patient (e.g., the root of the nasal bone). teTs

The corresponding set of characteristic points in the

measured point s&is calledP; C P. P Sa
2

Definition 1.1 (optimal registration for a transforma-
tion class) Given a triangulated surfacg, a point
set P and characteristic points on the modelsSs
and in the point set PC P. A transformationdy is Figure 1: Pointgs, p2, S1, S are centrically aligned, if all

calledoptimalfor a transformation clasg if points lie on a line and the midpoints of the line segments
P1, P2 andsg, s, lie upon each other.

pP1tp2 _
2

S1+82
2

topt € argmin( max(H (t(Re), ). H (t(P).s) ) )
HS2A After centrically aligningp; tos; andpp to s, (see

Here,H (A, B) denotes the directed Hausdorff dis- Figure 1) only the rotational part afp around the
tance of a compact sek C R3 to a compact set aXiSSL,% has to be determined. An algorithm for

B c R3. Itis defined as computing such a semioptimal matching (Dimitrov
- et al., 2006) runs irO(knlog?kn) time. We refer to
H(A,B) := maxmin|la—b||, this algorithm asAlgy. It was shown that the quality
ach beB of the semioptimal matching (compared to the opti-
w?ere”a— b|| is the Euclidean distance afandb in mal matching) depends on the relative spread of the

characteristic points with respect® In our setting
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this algorithm provides a 4-approximation to the op- 1.4 The Approximation Settings with a

timum. . o _ Single Characteristic Point
We restrict our attention to semioptimal solutions be-

cause perturbation-based approximation schemes canter fixing the translational part of the registration
be used to compute solutions that are arbitrary close q tasks remain: finding a rotation axis and finding
to Fhe op_t|rr_1um starting from a semioptimal configu- ¢ right rotation around this axis. We call the set
ration (Dimitrov et al., 2006). of allowed directions for the rotation axis tisearch
space For a characteristic poirga search spack
1.3 The General Strategy can be represented as the set of virtual characteristic
_ _ . pointssie R3for s, where each direction is defined by
In the following sections we present algorithms, the line segment throughands. For a search space
which approximate the registration problem with a R let eg = minscrFisop($) be the quality of the best
single characteristic point by sequentially fixing the possible solution for the rotation around this axis as
degrees of freedom of the desired registration. The determined byAlg,.
first three degrees, the translational part of the regis-\we present approximation algorithms for the follow-
tration is determined by taking the vector difference ing two problems in two scenarios: In the first sce-
of the characteristic pointp ands. The remaining  nario the search space is given by the intersection of
three degrees are computed in an iterative fashion.a spheres with radiusr = ||p— p|| centered irs with
The remaining degrees of freedom can be describedthe surfaces, in the second scenario the search space
as determining the direction of a rotation axis through g given as the set of all points &. In the first sce-

s and the rotation around this axis. We repeatedly nario we only consider registrations that mpgx-
choose an axis and determine the best rotation aroundgctly into.s where in the second scenario we also in-

this axis. By evaluating the quality of this registra- yestigate transformations which mpploseto s.

o e s s e s 19D L. Fotanapproximation paramers
. P pac P . termine the sey C R of virtual characteristic points
axis. For the last part, the rotation around an axis St Tt

through the characteristic points, we introduce the no-
tion of virtual characteristic pointsVirtual character-

istic points are auxiliary points i and ons which The second problem arises in applications, where

extend the input for the one-point case to an input for an absolute upper bound for the quality of the regis-
Alg. Given the characteristic poipte P, we choose  tration is required:

as the virtual characteristic point the furthest point
p = argmaycp||p— p|| to p in P. For the virtual
characteristic point in the model space we repeatedly
choose points With distance|p— f|| to s. The line -
segmens, Sis the axis around whicRis rotated. This V§€ Q ¢ Hsopt(S) <A.
process is iterated until a certain quality constraint is

fulfilled. H(CW) H(CW)

Definition 1.4 (distance function) Let
Algz ($,P,(s,9),(p,p)) be the set of rigid mo- TN TN
tions computed by Algif p and$ are added to the / \ SN Y \ SN
input as virtual characteristic points for P and o N
respectively. Theistance functiomsop: R — R is
defined as X «

Hsopt(8) = min Ht(P),s).
P = (s B oy )
The termquality of a transformatiorand quality
of a virtual characteristic points defined dual to the
term distance function: the quality is maximized, if
the distance function is minimized and vice versa.

maXFiso pt(S) < er+A.
seQ

Problem 1.2. For an upper bouna for the quality of
a matching, determine the set C R of virtual char-
acteristic points such that:

b)

Figure 2: a) lllustration of Problem 1.1) lllustration of
Problem 1.2.

Using the initial translation oP which mapsp
ontos, the computed sd of valid directions for the
rotation axis, and their corresponding rotation angles
(computed byAlgy) we report a dense representation
of all rigid registrations which satisfy the properties
stated above.
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2 THE SEMIOPTIMAL
SOLUTION FOR A SINGLE
CHARACTERISTIC POINT

The following proposition gives a guaranty on the
quality of the semioptimal matching with a single
characteristic point.

Proposition 2.1. Any semioptimal matching in the 1-

point case is &-approximation of the optimal match-

ing.

Proof. Let g5t be the value of the optimal solution

topt and letta be the translation that mapg:(p) tos=

tsopt(P)- Since|[topt(p) — S| = [[topt(P) — tsopt(P) || <

Eopt, the transformatioty o topt Moves each point &?

at mosteop far from its optimal position. Therefore,
H (tsopt(P);S) < E':(taotopt(P);S)

H (topt(P),$) + €opt

280pt

INIA

O

Computing the semioptimal matching exactly.Let
t be a translation that magsto s, and letl” be the set
of all rotations around the poist We are looking for
the rotatiorrs = argmincr H(r ot(P),s). We denote
by B; the ball with centet(p) and radius|p — pj||,
for pj € P\ {p}. Let f; denote the distance function
betweerB; ands. The functionf; is the lower enve-
lope of then distance functions betwedd) and each
triangle froms. Findingrs corresponds to computing
a minimum of the upper envelopgfeof the functions
f1,..., fke1.

To determine the description complexity ffit is
necessary to apply the theory bavenport-Schinzel

propriate computational model that is able to find the

zeros of trivariate polynomials of degree 4 in a con-

stant time. Since no analytical or any other kind of

solution that needs a constant time to solve that prob-
lem is known, we therefore draw our attention to ap-

proximation algorithms.

3 APPROXIMATING THE
REGISTRATION FOR A
SINGLE CHARACTERISTIC
POINT

In this section we present algorithms that convert the
input for the one-point problem to instances of the
two-point problem by selecting appropriate virtual
characteristic points. These instances are then solved
using algorithmAlgs.

The central task is to find a suitable position for the
virtual characteristic poins 6n s. Suitable in this
context means, that under the restriction tipats
mapped onte and p mapped tcs the distance func-
tion for Algz is minimized. We show that the slope
of the distance function in the parameter space with
regard to the selected virtual characteristic psirg ~
bounded to lie withif—1, 1] and how this fact can be
used to exclude parts of the search space.

3.1 The Lipschitz Constant of the
Distance Function

Lemma 3.1. Lets,s P,p be as above. For any two
points$;, & € R with [|s— & | = [s— & = [|p— f

sequencegAgarwal and Sharir, 1995). Because the the following holds:
detailed analysis is beyond the scope and space of this

paper, we only mention the main facts. Since each

function f; is the lower envelope af distance func-

Hsopt($1) — Hsopt($2)| < |61 — |-

tions between a ball and a triangle, it can be describedProof. Assume that € A(s,P,(s %), (p,p)) is one
piecewise by trivariate polynomials of degree 4. The of the transformations mappingto sapd plos and
complexity of the lower envelope ofsuch polynomi- 16t p be a rotation around mappings; to &. Since
als is related to Davenport-Schinzel sequence whichsP is a farthest point fromp, we have for any point
maximal length is bounded from above ky(n®), peP:

whereO is standardD-notation that ignores the pa- t(o) —t(p)l < HE) —t(B) = 18 — &
rameters that influence the constant of proportional- lpot(p) (p)ﬂ < llpet(®) fp)” 15— &I
ity, see (Agarwal and Sharir, 1995, Theorem 7.17) Consequently Hsop($) < H(p o t(P),s) <
for details. Thusf is an upper envelope @(n3l_<) H(t(P),s) + & — &I = Hsopt(&) + 151 — %|-
trlvlarlate pl)olynqméalsg?(gdegrrﬁe 4, anld |t;comb|tr)1ato— A symmetric argument provides thaisop($;)
rial complexity isO(n”k?). The envelopef can be Fsopi(&2) + 1 — &-

computed in a randomized expected tidén°k3),
see (Agarwal and Sharir, 1995, Theorem 7.25) forde-  Let § be the sphere centered smwith radius
r=||p— p||. Lemma 3.1 states that moving a virtual

O IA

tails.
Moreover the time complexity presented above characteristic poing;to a points; on S, changes the
holds only under the assumption that there is an ap-value of the distance function by at mds — %|/.

191



VISAPP 2008 - International Conference on Computer Vision Theory and Applications

This bound on the Lipschitz constant of the distance  ncw) HEW)
function can be used to exclude parts of the parame-
ter space around a virtual characteristic point, because
it describes by which amount the fuction value can -4 Y - I <
change within the neighborhood around this point. | N AN

3.2 Approximation Strategies for : |
One-dimensional Search Spaces B e

a) b)
To illustrate the idea of our approximation techniques Qﬁg&i ﬁl fff]gryg/ g‘tji']'éﬁgf E)‘;"?h%(’;“)fsa‘l’;’ghin‘gﬂ;’;%tgr‘é';;
we flrs_t cons_,lder the case Where the .Sea_rCh spase for two probing positions With parametaf (left exclusion
one-dimensional. We are interested in virtual charac- grea) ana” (right inclusion area).

teristic pointssthat aref| p — p|| close tos. Therefore,

we choose this search space to be the intersection
of the triangulated surface with S.. This is the sce-
nario where all virtual characteristic poirds T map

p exactly onto the surface. known to differ by at most\ from the best quality

The intersectiorr consists of a set of curves and ¢ o sampled point. The number of samples needed
each curve consists of a sequence of circular patchesy ansure that mig, Hsopt(§) —gr < Ais maximal if

(possibly closed), where each patch results from the ¢ gistance function is constant 6nWe have that:
intersection of the spherg§ with a single triangle .

of the model. The task is to determine those parts max |Hsopt(C(N)) — mx‘ <A
on each curve that providgood virtual characteris- NeRA+A)
tic points. Good virtual characteristic poirgshéve _mind G w

the property that eithdﬁsopt(é) —¢er| < A (Problem wherem, = min {Hsopt(C()\)), Haop(C(A +A)>}'

1.1) or thatHsop(9) is below a given threshold (Prob-  Corollary 3.2. Let the set of curves = {Co,...,Ci}

lem 1.2). This is achieved by probing several points induced by the intersection of and $ with a total

on the curve and, depending on the value of the dis- arclength of L be the search space R. Providing that
tance function for these virtual characteristic points, mingcq (Hsopt(é) —sR) < A there is a probe sefy
ﬁ)(()crzrl]uge parts of the neighborhood around these points,, hich size is bounded by@).

Let gc be an endpoint of curv&€ € ¢ (if C is
closed, we cu€ open at an arbitrary positiag) and
parametrize each point @by its arclength toc. Let
C(MA) denote the point o€ with arclengthA from qc.
Recall that according to Lemma 3.1 moving a paint ~
by A\ onS changes the quality of the registration by
at mosth,,.

A

toEr = Mingr ﬁsopt(é). The idea is to sample and test
a setqQ C Rof virtual characteristic points untik is

Solving Problem 1.2: The second section deals
with determining all virtual characteristic pointss ~
and their corresponding registrations which satisfy
Hsopt(§) < A for a given qualityA. As in the previ-
ously discussed problem the bound on the slope of
the distance function allows us to exclude a neighbor-
_ hood of a probe from the search space or to include
Corollary 3.1. For two points GA),C(A+4A) on'a 4 neighborhood to the solution, depending on the dif-
curve Cc S with an arclength distance &, the fol- ferenceﬁsopt(é) —A. LetC(\) be a sample point
lowing holds (see Fig. 3 a): on a curveC with paramete\ and distance value

= ~ Hsoot(C(A)) = €. The size of the in- or exclusion

Hsopt(C(A)) — Hsopr(C(A +4))| <A areg(de(pynds on the differencesgfandA (see also
Depending on the quality of a probe pomorie 19 3b):

can exclude parts of its neighborhood in the parameterey, —A > 0: The quality of the best registration if

space. This can be used to bound the value of the dis-  C(A) is chosen as the virtual characteristic point

tance function between two probe points, as accord- ~ for 5 is aboveA. The next sample pointson C

ing to Lemma 3.1 the scope in any point of the graph  with the property thattlsopi($) < A have a distance

lies within[—1,1]. to C(A) of at leaste), — A| in parameter space.
ey —A<0: The pointC(A) and all pointss’in its
Solving Problem 1.1: The Lipschitz constant of the A — g, neighbourhood have the property that

distance function can be used to bound the number of ﬁsopt(§) < A and can therefore be included in the
samples needed to provide an absolute approximation  solution set.
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Robustness. This approach is sensitive to noise on
P, especially to the influence of noise on the dis-
tancer = ||p— f||, which determines the radius of the
sphereS.. A slight pertubation ofp or p could pre-
ventS from intersectings, which leaves the set of
possible virtual characteristic points empty.

3.3 Approximation Strategies for
Two-dimensional Search Spaces

In this section we describe variants of the approxima-

Algorithm 1: Computing the set of virtual char-
acteristic points providing an absolute error reg-
istration
Data: The models, its characteristic point
se S, the set of measured poirstheir
characteristic poinp € P, an absolute
error approximation valuA.
Result The setqQ of virtual characteristic
points realizing a distance function
value of at mosQ.

[l initializing the result set
1Q:=0;
Il candidate probe set to §

tion strategies of Section 3.2 and extend the search 2 M= §;

spaceR to the whole spher&. By fixing a virtual
characteristic poirg€ S we determine an axls=s,$
around whichP is rotated to find the best semiopti-

mal solutions. Using this search space increases the s

robustness of our approach against nois@on

Solving Problem 1.1: We want to determine a set
Q C R of virtual characteristic points, such that
MiNgeq Hsopt(d) —MingerHsopt(d) < A. Such a probe
setQ has the property that the search sp&ds com-
pletely contained in the union of all balls with radius
A, centered in a sample poigte Q. In other words
any probe se) C S satisfying

Vaec§ 3I8cq [a—§| <A
is a valid probe set.

Corollary 3.3. There is a non empty sample sgt
which provides thaming o Hsopt(5) — €r < Afor R=

S whose size is bounded b’y(g—zz) forr=||p—pl.

Solving Problem 1.2: As in the previous section we
want to compute the set = {ée S |Hsopt(8) < A}.

To this end, we sample poingsof S and depending
on the value oﬂsopt(é) exclude regions in the neigh-
borhood ofsfrom the search space or add a region to
the solution. Recall thafisop($2) > Hsopt($1) — A for
anysp with ||$ — & <A and if Hsop(81) —A < 0, all
pointss; in the intersection o§ with a ball centered
at $; with radiusA — Hsopt(él) have the property that
Hsopt(éz) < A and can therefore be included in the
solution set. These observations lead to Algorithm 1.

3 while M #£ 0 do

Il select a random poi nt

4 §:=takeRandomPoi();

if Hsopt($) —A > Othen

/'l excl ude nei ghborhood

; M =M\ (S NBall(§ Fsop(§) ~ 2));
else

/'l include nei ghborhood
/'l conpute intersection

| :=S NBall(§A — Hsopt(9));
Il renove | from search space

10

11 M:=M\I;
/1 add | to solution
12 Q :=qQuUl;
13 end
14 end
15 return qQ ;

The functionBall(c,r) (lines 7 and 10) computes
a ball with radiug centered irc.

Algorithm 1 computes all points dn S with
ﬁsopt(§) < A. The practicability of Algorithm 1 is
quite limited, as it needs to maintain an arrangement
of circles on a sphere which is by itself a challenging
problem. The methods currently known to compute
such arrangements are too time consuming to be used
in a medical navigation system (Cazals and Loriot,
2007).

4 AN IMPLEMENTATION FOR
TWO-DIMENSIONAL SEARCH
SPACES

As the computation of the arrangement of circles on
a sphere is complex and time consuming, we present
a simple and efficient implementation of Algorithm 1
which uses quadtrees (de Berg et al., 1997) to approx-
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imate the arrangement: The information about areasan area below a reasonable threshold.
that are excluded from the search space is maintained\ote that the projection of points froB} to S is not

not onS but on six quadtrees which are placed on
each side of an axis-parallel cube surrounding

4.1 The Implementation

The implementation proceeds round based and eac
round consists of the following steps: Consider the
smallest axis parallel culi which containss. First

a points’is selected from a side d@; by an heuris-
tic described later. Then this point is projected down
onto a poins”on S. Fors we callAlg; and compute
the distance valuésopt(é’) and by taking the differ-
ence ofﬁsopt(g) — A we determine the radius of the
in-/ exclusion balls around. Finally this ball is pro-
jected back ont®, and the quadtrees which maintain
the in- and excluded areas Bpare refined to approx-
imate the projected ball.

7

M,

M,

Figure 4: The balby with radius|Hsopi(gf) — 4| intersects
the spheré& in a circle on which is then projected orBp.

In Detail. In each round of the algorithm we deter-
mine a facet of a quadtree and its centstr. "The
probe pointy for this position is computed by inter-
sectingS with the ray starting irs passing through
&. The difference oflsopi(§) — A defines the radius
of an inclusion (in case oflsop(§) —A < 0) or an
exclusion (in case OFisopt(§) — A > 0) ball by cen-
tered ing. All sample pointssin the intersection of
b with S either fulfill ﬁsopt(é) < A and can therefore

be added to the solution set or can be discarded other
wise. This information has to be propagated onto the

sides ofB; in order to adjust the quadtrees on its sides.
To this end we determine the intersect®wof B, with

the cone, whose apexssand that touches the border
of the intersection df, with S (see Fig. 4). All facets
of the quadtrees intersected &yare subdivided until
they are either not intersected Byanymore or have
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distance preserving: two points on a side and close to
a corner oB; have a larger distance to each other after
being projected ont§&; than two points that lie closer
to a midpoint of a side oB;. This effect is compen-
sated by the backward projectionkgfonto the sides,

RS the area ofy depends on the distance ®ft6 the

closest corner oB;.
Figure 5 shows screen shots of the implementation at
the moment where the first inclusion area was found.

A Heuristic for Choosing the next Sample Point.

To determine which facet to choose for the next
sample point we introduce a max-area heuristic. Each
facet of the quadtree has a priority and in addition is
labeled either asncl uded, excl uded or unknown.

If the label of a facet isinknown, the priority is set

to the area of the facet and set teo otherwise.
Each quadtree is initialized with one facet, a side of
B, labeledunknown. All facets of the six quadtrees
with labelunknown are furthermore stored in a single
max priority queue (the order of facets with the same
priority is arbitrary). Facets that are covereddpyare
labeled either ncl uded or excl uded, depending on
whetherg is an in- or exclusion area. Facets labeled
i ncl uded are added to the solution set. In each round
the facet with the highest priority is chosen, as we
expect the area of sample points with quality to be
small and accordingly the exclusion areas to be large.
Facets that are completely covered by are la-
beled corresponding to the sign of the difference
Hsopt(s’) —A. All new facets that are not intersected
by @ are labeledinknown and are inserted into the
priority queue, according to their area.

The algorithm terminates after either all leaves are
labeled or under the given threshold or a certain num-
ber of rounds is reached.

4.2 Evaluation

We implemented the algorithm as described in Sec-
tion 4.1 and evaluated the performance on a intel-core
2 duo computer with 2GB central memory. The com-
putations on a model with about three thousand tri-
angles and a point sét consisting of 8 points, both
scaled to fit into the unit cube, took on average3as
seconds.
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Figure 5: Screen shots of the implementation in the momemrevthe first inclusion area is founé) the models, its
characteristic poins and the spher&. b) the back of the model and the exclusion (dark gray/red) anllision (light
gray/green) balls, some exclusion areas are hidden by tldelmopthe projected error balls, parts of the surrounding cube
B; with the quadtree structure on its sid#isa part of the model in the lower left corner and the quadtréeement with
included (light gray/green) and excluded areas (dark gedy/
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