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Abstract: The aim of this paper is to present a study where we evaluate the optimal inclusion of the texture orientation 
in the classification process. In this paper the orientation for each pixel in the image is extracted using the 
partial derivatives of the Gaussian function and the main focus of our work is centred on the evaluation of 
the local dominant orientation (which is calculated by combining the magnitude and local orientation) on 
the classification results. While the dominant orientation of the texture depends strongly on the observation 
scale, in this paper we propose to evaluate the macro-texture by calculating the distribution of the dominant 
orientations for all pixels in the image that sample the texture at micro-level. The experimental results were 
conducted on standard texture databases and the results indicate that the dominant orientation calculated at 
micro-level is an appropriate measure for texture description. 

1 INTRODUCTION 

Texture is a fundamental property of digital images 
that has received a significant amount of attention 
from the computer vision community. This is 
motivated by the fact that the objects in digital 
images are not characterised only by their shapes but 
also by the structural relationship between the pixels 
that define their imaged surfaces. Based on this 
observation, a large number of studies have been 
dedicated to the development of a robust texture 
descriptor that is able to adapt to the local 
characteristics in the image. In this sense, the texture 
has been analysed based on the model that has been 
employed to describe it. While there is not a widely 
accepted definition for texture in the vision 
community, most of the developed techniques 
approach the texture either from a structural or a 
statistical perspective (Haralick, 1979; Dyer et al, 
1980). In statistical approaches, the texture is 
described by the spatial distribution of the pixels in 
the image (Chellappa et al, 1998) while in structural 
approaches the texture is defined as a relational 
arrangement of texture primitives (Materka and 
Strzelecki, 1998; Petrou and Sevilla, 2006). In this 
paper we propose a hybrid statistical-structural 
approach where the texture is described in terms of 
the distribution of orientations calculated at micro-
level for all pixels in the image. The distributions of 
edge orientations have been previously used for 

image segmentation (Flores and Leon, 2003; Ojala 
et al, 2002-a; Liu and Wang, 2003), retrieval (Zhou 
et al, 2003; Manjunath and Ma, 1996) and tracking 
(Marimon and Touradj, 2007) while our aim is to 
evaluate the robustness of these measures when 
applied to texture classification. While the 
orientation of the texture is highly influenced by the 
observation scale, in this work we attempt to 
quantify the importance of the scale and size of the 
texture unit (where the local dominant orientation is 
calculated) on the classification results. This paper is 
organised as follows. Section 2 describes the 
estimation of the dominant orientation in the image. 
Section 3 details the implementation of the texture 
classification framework. Section 4 describes the 
experimental results while in Section 5 are provided 
concluding remarks. 

2 ESTIMATION OF EDGE 
ORIENTATION 

The local orientation in the image is obtained by 
calculating the first derivatives in two orthogonal 
directions (Kass and Witkin, 1987) and the edge 
orientation can be simply determined using the 
expression illustrated in equation 1. 
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where ∇ defines the gradient operator and Θ is the 
edge orientation. The gradient is computed for each 
pixel in the image and this operation is traditionally 
carried out by filtering the image with operators 
such as Sobel in the x and y directions. The 
estimation of the gradient using small kernels is not 
appropriate since this operation is sensitive to image 
noise. Thus, in this paper we have calculated the 
partial derivatives in the image by filtering the 
image in the x and y directions with the filters that 
implement the derivatives of the Gaussian function. 
This is achieved by filtering the image with 1-
dimensional (1D) operators that are calculated using 
the expression illustrated in equation 2. 
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where σ is the scale of the Gaussian function (see 
Figure 1 for a plot of the derivative of Gaussian 
function for different scale parameters. For clarity 
purposes the plots illustrated in Figure 1 were 
generated by varying the parameter x in equation 2 
in the interval [-50, 50]). 

  
                       (a)                                          (b) 

  
                       (c)                                          (d) 

Figure 1: The derivative of Gaussian function. (a) σ=0.5. 
(b) σ=1.0. (c) σ = 1.5. (d) σ=2.0. 

The main advantage of the calculation of the partial 
derivatives using the derivative of the Gaussian 
resides in the fact that the Gaussian has a smoothing 
effect and the scale parameter controls the amount of 
noise reduction. After the calculation of the partial 
derivatives, the weak edge responses were 
eliminated by applying a non-maxima suppression 

procedure (similar to that described in (Canny, 
1986)) and the edge orientation is determined for 
each pixel using the expression illustrated in 
equation 1. The distributions of the edge orientations 
calculated for two different textures from the Outex 
texture database (Ojala et al, 2002-b) are illustrated 
in Figure 2. 

  
 

  

Figure 2: Distributions of edge orientation calculated for 
two textures (top - isotropic and bottom - oriented) from 
the Outex database (Ojala et al, 2002-b). 

The distribution of the edge orientations illustrated 
in Figure 2 provides the primary discrimination 
between textures. Its main disadvantage is the fact 
that this distribution is calculated over the entire 
image and is not able to robustly sample the texture 
orientation at micro-level. Thus, in this paper we 
propose to evaluate the dominant orientation of the 
texture calculated at micro-level for all texture units 
that are defined as the local neighbourhood around 
each pixel in the image. The distribution of the 
dominant orientations calculated for all texture units 
is then employed to capture the local orientation of 
the texture at macro-level. 

2.1 Estimation of the Dominant 
Orientation of Texture at Micro 
and Macro-Level 

The problem of analysing the texture orientation at a 
given observation scale is not a straightforward task 
as the orientation of the texture may be isotropic at 
macro level but having strong orientation at micro-
level.  This problem has been addressed in the paper 
by Germain et al, 2003 where they analysed a 
texture that is formed by sinusoidal curves having 
the same period. In this regard, when the texture is 
evaluated at a micro-level in a small neighbourhood 
(say 3×3 or 5×5) the texture appears to have a strong 
orientation. But when it is analysed at macro-level 
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the texture appears to be isotropic. This process can 
be clearly visualised in Figure 3. 

 
Figure 3: The variation of the orientation of texture at 
different observation scales. 

The next problem is how to extract the dominant 
orientation of the texture in a local k×k 
neighbourhood. In our implementation we elected to 
determine the orientation of the texture by 
constructing the histogram of orientations for all 
pixels in the local neighbourhood and the dominant 
orientation is selected as the dominant peak in the 
histogram as follows,  
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where Θ is the local orientation, ΘH  is the 
distribution of local orientations and dΘ is the 
dominant orientation of the texture in the 
neighbourhood k×k. 

3 TEXTURE CLASSIFICATION 

The dominant orientation in the image is a powerful 
local texture descriptor but it is not robust in 
sampling the difference between textures that are 
subjected to illumination variation and image 
inversion. Thus, we need to augment the local 
texture orientation with measures such as local 
orientation coherence and contrast that are 
calculated in the local neighbourhood k×k where the 
dominant orientation of the texture has been 
estimated. In our implementation, the contrast 
measure is sampled by the mean gray-scale value 
calculated in the k×k neighbourhood and the 
orientation coherence ( cΘ ) is calculated using the 

weighted standard deviation of the edge orientation 
of all pixels in the neighbourhood as follows: 
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where (i,j) are the coordinates of the pixel of 

interest, 
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derivatives calculated for all pixels in the window 
kkw ×  and aveΘ is the average edge orientation 

calculated for all pixels in the window kkw × . From 
the k×k neighbourhood around each pixel in the 
image three measures are calculated, namely the 
dominant orientation ( dΘ ), the contrast value (C) 
and the orientation coherence ( cΘ ). It is useful to 
mention that these three measures define the texture 
composition at micro-level while their distributions 
calculated over the entire image define the features 
that describe the texture at macro-level. This process 
is illustrated in Figure 4. 

 
Figure 4: The calculation of the dominant orientation, 
contrast and orientation coherence distributions. 

To sample the image at different observation scales, 
the orientation, contrast and orientation coherence 
distributions are calculated for different values of the 
window parameter k. In our implementation the size 
of the local window is varied from 3×3 to 11×11. 
These distributions are concatenated into a feature 
vector that is used to train an SVM classification 
scheme (Chang and Lin, 2001). Figure 5 illustrates 
the shape of the macro-level distributions when the 
dominant orientation is calculated for all pixels in 
the image in neighbourhoods of differing sizes. It 
can be noticed that the distribution of the local 
dominant orientations in the image shows apparent 
peaks when calculated in small neighbourhoods 
(3×3) and shows an even distribution of the 
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dominant orientations when calculated in larger 
neighbourhoods such as 7×7 and 11×11. This is 
motivated by the fact that the dominant orientation 
calculated in small neighbourhoods samples the 
local orientation of the texture while the dominant 
orientation when calculated in larger 
neighbourhoods tends to sample the anisotropic 
character of the texture with the increase in the size 
of the neighbourhood. 

   
                (a)                                   (b) 

 

  
                       (c)                                      (d) 
Figure 5: The distribution of the dominant orientations 
when the window parameter k is varied. (a) Input texture 
image from Outex database. Distribution of the dominant 
orientation for texture units in (b) 3×3, (c) 7×7 and (d) 
11×11 neighbourhoods. 

4 EXPERIMENTS AND RESULTS 

The experimental results in this paper were 
conducted on three Outex databases (TC 00000, TC 
00001 and TC 00002) and on databases that were 
constructed by splitting recursively the images 
contained in the Brodatz database (Brodatz, 1966). 
The Outex databases are formed by 24 classes of 
standard textures as illustrated in Figure 6 (canvas, 
carpet and tile). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The database TC 00000 consists of 480 texture 
images where the image size is 128×128.  Database 
TC 00001 is formed by splitting the images that 
form the database TC 00000 in four parts and this 
results in 2212 texture images where the image size 
is 64×64. Database TC 00002 is obtained by 
splitting the texture images contained in the database 
TC 00001 into four parts and this generates 8832 
images where the image size is 32×32. 

 

Figure 7: Samples of the Brodatz (Brodatz, 1966) textures 
used in our experiments. 

The Brodatz database (Brodatz, 1966) used in 
our study consists in a set of 36 texture images. This 
database is formed by near-isotropic textures and the 
original images were split in 4 (database BD 00000), 
16 (database BD 00001) and 64 sub-images 
(database BD 00002).  Database BD 00000 consists 
of 144 texture images (image size: 256×256), 
database BD 00001 has 576 texture images (image 
size: 128×128) and database BD 00002 comprises 
2304 images (image size: 64×64). A number of 
Brodatz textures used in our experiments are 
depicted in Figure 7. 

In our experiments half of the images contained 
in each database were used for training while the 
remaining half was used for testing. As an example, 
when the experiments were conducted using the 
Outex TC 00000 database, 240 images were used for 
training and 240 images were used for testing. As 
indicated earlier, the similarity between the training 
and test textures was evaluated using an SVM 
classification scheme where polynomial kernels 
were employed to map the feature space.  In this 
study we have conducted a number of experiments 
to evaluate the discriminative power of the texture 
features described in the previous section when the 
size of the texture images and the size and the 
number of windows applied to sample the texture 
orientation are varied. Also a number of tests were 
conducted to determine the optimal value of the σ 
parameter that controls the scale of the derivative of 

Figure 6: The 24 textures contained in the Outex database
(Ojala et al, 2002-b). 
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Gaussian function that is applied to compute the 
partial derivatives in the image. 

4.1 Influence of the Parameter σ on the 
Classification Results 

The aim of these tests is to evaluate the influence of 
the parameter σ (that sets the scale of the derivative 
of the Gaussian function) on the classification 
results. To isolate the effect of this parameter on the 
classification results, the feature vector that 
describes the texture is formed only by the 
distribution of the dominant orientations when 
calculated in the smallest (3×3) neighbourhood. The 
classification results when applied to the Outex and 
Brodatz databases are illustrated in Table 1 (to limit 
the size of Table 1, the results of the experiments are 
reported only for databases TC 00000, TC 00001, 
BD 00000 and BD 00001). 

Table 1: The influence of the parameter σ (scale of the 
derivative of Gaussian function) on the classification 
results. 

Database Parameter σ Accuracy [%] 
TC 00000 
(128×128) 

0.5 91.66 
1.0 95.00 
1.5 92.91 
2.0 89.58 
2.5 80.83 

TC 00001 
(64×64) 

0.5 78.21 
1.0 69.78 
1.5 65.43 
2.0 47.91 
2.5 33.33 

BD 00000 
(256×256) 

0.5 91.66 
1.0 83.33 
1.5 75.00 
2.0 72.22 
2.5 81.94 

BD 00001 
(128×128) 

0.5 94.44 
1.0 93.40 
1.5 92.36 
2.0 90.97 
2.5 82.63 

 
These experimental results (see Table 1) indicate 

that the best classification results are obtained when 
the scale parameter σ is set to low values in the 
range [0.5, 1]. There are two reasons behind these 
results. The first is motivated by the fact that with 
the increase value of the scale parameter the edges 
derived from weak textures are eliminated and the 
second reason consists in the requirement to increase 
the size of the derivative of Gaussian filters with the 

increase of the scale parameter σ (this can be clearly 
observed in Table 1 where the classification 
accuracy is drastically reduced when the dominant 
orientation is calculated for images with a small size 
such as those contained in database TC 00001). 

Based on the results depicted in Table 1, we have 
decided to set the scale parameter σ of the derivative 
of Gaussian operator to 0.5 to limit the impact of 
undesired texture filtering and the windowing effects 
caused by the convolution with large kernels. 

4.2 Classification Results when the 
Window Size is Varied 

A second set of experiments was conducted to 
evaluate the influence of the window size kkw × on 
the classification results. To isolate the effect of the 
window size, we have conducted the experiments 
where the dominant orientation distribution was 
used alone (Table 2) and to evaluate the 
complementary character of the texture distributions 
discussed in Section 3, the dominant orientation 
distribution was used in conjunction with the 
contrast and orientation coherence distributions 
(Table 3). 

Table 2: The influence of the widow size on the 
classification results (only the dominant orientation 
distribution is employed in the classification process). 

Database Window size Accuracy [%] 
TC 00000 
(128×128) 

3×3 91.66 
7×7 82.91 

11×11 71.25 
TC 00001 
(64×64) 

3×3 78.21 
7×7 65.71 

11×11 55.58 
TC 00002 
(32×32) 

3×3 45.48 
7×7 33.69 

11×11 28.39 
BD 00000 
(256×256) 

3×3 91.66 
7×7 66.66 

11×11 63.88 
BD 00001 
(128×128) 

3×3 94.44 
7×7 82.63 

11×11 76.73 
BD 00002 
(64×64) 

3×3 85.42 
7×7 67.73 

11×11 60.27 
 

The experimental results depicted in Table 2 
indicate that the discriminative power of the local 
dominant orientation distribution decreases with the 
increase of the window size. These results were 
expected since the local orientations calculated for 
larger windows sample the anisotropic properties of 
the texture. Another important conclusion resulting 
from the tests depicted in Table 2 is that the 

EVALUATION OF LOCAL ORIENTATION FOR TEXTURE CLASSIFICATION

361



 

dominant orientation distribution is not efficient in 
sampling the properties of small textures (see the 
classification results obtained for database TC 
00002). 

Table 3: The influence of the widow size on the 
classification results (dominant orientation, contrast and 
orientation coherence distributions are employed in the 
classification process – see Section 3). 

Database Window size Accuracy [%] 
TC 00000 
(128×128) 

3×3 97.08 
7×7 95.00 

11×11 84.16 
TC 00001 
(64×64) 

3×3 95.54 
7×7 87.50 

11×11 78.21 
TC 00002 
(32×32) 

3×3 70.01 
7×7 60.19 

11×11 45.40 
BD 00000 
(256×256) 

3×3 97.22 
7×7 91.66 

11×11 84.72 
BD 00001 
(128×128) 

3×3 99.30 
7×7 94.44 

11×11 93.75 
BD 00002 
(64×64) 

3×3 94.96 
7×7 88.11 

11×11 85.51 
 

The inclusion of the contrast and local 
orientation coherence distributions not only 
increased the overall classification accuracy but also 
we note that the discriminative power of the joint 
distribution (dominant orientation, contrast, 
orientation coherence) is significantly higher than 
the discriminative power of the dominant orientation 
distribution especially when applied to small texture 
images (see the classification results for database TC 
00002). However, from the results depicted in 
Tables 2 and 3 we can draw some useful 
conclusions. The most important finding is that the 
distribution of the dominant orientations that are 
calculated at micro-level is appropriate to describe 
the texture at macro-level. In this regard, when the 
local orientation is calculated in a small 
neighbourhood this results in a fine sampling of the 
texture orientation. Conversely, when the local 
orientation is calculated for large texture units, the 
distribution of local orientations samples better the 
anisotropic character of the texture. The behaviour 
of this distribution of local orientations is interesting 
as it offers the possibility to sample the properties of 
the texture orientation at different sampling rates by 
calculating the joint distributions when the window 
sized is varied. Another important finding resulting 
from the experiments summarized in Tables 2 and 3 
is that the inclusion of the contrast and orientation 
coherence in a joint texture distribution improves the 

discriminative power offered by the distribution of 
the local orientations. 
     Thus, the last experiment was conducted to 
evaluate whether the sampling of the orientation of 
the texture at different resolutions improves the 
overall classification results. In this regard, we have 
conducted a number of tests on Outex (Ojala et al, 
2002-b) and Brodatz (Brodatz, 1966) databases 
where the texture orientation is sampled by the 
dominant orientation, contrast and orientation 
coherence distributions that are calculated for 
texture units with differing sizes in the range 3×3 to 
11×11. The experimental results are depicted in 
Table 4. 

Table 4: Multi-resolution classification results. (3×3 + 7×7 
joint distributions), (3×3 + 11×11 joint distributions) and 
(3×3 + 7×7 + 11×11 joint distributions). 

Database Window size Accuracy [%] 
TC 00000 
(128×128) 

3×3 + 7×7 97.91 
3×3 + 11×11 96.66 

3×3  + 7×7 + 11×11 97.50 
TC 00001 
(64×64) 

3×3 + 7×7 95.64 
3×3 + 11×11 92.80 

3×3  + 7×7 + 11×11 94.12 
TC 00002 
(32×32) 

3×3 + 7×7 76.87 
3×3 + 11×11 69.06 

3×3  + 7×7 + 11×11 73.25 
BD 00000 
(256×256) 

3×3 + 7×7 100 
3×3 + 11×11 100 

3×3  + 7×7 + 11×11 100 
BD 00001 
(128×128) 

3×3 + 7×7 99.65 
3×3 + 11×11 98.26 

3×3  + 7×7 + 11×11 98.95 
BD 00002 
(64×64) 

3×3 + 7×7 94.62 
3×3 + 11×11 93.75 

3×3  + 7×7 + 11×11 94.18 
 

The results shown in Table 4 clearly indicate that 
the classification accuracy increased when the 
texture orientation was sampled at different 
resolutions. From these results the best classification 
results have been achieved when the orientation of 
the texture is sampled by the (3×3 + 7×7) joint 
distribution. We note that the classification results 
did not improve when the joint distribution was 
calculated for all resolutions (3×3, 7×7, 11×11). 
These experimental results indicate that in the 
classification process the local sampling of the 
texture orientation at micro-level has a greater 
discriminative power than the texture anisotropy that 
is sampled when the local orientation is estimated in 
larger neighbourhoods. The classification results are 
consistent when applied to two different texture 
databases and their discriminative power is 
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comparable with that offered by other texture 
descriptors such as Local Binary Patterns (Ojala et 
al, 2002-a), Coordinated Cluster Representation 
(Sanchez et al, 2003) and the statistical features 
calculated from grey-level co-occurrence matrices 
(Haralick, 1979). 

The computational complexity of the algorithm 
applied to calculate the dominant orientation, 
contrast and orientation coherence distributions from 
one texture image at different observation scales is 
depicted in Table 5. The experiments have been 
conducted using a 2.4 GHz AMD X2 4600 PC and 
running Windows XP. 

Table 5: Computational complexity of the algorithm 
applied to calculate the dominant orientation, orientation 
coherence and contrast distributions. 

Image Size Window size Time[sec] 
 

256×256 
3×3  0.710 
7×7 0.920 

11×11 1.296 
 

128×128 
3×3  0.170 
7×7 0.219 

11×11 0.312 
 

64×64 
3×3  0.035 
7×7 0.046 

11×11 0.078 
 

32×32 
3×3 0.016 
7×7 0.031 

11×11 0.047 

5 CONCLUSIONS 

The aim of this paper was to evaluate the 
discriminative power of the local texture orientation 
in the classification process. The main contribution 
of this work resides in the methodology proposed to 
calculate the orientation of the texture at macro-level 
as the distribution of dominant orientations 
calculated for all texture units in the image that 
sample the texture orientation at micro-level. The 
distribution of the dominant local orientations in the 
image proved to be a robust texture feature when 
applied to classify large texture images, but its 
discriminative power was significantly lower when 
applied to the classification of small texture images. 
Thus, in this paper we proposed to complement the 
distribution of dominant orientations in the image 
with two additional distributions that measure the 
local contrast and local orientation coherence in the 
neighbourhood where the local dominant orientation 
was calculated. The inclusion of these two measures 

proved to be appropriate especially when the new 
joint descriptor was applied to the classification of 
texture databases containing images defined by 
small textures. Another important finding resulting 
from this investigation is the fact that the 
classification accuracy has improved when the 
orientation of the texture was sampled at different 
resolutions. One advantage of the texture extraction 
approach detailed in this paper over other texture 
descriptors such as Local Binary Patterns (Ojala et 
al, 2002-a) and grey-level co-occurrence matrices 
(Haralick, 1979) resides in the fact that the proposed 
orientation distributions can be further extended to 
be rotational invariant since they are π-periodic with 
respect to the orientation of the texture. The 
experimental results reported in this paper are 
promising and indicate that the distribution of local 
texture orientation is a robust feature that can 
describe the texture at macro-level. In our future 
studies we will further develop the proposed texture 
analysis technique to produce a rotation invariant 
representation and to analyse the effect of the non-
even illumination on texture classification accuracy. 
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