
OMNIDIRECTIONAL CAMERA MOTION ESTIMATION

Akihiko Torii and Tomáš Pajdla
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Abstract: We present an automatic technique for computing relative camera motion and simultaneous omnidirectional
image matching. Our technique works for small as well as large motions, tolerates multiple moving objects
and very large occlusions in the scene. We combine three principles and obtain a practical algorithm which
improves the state of the art. First, we show that the correct motion is found much sooner if the tentative
matches are sampled after ordering them by the similarity of their descriptors. Secondly, we show that the
correct camera motion can be better found by soft voting for the direction of the motion than by selecting
the motion that is supported by the largest set of matches. Finally, we show that it is useful to filter out the
epipolar geometries which are not generated by points reconstructed in front of cameras. We demonstrate the
performance of the technique in an experiment with 189 image pairs acquired in a city and in a park. All
camera motions were recovered with the error of the motion direction smaller than 8◦, which is 4 % of the
183◦ field of view, w.r.t. the ground truth.

1 INTRODUCTION

Projections of scene points into images acquired by
a moving camera are related by epipolar geome-
try (Hartley and Zisserman, 2004). In this work, we
present a practical algorithm which improves the state
of the art automatic camera relative motion computa-
tion and simultaneous image matching. Such an algo-
rithm is a useful building block for autonomous nav-
igation and building large 3D models using structure
from motion.

In contrary to existing structure from motion al-
gorithms, e.g. (2d3 Ltd, ; Davison and Molton, 2007;
Cornelis et al., 2006; Williams et al., 2007), which
solve the problem when the camera motion is small or
once 3D structure is initialized, we aim at a more gen-
eral situation when neither the relationship between
the cameras nor the structure is available. In such
case, 2-view camera matching and relative motion es-
timation is a natural starting point to camera tracking
and structure from motion. This is an approach of
the state of the art wide base-line structure from mo-
tion algorithms e.g. (Brown and Lowe, 2003; Mar-
tinec and Pajdla, 2007) that start with pair-wise im-
age matches and epipolar geometries which they next
clean up and make them consistent by a large scale

bundle adjustment.

In this paper, we improve the state of the art ap-
proach to automatic computation of relative camera
motion (Hartley and Zisserman, 2004; Nistér and En-
gels, 2006) and simultaneous image matching (Pritch-
ett and Zisserman, 1998; Tuytelaars and Gool, 2000;
Schaffalitzky and Zisserman, 2001; Matas et al.,
2004) by combining three ingredients which alto-
gether significantly increase the quality of the result.

To illustrate the problem we shall now discuss four
interesting examples of camera motions which have
gradually increasing level of difficulty.

Figure 1(a) shows an easy pair which can be
solved by a standard RANSAC estimation (Hartley
and Zisserman, 2004). 57%, i.e. 1400, of tentative
matches are consistent with the true motion. Fig-
ure 1(c) shows a dominant peak in the data likelihood
p(M|e) of matches given the motion direction (Nistér
and Engels, 2006) meaning that there is only one
motion direction which explains a large number of
matches.

Figure 2(a) shows a more difficult pair that con-
tains multiple moving objects, large camera rotation
and considerable occlusion in the scene. Only 8%,
i.e. 120, tentative matches were consistent with the
true motion. Figure 2(c) shows that there are many
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motion directions with high support, in this case from
wrong tentative matches.

Figure 3(a) shows an even more difficult pair since
only 1.4%, i.e. 50, tentative matches are consistent
with the true motion. There are very many wrong ten-
tative matches on bushes where local image features
are all small and green. Thus, many motion directions
get high support from wrong matches. The true mo-
tion has the highest support but its peak is very sharp
and thus difficult to find in limited time.

Figure. 4(a) shows a very difficult pair that con-
tains large camera rotation and many repetitive fea-
tures which generate wrong tentative matches. In this
case, the motion supported by the largest number of
tentative matches is incorrect. Notice that the peak of
the likelihood of matches in Fig. 4(c) does not corre-
spond to the direction of the true motion.

All the above examples can be solved correctly by
the technique presented in this paper.

The state of the art technique for finding
relative camera orientations from image matches
first establishes tentative matches by pairing image
points with mutually similar features and then uses
RANSAC (Fischler and Bolles, 1981; Hartley and
Zisserman, 2004; Chum and Matas, 2005) to look for
a large subset of the set of tentative matches which
is, within a predefined thresholdθ, consistent with
an epipolar geometry (Hartley and Zisserman, 2004).
Unfortunately, this strategy does not always recover
the epipolar geometry generated by the actual cam-
era motion. This has been observed, e.g., in (Li and
Hartley, 2005).

Often, there are more models which are supported
by a large number of matches. Thus the chance that
the correct model, even if it has the largest support,
will be found by running a single RANSAC is small.
Work (Li and Hartley, 2005) suggested to generate
models by randomized sampling as in RANSAC but
to use soft (kernel) voting for a physical parameter,
the radial distortion coefficient in that case, instead
of looking for the maximal support. The best model
is then selected as the one with the parameter closest
to the maximum in the accumulator space. This strat-
egy works when the correct, or almost correct, models
met in the sampling provide consistent values of the
parameter while the incorrect models with high sup-
port generate different values of the parameter. Here
we show that this strategy works also when used for
voting in the space of motion directions.

It has been demonstrated in (Chum and Matas,
2005) that ordering the tentative matches by their
similarity may help to reduce the number of sam-
ples in RANSAC. Paper (Chum and Matas, 2005)
brought two main contributions. First, PROSAC sam-

pling strategy has been suggested which allows to uni-
formly sample from the list of tentative matches or-
dered ascendingly by the distance of their descriptors.
It allows to start by drawing promising samples first
and often hit sufficiently large configuration of good
matches early. The second contribution concerned a
modification of the RANSAC stoping criterion (Hart-
ley and Zisserman, 2004, p. 119) to be able to deal
with very long sets of tentative matches without the
necessity to know their number beforehand.

When working with perspective images, it is gen-
erally accepted (Hartley and Zisserman, 2004) that
the best way to evaluate the quality of an epipolar
geometry is to look at image reprojection errors. This
is, for two images, equivalent to evaluating the dis-
tances of image points to their corresponding epipolar
lines. We compared the image reprojection error with
the residuals evaluated as the angle between rays and
their corresponding epipolar planes, which we refer
as theangular error here. In our experience, when
cameras are calibrated, the angular error can safely be
used instead of the image reprojection error. To be
absolutely correct, every ray should be accompanied
by a covariance matrix determining its uncertainty.
The matrix depends on (i) image measurement error
model and (ii) on the point position in the image. The
point position determines how the unit circle around
the point maps into the cone around the ray. In this
paper we neglected the variability of the covariance
matrix across the field of view and assumed it to be a
scaled identity.

Next we describe how we combine ordered sam-
pling of tentative matches, soft voting, and the ori-
entation (cheirality) constraint (Hartley and Zisser-
man, 2004) on minimal five points used for comput-
ing camera motions to get an algorithm which solves
all camera motions.

2 THE ALGORITHM

Algorithm 1 presents the pseudocode of the algorithm
used to generate results described in this work. Next
we describe the key parts of the algorithm in detail.

2.1 Detecting Tentative Matches and
Computing their Descriptors

MSER (Matas et al., 2004), Harris-Affine and
Hessian Affine (Mikolajczyk et al., 2005) affine
covariant feature regions are detected in images.
These features are alternative to popular SIFT fea-
tures (Lowe, 2004) and work comparably in our situ-
ation. Parameters of the detectors are chosen to limit
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Figure 1: An easy example of camera motions. (a): Fist (top) and second (bottom) images. Red◦, blue△, and green▽ (our
result) represent the true epipole, the epipole computed bymaximizing the support, and the epipoles computed by soft voting
for the position of the epipole, respectively. Small dots show the matches giving green▽. (b): Voting space for the motion
direction in the first image generated by 50 soft votes castedby the result of 500-sample PROSAC, visualized on the image
plane (top) as a 3D plot (bottom). White represents large number of votes. The peak corresponds to green▽ (our result). (c):
The maximal support for every epipole (i.e. CIF image from (Nistér and Engels, 2006)). White represents hight support.The
image space has been uniformly sampled by 10000 epipoles andfor each epipole the size of support of the best model found
by 500-sample PROSAC has been recorded.

the number of regions to 1-2 thousands per image.
The detected regions are assigned local affine frames
(LAF) (Obdržálek and Matas, 2002) and transformed
into standard positions w.r.t. their LAFs. Discrete
Cosine Descriptors (Obdržálek and Matas, 2003) are
computed for each region in the standard position. Fi-
nally, mutual distances of all regions in one image
and all regions in the other image are computed as
the Euclidean distances of their descriptors and tenta-
tive matches are constructed by selecting the mutually
closest pairs.

MSER region detector is approximately 100 times
faster than the Harris and Hessian Affine region de-
tector but MSERs alone were not able to solve all im-
age pairs in our data. MSERs perform great in ur-
ban environment with contrast regions, such as win-
dows, doors and markings. However, they often pro-
vide many useless regions on natural scenes because
they tend to extract contrast regions which often do
not correspond to real 3D structures, such as regions
formed by tree branches against the sky or shadows
casted by leaves.

2.2 Ordered Randomized Sampling

We useordered samplingas suggested in (Chum and
Matas, 2005) to draw samples from tentative matches
ordered ascendingly by the distance of their descrip-
tors. We keep the original RANSAC stopping crite-
rion (Hartley and Zisserman, 2004) and we limit the
maximum number of samples to 500. We have ob-
served that pairs which could not be solved by the
ordered sampling in 500 samples got almost never
solved even after many more samples. Using the stop-
ping criterion from (Chum and Matas, 2005) often
leads to ending the sampling prematurely since the
criterion is designed to stop as soon as a large non-
random set of matches is found. Our objective is,
however, to find a globally optimal model and not to
stop as soon as a local model with large support is
found.

We have observed that there are often several al-
ternative models with the property that the correct
model of the camera motion has a similar or only
slightly larger support than other models which are
not correct. Algorithm 1 would provide almost identi-
cal results even without the RANSAC stopping crite-
rion but the criterion helps to end simple cases sooner
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Figure 2: A more difficult example of camera motions. See Fig.1.

than after 500 samples.
Having a calibrated camera, we draw 5-tuples of

tentative matches from the listM = [m]N1 of tentative
matches ordered ascendingly by the distance of their
descriptors. From each 5-tuple, relative orientation
is computed by solving the 5-point minimal relative
orientation problem for calibrated cameras (Nistér,
2004; Stewénius, 2005).

Row (sim) in Fig. 5 shows that many more cor-
rect motions have been sampled in 500 samples of
PROSAC using ordered matches than by using the
same number of samples on a randomly ordered list
of matches, row (rnd).

2.3 Orientation Constraint

An essential matrix can be decomposed into four dif-
ferent camera and point configuration which differ by
the orientation of cameras and points (Hartley and
Zisserman, 2004). Without enforcing the constraint
that all points have to be observed in front of the cam-
eras, some epipolar geometries may be supported by
many matches but it need not be possible to recon-
struct all points in front of both cameras.

For omnidirectional cameras, the meaning of in-
frontness is a generalization of the classical infront-
ness for perspective cameras. With perspective cam-
eras, a pointX is in front of the camera when it has a
positivezcoordinate in the camera coordinate system.
For omnidirectional cameras, a pointX is in front of
the camera if its coordinates can be written as a posi-

tive multiple of the direction vector which represents
the half-ray by whichX has been observed.

In general, it is beneficial to use only those
matches which generate points in front of cameras.
However, this takes time to verify it for all matches.
On the other hand, it is fast to verify whether the five
points in the minimal sample generating the epipolar
geometry can be reconstructed in front of both cam-
eras and to reject such epipolar geometries which do
not allow it.

Row (oc) in Fig. 5 shows that the number of incor-
rectly estimated motions decreased when such epipo-
lar geometries were excluded by this orientation con-
straint.

Furthermore, the orientation constraint in average
reduces the computational cost because it avoids eval-
uating residuals corresponding to many wrong cam-
era motions.

2.4 Soft Voting

In this paper, we vote in two-dimensional accumu-
lator for the estimated motion direction. However,
unlike in (Li and Hartley, 2005; Nistér and Engels,
2006), we do not cast votes directly by each sampled
epipolar geometry but by the best epipolar geome-
tries recovered by ordered sampling of PROSAC.
This way the votes come only from the geometries
that have very high support. We can afford to com-
pute more, e.g. 50, epipolar geometries since the
ordered sampling is much faster than the standard
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Figure 3: Even more difficult example of camera motions. See Fig. 1.

RANSAC. Altogether, we need to evaluate maximally
500×50= 25000 samples to generate 50 soft votes,
which is comparable to running a standard 5-point
RANSAC for expected contamination by 84 % of
mismatches (Hartley and Zisserman, 2004, p. 119).
Yet, with our technique, we could go up to 98.5 %
of mismatches with comparable effort. The relative
camera orientation with the motion direction closest
to the maximum in the voting space is finally selected.

Figure 5 shows the improvement of using soft vot-
ing for finding the relative motion when casting 50
soft votes. On several difficult image pairs, such as
Fig. 4, the motion supported by the largest number
of tentative matches was incorrect but the soft voting
provided a motion close to the ground truth.

3 EXPERIMENT

3.1 Image Data

Experimental data consist of 189 image pairs ob-
tained by selecting consecutive images of an image
sequence. We do not use the fact that images were
taken in a sequence and our method works for any
pair of images. The distance between two consecutive
images was 1-3 meters. Most of the camera motions
have rotations up to 15◦ but large rotations of 45◦

are also present. Images were acquired by Kyocera
Finecam M410R with Nikon FC-E9 fisheye-lens with

183◦ view angle. The image projection is equiangu-
lar and was internally calibrated (Mičušı́k and Pajdla,
2006) beforehand. Images were digitized in resolu-
tion 800 pixels/183◦, i.e. 0.2◦/pixel, which is com-
parable to 240× 180 pixels for more standard 40◦

view angle. Acquisition of images started in a narrow
street with buildings on both sides, then continued to
a wider street with many driving cars, and finally lead
to a park with threes, bushes and walking people.

3.2 Ground Truth Motion

For most image pairs, the “true” camera motions were
recovered by running the Algorithm 1 a number of
times and checking that (i) the true motion has been
repeatedly generated by correctly matched 5-tuples
of matches and that (ii) the motion direction pointed
to the same object in both images. In a few image
pairs, for which we could not get a decisive number
of consistent results, the true motion has been gener-
ated from a 5-tuple of correct matches selected man-
ually. We estimate the precision of our ground truth
motion estimation to be higher than 4 % of the view
field, which corresponds to 8◦ and 32 image pixels.

3.3 Result

Figure 5(SV) shows the quality of the estimated cam-
era motion by Algorithm 1. The algorithm looks for
the motion with motion direction closest to the global
maximum in the accumulator after casting soft votes
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Figure 4: A very difficult example of camera motions. See Fig.1. The motion direction with the largest support of 294
matches (b) is wrong. Our algorithm 1 finds the correct motionwhich is supported “only” by 287 matches.

from 50 motions. The 50 motions for soft votes are es-
timated in 500 samples by the ordered sampling based
on residuals evaluated as the angle between rays and
their corresponding epipolar planes. All motions in
our test data were estimated with motion directions
within 8◦, i.e. 4 % of the view angle, from the ground
truth.

4 CONCLUSIONS

We have presented a practical algorithm which can
compute camera motions from omnidirectional im-
ages. We have improved the state of the art by com-
bining ordered sampling from tentative matches or-
dered by their descriptor similarity with the orienta-
tion constraint and soft voting. We used angular resid-
ual error which better fits to the geometry of omni-
directional cameras. Our algorithm was able to cor-
rectly compute motions of all tested 189 image pairs.
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Mičušı́k, B. and Pajdla, T. (2006). Structure from motion
with wide circular field of view cameras.IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
28(7):1135–1149.

Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A.,
Matas, J., Schaffalitzky, F., Kadir, T., and Gool, L. V.
(2005). A comparison of affine region detectors.Inter-
national Journal of Computer Vision, 65(1-2):43–72.

Nistér, D. (2004). An efficient solution to the five-point
relative pose problem.IEEE Transactions on Pattern
Analysis and Machine Intelligence, 26(6):756–777.

Nistér, D. and Engels, C. (2006). Estimating global un-
certainty in epipoloar geometry for vehicle-mounted
cameras. InSPIE, Unmanned Systems Technology
VIII , volume 6230.
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Algorithm 1 Camera motion estimation by ordered sampling from tentative matches with geometrical constraints.
Input: Image pairI1, I2.

θ := 0.3◦ . . . the tolerance for establishing matches
σ := 4◦ . . . the standard deviation of Gaussian kernel for soft voting
NV := 50 . . . the number of soft votes
NS := 500 . . . the maximum number of random samples.
η := 0.95 . . . the termination probability of the standard RANSAC (Hartley and Zisserman, 2004, p. 119).

Output: Essential matrixE∗.

1. Detect tentative matches and compute their descriptors.

1.1 Detect affine covariant feature regions MSER-INT+, MSER-INT-, MSER-SAT+,
MSER-SAT-, APTS-LAP, and APTS-HES in left and right images,Sec. 2.1.

1.2 Assign local affine frames (LAF) (Obdržálek and Matas,2002) to the regions and transform the regions
into a standard position w.r.t. their LAFs.

1.3 Compute Discrete Cosine Descriptors (Obdržálek and Matas, 2003) for each region in the standard position.

2. Construct the listM = [m]N1 of tentative matches with mutually closest descriptors. Order the list ascendingly
by the distance of the descriptors.N is the length of the list.

3. Find a camera motion consistent with a large number of tentative matches:
1: SetD to zero. // Initialize the accumulator of camera translation directions.
2: for i := 1, . . . ,NV do
3: t := 0 // The counter of samples.n := 5 // Initial segment length.

NT := NS // Initial termination length.
4: while t ≤ NT do
5: if t = ⌈200000

(n
5

)

/
(N

5

)

⌉ (Chum and Matas, 2005)then
6: n := n+ 1 // The maximum number of samples for the current initial segment reached, increase

the initial segment length.
7: end if
8: t := t +1 // New sample
9: Select the 5 tentative matchesM5 of the tth sample by taking 4 tentative matches from[m]n−1

1 at
random and adding the 5th matchmn.

10: Et := the essential matrix by solving the 5-point minimal problemfor M5 (Nistér, 2004; Stewénius,
2005).

11: if M5 can be reconstructed in front of cameras (Hartley and Zisserman, 2004, p. 260)then
12: St := the number of matches which are consistent withEt , i.e. the number of all matchesm =

[u1,u2] for which max(∡(u1,Etu2),∡(u2,E
⊤
t u1)) < θ.

13: else
14: St := 0
15: end if
16: NR := log(η)/ log

(

1−
(St

5

)

/
(N

5

)

)

//The termination length defined by the maximality con-

straint (Hartley and Zisserman, 2004, p. 119).
17: NT := min(NT ,NR) // Update the termination length.
18: end while
19: t̂ = argt=1,...,NS

maxSt // The index of the sample with the highest support.
20: Êi := Et̂ , êi := camera motion direction for the essential matrixEt̂ .
21: Vote in accumulatorD by the Gaussian with sigmaσ and mean at̂ei .
22: end for
23: ê := argx∈domain(D) maxD(x) // Maximum in the accumulator.
24: i∗ := argi=1,...,50min∡(ê, êi) // The motion closest to the maximum.
25: E∗ := Êi∗ // The “best” camera motion.

4. ReturnE∗.
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