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Abstract: A recently proposed fast image alignment algorithm is the inverse compositional algorithm based on Lucas-
Kanade. In this paper, we present an overview of different brightness and gradient constraints used with the 
inverse compositional algorithm. We also propose an efficient and robust data constraint for the estimation 
of global motion from image sequences. The constraint combines brightness and gradient constraints under 
multiple quadratic errors. The method can accommodate various motion models. We concentrate on the 
global efficiency of the constraint in capturing the global motion for image alignment. We have applied the 
algorithm to various test sequences with ground truth. From the experimental results we conclude that the 
new constraint provides reduced motion error at the expense of extra computations. 

1 INTRODUCTION 

Since the problem of motion computation is under-
constrained, additional constraints are required for 
the estimation techniques. Techniques for estimating 
2D camera motion constrain the motion explicitly by 
parameterization of the camera motion over the 
whole image using different motion models 
(translational, affine, pseudo projective, projective). 
In numerous dynamic scene analysis and video 
compression methods, it is useful to first recover the 
camera motion and then to detect and track moving 
objects in the scene. Parameter motion estimation 
methods can be classified into three categories: 

 Error minimization with respect to motion 
parameters using differential methods. 

 Error minimization with respect to motion 
parameters using matching techniques. 

 Two-step methods consisting of local motion 
estimation followed by global motion 
estimation. 

A comprehensive comparative survey by Barron 
et al. (Barron et al., 1994) found that gradient-based 
motion estimation methods (GMs) to perform well 
especially Lucas-Kanade (Lucas and Kanade, 1981). 
The usual approach of Lucas-Kanade is a gradient 
descent approach to estimate the parameters vector p 
associated with the parametric image registration. It 

aligns a template image T(x) to an input image I(x), 
where x=(x,y) is a column vector of pixel 
coordinates. The method searches for the best 
parametric transform that minimizes the summed 
square of differences between image intensities 
(SSD) over the whole image by an additive 
increment to the motion parameters. Other 
approaches estimate an incremental warp that is 
composed with the current parameter estimate 
(Baker and Matthews, 2004). Minimizing the SSD 
error using the Gradient descent approach (non-
linear optimization) requires the partial derivatives 
of the equation with respect to ∆p, which involves 
computing the inverse of the Hessian matrix that 
depends on the parameters p. The Hessian must be 
re-evaluated at each iteration of the Lucas-Kanade 
algorithm at a huge computational cost, but if the 
Hessian is constant it could be precomputed and 
reused.  The Hager-Belhumeur algorithm (Hager and 
Belhumeur, 1998) addresses this difficulty by 
switching the role of the template and the image 
producing a Hessian that is independent of p. Baker 
and Matthews (Baker and Matthews, 2004) also 
switch the roles of the template and image but used 
composition to update the warps and called their 
algorithm the inverse compositional. The advantage 
of the inverse compositional algorithm is that it can 
be applied to any set of warps. Other approaches 
propose to address divergence problems of the 
iterative warping nature of Lucas-Kanade (Le 
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Besnerais and Champagnat, 2005). Other 
computational reduction approaches use a sampled 
set of pixels for parameter estimation and avoid 
computing interpolation at each iteration (Keller and 
Averbuch, 2003). In (Keller and Averbuch, 2004) a 
bidirectional formulation is introduced that speeds 
up the convergence properties for large motions. 
Recently, Thomas et al. (Brox et al., 2004), 
introduced a robust method to compute the optical 
flow by adding to the brightness data constraint of 
the energy functional another constraint: the gradient 
constraint. The new energy functional produced one 
of the best optical flow results in the current 
literature. Therefore, a comparison is needed to 
show the benefits of combining the gradient 
constraint with the brightness constraint for 
estimating the global motion. 

Over-constraining the optical flow problem allows 
more precise determination of a solution. The use of 
redundant information enforces robustness with 
respect to measurement noise. Constraints can be 
obtained using several approaches by either applying 
the same equation to multiple points or defining 
multiple constraints for each image point. The later 
can be obtained by applying a set of differential 
equations (Bimbo et al., 1996) or applying the same 
set of equations to different functions which are 
related to image brightness. When the image motion 
conforms to the model assumptions it produces 
accurate flow estimates. However, the problem is 
that parametric motion models applied over the 
entire image are rarely valid due to varying depths, 
transparency or independent motion. Therefore, It is 
useful to use robust statistics to estimate a dominant 
motion in the scene and then fit additional motions 
to outlying measurements (Black and Jepson, 1996, 
Irani et al., 1994). The outlying measurements which 
are grouped together and segmented correspond to 
independently moving objects and their motion is 
estimated independently. It is also well-known that 
the use of multiresolution methods improves the 
estimation for large motions (Odobez and 
Bouthemy, 1995). Spatiotemporal information gives 
better results than spatial information (Barron et al., 
1994), and specifically, spatiotemporal 
neighbourhood information assists in obtaining 
better estimates for the motion vectors (Namuduri, 
2004).  

In this paper, we begin in section 2 by reviewing 
the inverse compositional Lucas-Kanade algorithm 
using only the brightness constancy. We proceed in 
section 3 to elaborate on the constancy assumptions 
by using the gradient constancy alone or combined 
with the brightness constancy. In section 4 we 

propose a new data constraint that combines the 
brightness constancy with the gradient constancy 
using multiple quadratic error functions. We 
compare empirically the different data constraints in 
section 5 both in terms of performance and speed. 
We conclude in section 6. 

2 INVERSE COMPOSITIONAL 
IMAGE ALIGNMENT 

Let W(x,p) denote a warping function that takes the 
pixel x and maps it to subpixel location W(x,p) 
where p=(p1,..,pn)T is a vector of motion parameters. 
The goal of the inverse compositional (Baker and 
Matthews, 2004) is to align a template image T(x) to 
an input image I(x), where x=(x,y)T is a vector of 
pixel coordinates. The inverse compositional 
minimizes the sum of the squared differences (SSD) 
between the current frame T and the motion 
compensated frame I 
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with respect to ∆p, where ∆p is the incremental 
update to the motion parameters p by updating the 
warp: 
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Computing the backward warp of the image 
I(W(x;p)) requires interpolating the image at 
subpixel locations. Before deriving the solution, a 
first order Taylor expansion is performed on (1): 
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where W(x;0) is the identity warp. Solving the least 
squares equation for ∆p gives: 
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where H is the Hessian matrix: 
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Assuming affine warp p=(p1,p2,p3,p4,p5,p6),  

1 3 5

2 4 6

1
( ; )

1
1

x
p p p

W x p y
p p p

⎛ ⎞
+⎛ ⎞⎜ ⎟= ⎜ ⎟⎜ ⎟+⎝ ⎠⎜ ⎟

⎝ ⎠  

(6) 

 

VISAPP 2008 - International Conference on Computer Vision Theory and Applications

566



and the Jacobian of the warp /W p∂ ∂  is then: 
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The inverse compositional algorithm using the 
brightness constancy (BC) then consists of 
iteratively applying (4) and (2). In Summary: 
Precompute: 

(1) Evaluate the gradient T∇ of the template T(x) 
(2) Evaluate the Jacobian /W p∂ ∂ at (x;0) 
(3) Compute the steepest descent images 

( / )T W p∇ ∂ ∂  
(4) Compute the Hessian matrix using (5). 

Iterate: 
(5) Warp I with W(x;p) to compute I(W(x;p)) 
(6) Compute the error image I(W(x;p))-T(x) 

(7) Compute 
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(8) Compute ∆p using (4) 
(9) Update the warp using (2) 

Until ||∆p||≤ε. 

3 VARIANT CONSTANCY 
ASSUMPTIONS 

Although the brightness constancy (BC) assumption 
works well, it cannot deal with either local or global 
changes in illumination. Other constancy 
assumptions such as the gradient constancy 
assumption (which assumes the spatial gradients of 
an image sequence to be constant during motion) are 
applied. A global change in illumination affects the 
brightness values of an image by either shifting or 
scaling or both. Shifting the brightness will not 
change the gradient; scaling affects the magnitude of 
the gradient vector but not its direction. 

The inverse compositional using the gradient 
constancy (GC) minimizes the sum of the squared 
differences (SSD) between the gradient of the 
current frame T∇ and the gradient of motion 
compensated frame I∇  
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with respect to to ∆p then updates the warp using 
(2). Performing a first order Taylor expansion: 
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Solving the least squares equation for ∆p gives: 
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where H is the Hessian matrix: 
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The GC inverse compositional algorithm using the 
gradient constraint then consists of iteratively 
applying (10) and (2). 

Not all constancy assumptions based on 
derivatives perform equally well, neither are they 
well-suited to estimate different types of motion. 
Over-constraining the problem and using redundant 
information allows for estimation robust against 
noise. Using the brightness constraint and the 
gradient constraint in the inverse compositional (BC 
GC) minimizes the sum of the squared differences 
(SSD) between the current frame T and the motion 
compensated frame I and also minimizes the sum of 
the squared differences (SSD) between the gradient 
of the current frame T∇ and the gradient of motion 
compensated frame I∇  

(
)

2
_

2

( ) ( ( ; )) ( ( ; ))

( ( ; )) ( ( ; ))

BC GC
x

E p T W x p I W x p

T W x p I W x p

= Δ − +⎡ ⎤⎣ ⎦

∇ Δ −∇⎡ ⎤⎣ ⎦

∑

 
(12) 

with respect to ∆p then updates the warp using (2). 
Performing a first order Taylor expansion and 
solving the least squares equation for ∆p gives: 
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where H is the Hessian matrix: 
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The BC GC inverse compositional algorithm using 
the brightness and gradient constraint then consists 
of iteratively applying (13) and (2). 

While the previous approach allows both the 
brightness constraint and the gradient constraint to 
compete for minimizing the error, another approach 
would combine the brightness and the gradient 
constraints using one quadratic error. The combined 
inverse compositional (BC+GC) minimizes the sum 
of the squared differences (SSD) between the 
brightness of the current frame T and the motion 
compensated frame I plus the gradient of the current 
frame T∇ and the gradient of motion compensated 
frame I∇  
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with respect to ∆p then updates the warp using (2). γ 
is a balancing constant. Performing a first order 
Taylor expansion and solving the least squares 
equation for ∆p gives: 
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where H is the Hessian matrix: 
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The BC+GC inverse compositional algorithm using 
the combined brightness and gradient constraint then 
consists of iteratively applying (16) and (2). 

4 MULTIPLE COMBINED 
BRIGHTNESS AND GRADIENT 
CONSTRAINTS 

The previous data constraints produced different 
results for each frame and some data constraints 
achieved better results for some frames while failing 
to compete at other frames. Therefore, a better data 
constraint would exploit the advantages of each data 
constraint in a combined constraint to yield better 
results. Consequently, we propose to combine the 
brightness constraint combined with the gradient 

constraint in equation (15) to compete with the 
gradient constraint in equation (8). The new 
proposed constraint multiple combined (CBG) 
achieved better results over all sequences applied 
when compared to ground truth. The new inverse 
compositional algorithm minimizes the sum of the 
squared differences (SSD) between the brightness T 
and the gradient T∇ of the current frame and the 
motion compensated frame I and its gradient I∇  
and also minimizes the sum of the squared  
differences between the gradient T∇ and the motion 
compensated frame gradient I∇  
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with respect to ∆p then updates the warp using (2). 
Performing a first order Taylor expansion solving 
the least squares equation for ∆p gives: 
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where H1 and H2 are: 
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                                                                              (20) 
The CBG inverse compositional algorithm using the 
multiple combined brightness and gradient 
constraint then consists of iteratively applying (19) 
and (2). 

5 EXPERIMENTS 

We performed our experiments on three synthetic 
image sequences that have ground truth: Yosemite 
sequence, Office sequence and Street sequence 
(www.katipo.otago.ac.nz/research/vision/). The 
algorithms have been implemented in Matlab on a 
1.5 GHz Intel Centrino. The moving objects 
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considered are the sky in the Yosemite sequence, the 
car in the Street sequence. The Office sequence does 
not have any moving objects. The balancing factor 
between the brightness and gradient γ is fixed for all 
sequences and all equations at 5 or 10.  All the 
algorithms require between 10 and 25 iterations to 
converge. Most importantly, the algorithms all 
converge equally fast. We only include the results 
using the affine motion. In this experiment we 
estimate the global motion of each scene using the 
five data constraints. Figure 1 shows the mean 
square error between the estimated global motion 
and the correct one using the five data constraints. A 
direct comparison between the angular errors of the 
method using the multiple combined constraints and 
the other constraints respectively, quantifies the 
improvement achieved with our technique. The 
Iterative reweighted least squares method is 
sufficient to reject outliers because the moving 
objects are small compared to the global motion in 
each sequence. Figures 1,2 and 3 shows that our 
method is globally the best compared to other 
approaches, however other constraints perform 
better in some frames. Therefore, in the future, we 
intend to investigate different robust functions that 
respect occlusion and other anomalies.  

Table 1 shows a comparison of the average 
angular error (AAE) of the estimated flow compared 
to the correct motion for each sequence using the 
five data constraints. The results are only for affine 
warp. The first thing to notice in Table 1 is that the 
best performing data constraint is the Multiple 
combined CBG. The second thing to notice is that 
the brightness constraint performs fairly compared 
to other constraints. In general, we expect the 
multiple combined data constraint to perform better 
because it uses a more sophisticated estimate of the 
Hessian. That expectation, however, relies on the 
assumption that the estimate of the Hessian is 
noiseless.  

In the next experiment we tested our data 
constraints on a real sequence. The sequence 
represents zooming by a walking person. 
Effectively, the brightness constraint gives the 
lowest mean intensity error among all other 
approaches. However, this small error does not 
reflect better estimation. Figure 4 shows the RMS 
intensity error for the Yosemite sequence with the 
BC having the smallest intensity error. 

Figure 5 shows the average time taken when 
processing each data constraint and we notice that 
our new data constraint is more complicated and 
requires more computation compared to the simple 

brightness constraint. This trade off between quality 
and time favours the brightness constraint. 
In the last experiment, we test the data constraints 
using different robust approximations to the inverse 
compositional algorithm. Dividing the frame into 
blocks and estimating the Hessian on each block of 
pixels allows for a robust inverse compositional 
without iterative computation to the Hessian. The 
final Hessian equals the sum of all block Hessians 
then the motion parameters are estimated. This local 
estimation to the Hessian reflects the strength of the 
data constraint globally. Figure 6 shows the result on 
the Yosemite sequence. 

 
Figure 1: Street sequence average RMS coordinates error. 

 
Figure 2: Yosemite sequence average RMS coordinates 
error. 

 
Figure 3: Office sequence average RMS coordinates error. 
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6 CONCLUSIONS 

We have described two data constraints for image 
alignment using the inverse compositional 
algorithm. When applied to synthesized image 
sequences, the method is capable of delivering 
smaller error rates compared to known data 
constraints. 
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Figure 4: Yosemite sequence average RMS intensity error. 
The small intensity error for the BC data constraint does 
not reflect correct motion compared to ground truth. 

 
Figure 5: Timing results computed for each data 
constraint. 

Table 1: RMS mean error for the five data constraints 
applied to street, yosemite and office sequence. 

Average 
RMS for 

Street Yosemite Office 

BC 9.59 561.97 169.64 
GC 10.14 584.34 159.99 
BC+GC 20.96 586.14 158.69 
BC_GC 8.18 588.66 155.88 
CBG 6.48 535.92 156.34 

 

Figure 6: Yosemite sequence average RMS coordinates 
error by local estimation of the Hessian on each block. 
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