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Abstract: Machine-learning based classification techniques have been shown to be effective at detecting objects in com-
plex scenes. However, the final results are often obtained from the alarms produced by the classifiers through a
post-processing which typically relies ad hocheuristics. Spatially close alarms are assumed to be triggered
by the same target and grouped together.

Here we replace those heuristics by a principled Bayesian approach, which uses knowledge about both the
classifier response model and the scene geometry to combine multiple classification answers. We demonstrate
its effectiveness for multi-view pedestrian detection.

We estimate the marginal probabilities of presence of people at any location in a scene, given the responses
of classifiers evaluated in each view. Our approach naturally takes into account both the occlusions and the
very low metric accuracy of the classifiers due to their invariance to translation and scale. Results show our
method produces one order of magnitude fewer false positives than a method that is representative of typical
state-of-the-art approaches. Moreover, the framework we propose is generic and could be applied to any
detection-by-classification task.

1 INTRODUCTION the classifier response model and the scene geometry,
which yields a more accurate detection with less false

Detection in images is often treated as a repeated clasositives.

sification problem. Given a two-class classifier which We demonstrate our approach on the problem of
predicts “target present” or “target not present” from multi-people detection using several widely spaced
an input signal and a candidgiese(such as location ~ cameras, as illustrated by Fig. 1. In this applica-
or scale), detection is achieved by applying it for any tion, a classifier is repeatedly applied to every possi-
possible pose and collecting the ones associated tdble 3D pose in different camera views, which results
positive responses. Such schemes often yield multiplein one map of classifier answers per camera view.
responses for every single true positive and therefore The several maps of classifier answers are then post-
require post-processing to refine the outcome. processed and combined by our algorithm to yield the

This step is usuallad hocand involves grouping  final detection.
and averaging similar poses corresponding to positive At the heart of our approach is a sophisticated ap-
classifications. Such a procedure is standard for de-plication of Bayes’ law. Using a model of the re-
tecting faces (Viola and Jones, 2001; Fleuret and Ge-sponses of a classifier given the true occupancy, we
man, 2002), cars (Zhao and Nevatia, 2001) and pedes-infer a posterior probability on the occupancy given
trians (Viola et al., 2003; Leibe et al., 2005). Some the classifier responses. We will show that this lets us
people tracking approaches also introduce temporalcombine the multiple and noisy classifier responses in
consistency to combine the classifier responses in aseparate camera views and infer accurate world coor-
stochastic manner (Okuma et al., 2004). dinates for our detections.

In this paper, we propose a statistically consistent ~ Our main contribution is thus a principled ap-
Bayesian approach for processing answers from re-proach for processing detection-by-classification re-
peated classification algorithms. As opposed to sim- sults and generating a final accurate detection out of
ple grouping-and-averaging or non-maximum sup- it. When applied to the problem of multi-people de-
pression schemes that are usually applied for this step tection using several cameras, our approach produces
our method takes into account knowledge about both one order of magnitude fewer false positives than a
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Input images Extracted sub-images  Classification score maps Detection score map Reprojected detections
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Figure 1: Overview of the detection process. Video sequeace acquired by widely separated and calibrated camehnas. T

ground plane of the tracked area is discretized into a finitaber of locations, depicted by the black dots in the leftmos

column. (a) We first extract from each image the rectangulbsisiages that correspond to the average height of a petson a

each of these locations. (b) We apply a classifier trainedd¢ognize pedestrians to each sub-image to estimate plitibabi

of occupancy in the ground plane from each viedependently(c) We use the algorithm that is at the core of this paper to

combine the individual classification score maps into alsidgtection score map. (d) We reproject into the originades

a person-sized rectangle located at local maxima of thegibty estimate.

used with any detection-by-classification application, I

whether single or multi view, for which a model of the

classifier response is available. Figure 2: Correspondence between camera views (left and
center pictures) and top view (right picture) is made thiroug
rectangles computed with ground plane homographies. We
calll¢(i) the rectangle on camera viethat has the average

2 RELATED WORK shape and position of a pedestrian standing at locatadn
the ground plane.

baseline method, that is representative of what is typ-
ically done by state-of-the-art methods. Moreover, l
the framework we propose is generic and could be I

We address a problem usually solved by simadk
hoc solutions. Therefore, even though our frame- 2006; Mittal and Davis, 2003), we are not aware of
work for processing detection-by-classification re- many attempts at combining the output of detectors
sults is generic, we compare it here to pedestrian de-across views to overcome the problems created by
tection algorithms, which is the application we chose occlusions in a principled way. In (Khan and Shah,
to demonstrate our method in this paper. Some of the 2006), the algorithm classifies individual pixels as
multi-view pedestrian detection works we reference background or part of a moving object and combines
below are close in spirit to our framework. these results across views by assuming independence
Until recently, most approaches to locating people given the presence of a pedestrian at a certain ground
in video relied on recursive frame-to-frame pose es- location. Hence, this scheme does not use a generic
timation. While effective in some cases, these tech- pedestrian detector based on a high-level model of sil-
niques usually require manual initialization and re- houettes and textures. Neither does it explicitly model
initialization if the tracking fails. As a result, there the fact that a detection in one view is influenced
is now increasing interest for techniques that can de- by the presence of distant pedestrians creating occlu-
tect people in individual frames. sions, which, as we will see, can trigger many false
A popular approach (Viola et al., 2003; Okuma alarms. By contrast, the Mracker (Mittal and Davis,
et al., 2004; Dalal and Triggs, 2005) is to use 2003) explicitly models the relation between mutliple
classification-based techniques to decide whether orpedestrians and the image at the pixel level, thus nat-
not image windows depict a person. Such global urally taking occlusions into account. However, this
approaches tend to be very occlusion sensitive andapproach relies on temporal consistency, and since it
bag-of-features approaches have proved more effec-is based on a tight integration between the handling
tive at detecting pedestrians monocularly in crowded of occlusions and a color-based appearance model, it
scenes (Leibe et al., 2005). can not be generalized to use a generic pedestrian vs.
However, with the exceptions of (Khan and Shah, background classifier.
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Camera view Top view

Table 1: Notation. g I

C number of cameras.

G number of locations in the ground plare £000).

Xy boolean random variable standing for the occupancy of
locationk on the ground plane.

I input image from camera

Ic(i) rectangular human size sub-window cropped from
camera viewc at ground location.
O(i,j) horizontal distance between the centerslgf) and

Ic(j) on camera vieve.

*,,,,,;

Figure 3: Generation of thelassification score maps$m-
ages (a), (b) and (c) show sub-windows extracted from the

ne(i) neighborhood of i on camera G, camera view at 3 r_andom Ioc_:ations_ of the groun_d plane.
{j #i,1c(j)Nle(i) # 0}. Classifiers are applied to sub-imade8) corresponding to
T.(i) sum of the responses of the binary decision trees at  every ground plane locatianimages depicting background
ground locationi in camera viewc, thus an integer (a) produce a low classification score for the correspond-
value in {0,...,Nr } whereNy is the number of deci- ing location. Images showing badly centered pedestrian (b)
sion trees. produce a slightly higher score and images featuring a well
T vector of all theTg(i). centered pedestrian (c) receive high score.

Q the product law with the same marginals as the real pos-

terior distributionP(-|T). Q(X) = 1%, Q(X). . : .
Eq expectation undeX ~Q. Eg(x) :f)in(X)dX tion score mapgsee third column of Fig. 1) as

gk the marginal probability 0Q, i.e. QX = 1). there are cameras and is described in §83.1.
|||l area of a sub-image. 2. The several classification score maps, generated
during step 1, are now combined into a final prob-
In contrast to the approaches described above, ability of occupancy map (called hereaftitec-
our method relies on classifiers applied on separate  tion score map such as the one of the fourth

views independently. We explicitly integrate occlu- column of Fig. 1. This represents an estimate
sion effects between alarms and quantitative knowl-  of P(Xi = 1[11,....1¢), the true marginal of the
edge about the classifier insensitivity to pose change ~ Probabilities of presence at every location, given
into a sound Bayesian framework to combine the mul-  the full signal.

tiple classifier answers and yield the final detection. We compare two approaches for the second step.

Section §3.2 describes the one, which is representa-
tive of what is usually done by state-of-the-art meth-
3 ALGORITHM ods. We refer to it as theaselinebecause it combines
the individual classification score maps without tak-
We start by giving an overview of our algorithm, be- ing into account the interactions between presence of
fore going into more details in the following subsec- pedestrian due to occlusion. By constrast, the second
tions. We use notations summarized in Table 1. approach takes into account potential occlusions and
In our setup, an area of interest is filmed @y knowledge about the classifier behavior and yields a
widely separated and calibrated cameras. We dis-substantial increase in performance. It is at the core
cretize the ground plane into a regular grid@fo- of our contribution and is discussed in §3.3.
cations separated by 25cm (Elfes, 1989), and com-
pute homographies that relate the ground plane to its3.1  Classification Score Maps
projections in the camera views. This way, we can de-
termine, for every camera viewand every location  \ye introduce the classifier we use for single-view

i, the sub-imagec(i), which roughly corresponds to - pedestrian detection and to compute our classification
the average size of a person that would be standinggcore maps.

at locationi of the ground plane, as shown on Fig. 2.
Our algorithm involves two main steps: 3.1.1 Classifier as a Pedestian Detector

1. For each camera and ground plane location
the algorithm extracts sub-imag€i). Classifiers During a learning step, we create a set of decision
based on decision trees are then applied to everytrees dedicated to the classification of rectangular im-
sub-imagdc(i), as shown on Fig. 3. These clas- ages into two classes: “person” or “background”. The
sifiers have been trained at recognizing pedestri- binary decision trees we use as classifiers are based
ans, and their answer on sub-imagé) can be on thresholded Haar wavelets operating on grayscale
interpreted as a rough probability of occupancy images (Viola and Jones, 2001). They are trained us-
of ground plane location, given the sub-image. ing a few thousands of images of different sizes, each
This first step thus produces as maalgssifica- of which represents either a pedestrian correctly cen-
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",;F is essentially what the product rule used in (Khan
) _ and Shah, 2006) does. It is more sophisticated than
ﬁ i a crude clustering and averaging in separated views,

since it assumes the conditional independence be-
tween the different views, given the true occupancy.
Figure 4: The 3 images on the left show ttlessification ~ Recall thatT(i) is an integer standing for the sum
score map®f a scene viewed under three different angles. of the trees’ answers at locatidron camera vieve,
The right image represents the corresponding ground truth. gnd T is the vector of allT(i). Formally, we have

tered in the rectangular frame, backgroundwhich

could be anything else. PXi=a[T) =PX=a|Tu(i),...,Tc(i)) @)

More specifically, for every tree, several hundreds _ __ P(X=a) . . To(V X =a) (2
of features of different scales, orientations and as-  P(Ti(i),..., Tc(i)) (M), Te®[Xi=0) 2)
pect ratios are generated randomly and applied to our P(Xi=0a) )
training set. The one that best separates the two pop- = BT, i). ... To(1)) [1P(Te() [ X =a). 3)
e, .

ulations according to Shanon’s entropy is kept as the
root node and the training set is split and then dropped  Equality (1) is true under the assumption that only
into two similarly-constructed sub-nodes (Breiman the responses of the trees at locatidming informa-

et al., 1984). This process is repeated until either the tion about the occupancy at that location, equality (2)
personandbackgroundsets are completely separated is directly Bayes’ law, and equality (3) is true under
or it reaches the tree maximum depite= 5. Our clas-  the assumption that given the occupancy of location

sifier consists of a forest (Breiman, 1996)\f = 21 i, the tree’s responses at that location from different
decision trees built in this manner. camera views are independent.

We then model the probability of the trees’ re-
3.1.2 Computing Classification Score Maps sponse at a certain point given that it is occupied

(a = 1) by a density proportional to the number of
The algorithm iterates through every camera and trees responding at that point, and the probability of
ground location, extracts a sub-image correspondingresponse when the location is empty=£ 0) by a con-
to the rectangular shape of human size, and takes itsstant response. This leads to a final rule that multiplies
score to be the number of trees classifying the sub-the responses of the trees from the different view-
image as “person” (Fig. 3). points to estimate a score increasing with the prob-
If we see the individual tree responses as many ability of occupancy at that point.
i.i.d. samples of the response of an ideal classifier,
the classification score in locations an estimate of 3.3 Principled Approach
the probability for such a classifier to respond thiat
actually occupied given the subimage at that location. the paseline method of the previous section assumes
Hence, itis a good indicator of the actual occupancy. that given the true occupancy at a certain location,
This produces, for each camera, a map such as thghe responses of the trees at that point for different
ones depicted by the third column of Fig. 1 or by the jewpoints are independent from each other, and are
three left pictures in Fig. 4, which assigns a voting not influenced by occupancy at other locations. As
score to every ground location. As shown on those spown in Section §4, it usually triggers many false
figures, detected pedestrians appear as “cone shapes;|arms. By contrast, our principled approach relies on
in the axis of the camera, on the classification score g a5sumption of conditional independence of the tree

maps. This is dug to the hi_gh tolerance in. §cale and responses at any locationgiven the occupancy of
limited tolerance in translation of the classifiers, and iye )l grid (X1,...,Xs), and not anymor&; alone.

hinders precise people location. Hence the need of ang,ch an assumption is far more realistic, and leads to
extra step, which combines classification score mapsap glgorithm which takes into account the long-range
from different camera views into one accurate detec- jnfiyence of both the occlusions between pedestrians
tion score map. Sections §3.2 and 83.3 present tWoanq the presence of an individual on the classification
possible methods for this operation. score maps, due to the invariance of the classifiers.

3.2 Baseline Approach 3.3.1 Conditional Marginals

Thebaseline approachonsists of multiplying the re-  We want to compute numerically, at every location
sponses of the trees from different viewpoints. This i of the ground planeR(X;| T) the conditional mar-
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ginal probability of presence given the response of the We end up with an expression of each marginal as a
classifiers at all locations. We will show that comput- function of the other marginals, thus a large system of
ing this quantity require®(T | X), the tree response equations to solve.
model given the ground occupancy. It is learnt by ap- This result is intuitive: the conditional marginal
plying the classifier on sequences for which we have a probability of presence at locatidngiven the trees’
ground truth, and is described in §3.3.2. As explained answers can be computed by fixiXg sampling all
below, there is no possible analytical way to obtain the otherX; according to the current estimate of Q,
P(X;| T) given our underlying assumptions, hence the and averaging the corresponding probability that the
need to evaluate it numerically through an iterative trees respond what they actually respond. The more
process. At each new iteration, the marginal proba- the value associated #&§ makes the actual tree re-
bilities of presencé(X; | T) for all ground locations  sponses likely, the highest its probability.
i are reevaluated using their previous estimate, untii  We get rid of the unknowR(T) quantity by com-
conli/ergencex. g " puting

et j#i enote the vector P(T)P(Xi =1|T)
X1, X1, %41, -, XG)s the roduct PX=1[T)=
I(av%/ witﬁ| %hé%amexer%argingls as thep posterior ( ) P(T)P(X‘_:OH) +P(T)P(Xi=1[T) _
Vi, QX = 1) = P(X = 1| T) andEg the expectation In the end, we obtain a large number of equations
underX ~ Q, as summarized in Table 1. To obtain relating theP(X;=1|T). We can iterate these equa-
a tractable form forg® = P(Xi = a|T), we first  tions to estimate the conditional marginals. After ini-

marginalizeX i tialization of all gjs to a prior value, each of these
o = xz P(Xi = o T, X4 )P(Xj4l[T) equations can be evaluated numerically by sampling
i7 according to a product law with the current esti-
= E[PX=a|T,Xj)|T], 4 mates as marginals. Experimental results show that

d with such a choice, since the sampling accumulates on
the configurations consistent with the observations, a
few tens of iterations are sufficient to provide good
rnumerical precision. Fig. 5 shows four iterations of

whereT is equal to the observed trees’ answers an
the only random quantity in the expectationXs
We then apply Bayes'’ law to make the model of the

trees’ answers given the true occupancy state appeal ]
9 pancy PP the detection score map convergence process.
of — g| POIX =0, X POX =0, X i)
=

POGamPm 1] ) - ,
However, there is no analytical expression for (5), and
we thus have to estimate the expectation numerically i o
by sampling theX;..; and averaging the correspond- :
ing probability. To this end, we substitute the expecta-
tion under the true posterior law by a re-weighted ex-
pectation under a product la@ with the conditional
marginals as marginal

iteration #2  iteration #5 iteration #8 iteration #10

Figure 5: Example of convergence of a detection score map
during the iterative estimation.

q 3.3.2 Tree Response Model
_E [P(T\Xi =0, Xjzi) PG =0, X jzi) P(Xji \T)}
; P(Xjx [T)P(T) QXjzi) At the core of Equation (7) above B(T | X), the re-
_E |:P(T‘Xi:G,Xj7éi) P(Xi:mx]‘;éi)} © sponses of the trees given the true occupancy state,
Q P(T) Q(Xj4) ’ whereX = (Xg,...,Xg). It must account for effects

: _ such as occlusion and classifier invariance. Assum-
Such a formulation ensures that, when we estimate theing that the trees’ responses are independent given the

expectation numerically, the samplingXf..; will ac- true state, we write
cumulate on the occupancy configurations consistent :
with the tree responses, thus leading to a far better es- P(T[X) = El P(Te(i)[X)- (®)

timate of the averaging with a reasonable number of

samples. Finally we simplify the expression by as- As shown in Fig. 6, the trees’ response at posiiion

suming that the prior distribution is a product law (i.e. can only be influenced by ground locatignwhose

P(X) = |‘|iG:l P(X)) corresponding sub-imadi ) intersects thé&(i). We
call such locations theeighborhood g(i) of i on

Eo|P(T [X=a,Xx) I—I P(X;) @) camera viewc. Thus, Equation (8) becomes

Lo |- P(TIX) = [TP(Teli) X Xngw)): — (9)

. P(§=a)
=R
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where we simply ignore positions outsidg(i). The define a pseudo-distance functigfi, j) = ||lc(i) N
classifier response at locatiboan thus be interpreted — Ic(j)||/I[lc()]| - (L= |I1e(D) N le(D)|I/I11e())]]) with re-
as a function of the presence of individuals in the spect to the camera view, to characterize the relation-
neighborhood of, as opposed to the whole scene. ship between the relative positionioénd j, and the

In the rest of the section, we show how to express trees’ answer.
(9) numerically in some simple particular cases, and  We then derive the tree response model for this
we then extend it to the general case, thus deriving alast case as functlodl(t y(i, j)), which is depicted
model for the classifier response. by Fig. 7 (b). It is also computed empirically as his-

tograms from the training samples.
Empty Neighborhood. If the neighborhood of is

empéy (F'?- 8, (ar)1 and (b)), the t.ffees’ answer me-  \ultiple Individuals in the Neighborhood. It is
?gnl}s_ only on the occupancy of Preciselyva € not trivial to extend the simplified model with at most
o . . one person in the neighborhood to the general case,
P(Te(l) =t]Xi =a,vj €ne(i), Xj =0) = ba(t).  (10) because the number of neighbor locations is of the
The fUnCtlonaH,lo andu]_ are modeled as hlstograms order of 100, which |mp||es a huge number of oc-
estimated on training samples, and shown on Fig. 7.a.cypancy configurations. We therefore simplify our
o T T model by assuming that only the occupied location
I—— whose sub-window intersects the magi) will in-
fluence the classifier answer inon camera vieve.
We denote byJi(i) the occupied location from the
neighborhood of, whose corresponding sub-window
covers the modg(i)

Je(i) = argmax [[lc(i)nlc(j)f-  (11)
jenc(i), Xj=1

Figure 6: Left image shows the neighborhawgdi) in cam-

h oY L : This assumption makes the model tractable and has
era view and right image shows it in top view.

been found to hold empirically. Finally, we obtain as
One Individual in the Neighborhood. We now response model when the neighborhood is not empty,
consider the case where only one person is presentwhether there is a single individual or several of them:
in the neighborhood df at locationj. If locationi is . . .

empty, sub-imagé(i) will contain some body parts P(Te(i) =t|X =0,3j e nc(i),X; =1)

of the person present at IocatiQrin.eddition tol b_ack- = Wp(t,a(i, (1)), B(i, (1)) (12)
ground. This influences the classifier answei; in a
way that depends on the “distance” betwégh) and P(Te(i) =t|X =1, 3j e ng (i), X; = 1)
lc(j) in the image. ’ A
To characterize this pseudo-distance be- = H(ty(, %)) (13)

tween sub-images, we define functiou:éi ') =
MO/ and B, ) = (i, ))/+/[Me(i)
whereal(i, j) quantifies the S|ze ratlo betweda{(| 4 RESULTS
andl¢(j), andf(i, j) their misalignment.d¢(i, j) is
described in Table 1. To test our approach, we acquired 30 minutes of video
With this, we obtain the tree response model sequences using three outdoor cameras with overlap-
Ho(t,a(i, j),B(i,j)), which is computed as histograms ping fields of view. We used a 2 minutes sequence to
from the training samples. Itis plotted on Fig. 7 (¢).  train the system and learn the trees response model of
We finally model the case where locatibis oc- § 3.3.2 and the remaining to test it. To demonstrate
cupied, with one person present in its neighborhood the generality of the model, we also show results in
at locationj. For this purpose, we have to distinguish indoor sequences that were not used for training pur-
positions from the neighborhood located “behing” poses. Finally, we show that our method yields mean-
that is, further from the camera thar and those lo-  ingful results even from single views.
cated closer to it. We denote the former setnbyi)
and the latter bynf (i) and illustrate them geometri- Baseline vs. Principled Approaches. To compare

cally in Fig. 8. the approaches of § 3.2 and § 3.3, we randomly se-
Wheni is occupied, positions from; (i) do not lected 100 frames of the outdoor sequences, manually
influence the classifier answer de('), but posi- labeled the true pedestrian locations, and compared

tions fromnZ (i) do. As for the previous case, we them to both their outputs.
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Figure 7: Tree response model. (a) shows the classifier amistebutions for a forest of 31 trees, (b) plots the dimition
of the classifier answer as a functionyf, j) and (c) displays the average trees’ answer as a functiaripf) andp(i, j).

(b) (d)

Figure 8: The images above illustrate the four cases useldeblyee response model for the grid positipcolored in white.
Grid positions highlighted in gray represent the neighbodnc(i) of positioni (see also Fig. 6 right, for a top view). The
visible neighborhoodh{ (i) is shown in light gray, whereas the neighborhagdi) located beyond positionis painted in
dark gray. In case (a), neither locationor its neighborhood is occupied. In case (b), locati@moccupied, but itwisible
neighborhoodh (i) is empty. Note that there might or might not be peopledr{i). In case (c), locatiom is empty, but
there is at least one person in its neighborhogd). Finally in case (d), locationis occupied, as well as at least one of the
locations inng (i). As in case (b), it does not matter whethmer(i) is occupied.

The result depicted by Fig. 9. shows that the Indoor and Outdoor Sequences. Fig. 10 depicts
principled approach yields much better estimates of our results in the outdoor and indoor sequences. In
the number of people than the baseline approach,both cases, people are correctly detected in spite of
which triggers many false positives. When setting very real difficulties: In the outdoor images, there
the post-processing threshold so that both approachesre strong shadows, which could create problem for
have about 10% of false negatives, our approach out-methods based on background subtraction but do not
performs the baseline one, by producing only about affect our results. The occlusions in the indoor im-
0.06% of false positives instead of 0.81%. This re- ages are very significant but are nevertheless handled
sult is depicted by the ROC curves of Fig. 9.b. Since correctly, especially when one recalls that we do not
our method relies on a strong model and producesenforce any form of temporal consistency and treat
very peaked occupancy probabilities, detection fail- every time frame independently.
ures cases produce incorrect occupancy maps. This Thanks to the tree response model of Sec-
explains the crossing of the ROC curves at very high tion 3.3.2, we can retrieve occupancy maps from
detection rates. the noisy classifier answers, even when using single

views as shown in last raw of Fig. 10. The procedure
08 [ Baseline approacn —— 1 oS /— 1 used is the same as in the multi-view case, except that

or i we do no longer multiply tree’s answers from multi-
1 ple cameras in Equation 8. Occlusions are no longer
04 1 handled, as evidenced by the fact that a half-hidden
wal 1 ozr Baselne approach person in the second image is missed. Nevertheless,
-5 8 5 10 1‘5 20 (1Je-04 0.301 0.‘01 E;,l 1 the reSUItS remaln meanlngfu"

Error in number of people detections False positives

() (b)

Figure 9: Comparing the performance of the baseline and 5 CONCLUSIONS
principled approaches. (a) Error distribution in the esti-
mate of the number of people present in the scene. (b) ROC o . .
curves for the two methods. These graphs demonstrate that/e have shown that explicitly computing marginal
the principled approach truly provides a better estimate of probabilities of target presence given classifier re-
the number of people present in the scene, and a better falsesponses is more reliable and accurate than simply
positives vs. false negatives ratio. averaging the responses across views for multi-view

o
I

True positives
o
o
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2

=

77
Figure 10: Results of our algorithm on real video sequen&esh one of the first three rows shows several views taken at
the same time instant from different angles. Boxes are éacah local maxima of the estimated probabilities of occapan
The last column depicts the corresponding detection scapebafore thresholding. The last row shows two detectionli®es
obtained from single images.

people detection purposes. This is especially true (1984). Classification and Regression Tree€hap-

in challenging situations with complex interactions man & Hall, New York. ) )

between true alarms due to occlusion and very low D@lal. N. and Triggs, B. (2005). Histograms of Oriented
. in thdPelassiiil® resnghses. BYper- Gradients for Human Detection. BVPR

metric accuracy in the ¢ p : Per-Elfes, A. (1989) Occupancy Grids: A Probabilistic Frame-

iments show that this method allows for a reduc- work for Robot Perception and NavigatiofPhD the-

tion of one order of magnitude of false positives. sis, Carnegie Mellon University.
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