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Abstract:  Over smoothness restricts the application of PDEs in the field of dense disparity map reconstruction, 
because disparity map reconstruction usually requires preserving discontinuousness in some areas such as 
the boundaries of objects. To preserve disparity discontinuousness, this paper adopts two strategies. Firstly, 
ground control points (GCPs) are introduced as the soft constraint. Secondly, this paper designs a structure 
of smoothness part in energy functional, which can preserve discontinuousness effectively. Moreover, the 
adjustable parameters in the smoothness part advance its robustness. In experiments, we compare proposed 
method with graph cuts method and prove that PDEs is also a useful solution for disparity map 
reconstruction and has the advantage of dealing with smooth images. 

1 INTRODUCTION 

Dense disparity map reconstruction based on two 
intensity images is the fundamental research in 
stereo vision. It can be described as matching each 
point in one image with its correspondent point in 
the other one. According to the epipolar constraint, 
all possible correspondent points lie in the same line. 
Thus, the matching relationship can be described as 
the disparity surface D(x,y). 

Over the years, numerous algorithms with energy 
functional optimization have been investigated in 
dense reconstruction via two or more images. In 
order to find the best disparity surface, many 
researches focus on functional optimization. Graph 
cuts and belief propagation, as two discrete 
functional optimization methods, have become two 
mainstream methods and won academic recognition 
(Marshall and William, 2003). In the field of disparity 
map reconstruction, the top contenders for the best 
disparity map estimation, on the most common 
comparison data, either use belief propagation (Sun 
et al., 2003) or graph cuts (Boykov et al., 2001). 
Many researches discuss the application of graph 
cuts (Roy and Cox, 1998; Birchfield and Tomasi, 
1999; Kim et al., 2003) and belief propagation (Sun 
et al., 2003; Klaus et al., 2006; Frey et al., 2002; 
Felzenszwalb and Huttenlokcher, 2006) in disparity 
map reconstruction. Two papers (Kolmogorov and 
Zabih, 2004) and (Boykov, 2001) play the important 

role in the theory and application of graph cuts. In 
(Kolmogorov and Zabih, 2004), the author gives a 
precise characterization of what function can be 
minimized via graph cuts, and in (Boykov, 2001) the 
author introduces two efficient approximation 
algorithms to find a local minimum based on graph 
cuts. In paper (Sun et al., 2003; Frey et al., 2002; 
Felzenszwalb and Huttenlokcher, 2006), the authors 
propose some fast and effective approximation 
algorithms for belief propagation. Overall, two 
methods have been studied broadly and can be 
considered as comparatively mature algorithms in 
disparity map reconstruction. This paper harvests 
considerable profits from their works. 

PDEs mothed, as a continuous functional 
optimization method, has been applied successfully 
in image segmentation (Aubert et al., 2002; Maso et 
al., 1992; Kass et al., 1988), 3D reconstruction 
(Faugeras and Keriven, 1998; Deriche et al., 1997; 
Faugeras and Keriven, 2002), and image recovery 
(Aubert and Vese, 1997). However, compared with 
graph cuts and belief propagation, PDEs has not 
been applied broadly in the disparity map 
reconstruction. The PDEs method always assumes 
that images can be approximately considered as 
continuous functions. Regrettably, the assumption 
often can not be satisfied in the disparity map 
reconstruction, since the ultimate disparity map 
result needs to preserve discontinuousness in some 
disparity mutation areas such as the object’s 
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boundaries. Thus, PDEs method performs very well 
in those fields where images are fit to be considered 
as continuous function but is not very effective in 
disparity map reconstruction. This reason leads to 
fewer researches on PDEs application in this field 
than graph cuts and belief propagation. 

Since PDEs method has its advantage in dealing 
continuous situation, this paper still adopts this 
method to estimate the disparity map. We hope to 
benefit from its advantage and avoid its drawback. 
Although we assume that images are continuous 
functions, the disparity map calculated via images 
can still generate discontinuousness to meet the 
expected disparity map. Robert and Deriche (Robert 
and Deriche, 1996), in order to preserve 
discontinuous boundaries, design the smoothness 
function to satisfy that all points should diffuse 
mainly in the orthogonal direction of disparity 
gradient. Alvarez L. et al. (Alvarez et al., 2000) use 
the smoothness function introduced by Nagel and 
Engelmann which constrains the diffuse direction 
mainly in the colour gradient direction. Their works 
are to some extent effective to preserve 
discontinuousness and enlighten us a lot.  

In order to preserve discontinuities better, this 
paper adopts two strategies: ground control points 
(GCPs) are applied as the soft constraint conditions 
and the image gradient information is introduced to 
control the penalty strength in the smoothness 
function. 

For the former, the ground control points (GCPs) 
have two features. Firstly, they usually appear in the 
areas where the colour changes suddenly, for 
example, the boundaries of objects. Secondly, the 
disparity value in GCPs can be gained by some 
simple local matching algorithms such as SSD, 
ZNCC, and have high reliability. So, proposed 
method utilizes the prior information of GCPs to 
modify the common cost part of the energy function. 

For the latter, the smoothness function serves to 
smoothness the disparity surface by penalizing the 
variation between neighbour points. However, some 
variation should be preserved or not be penalized if 
the variation appears on the object boundaries. The 
image gradient information is used to distinguish 
boundaries or non-boundaries. Thus, we introduce 
the image gradient information to control the penalty 
strength. To satisfy different images, we design a 
general mathematical model for the smoothness 
function, which contains several adjustable 
parameters for different images. 

Finally, according to variational principles, the 
Euler-Lagrange equations are deduced. Through 
iteratively numerical solving Euler-Lagrange 
equations, the disparity map solutions can be 

calculated. For lessening the probability of local 
minimum, the scale-space approach is utilized as 
(Alvarez et al., 2000; Alvarez et al., 1999). 

The paper is organized as follows: In Section 2, 
we describe how to detect the GCPs. In Section 3, 
the energy functional is introduced. The common 
cost function will be modified based on the 
information of GCPs. We analyze the conditions that 
should be satisfied by the smoothness function and 
propose a general mathematical model for the 
smoothness function. In Section 4, the numerical 
schemes of Euler-Lagrange equation and the scale-
space approach are represented. In Section 5, the 
experimental results are presented to validate the 
GCPs method. This paper ends with a brief 
discussion and conclusion in section 6. 

2 GCPS 

GCPs can provide some more reliable information 
for matching. For preserving the boundary 
discontinuousness, we want to find out some GCPs 
at the Image’s boundaries. This method may be a 
little similar as the method in (Kim et al., 2002). 
Firstly, all the images are processed by the LOG 
filter to generate the new images. Secondly, the new 
images are filtered by a defined filter with N 
directions as figure 1, which are depicted in (1). 

1 sin cos sin cos 1
( , )

0

x y if x y
f x y

otherwise
θ

θ θ θ θ− − − <
=
⎧
⎨
⎩

  (1)

To avoid the problem that filters are across the 
object boundaries, we perform local matching using 
three filters for each orientation, where the centers of 
the filters are shifted to the three different positions 
as figure 2, and only the best filtering result (the 
minimum) is preserved. Thus, each pixel contains N 
results. All pixels are classified into two groups 
(homogeneous group and heterogeneous group). If 
the maximum of the pixel’s N results exceeds a 
certain threshold, this pixel is labeled as 
heterogeneous pixel; otherwise, it is labeled as 
homogeneous pixel. All the GCPs will come from 
the heterogeneous pixels. Thirdly, only those pixels 
which satisfy the constraint of consistent bi-
directional matching can became GCPs. It is 
operated as follows: in the disparity range, each 
heterogeneous pixel in the left image is matched 
with the pixel in the right image according to ZNCC 
measurement. Then, if the best matching pixel in the 
right image is a heterogeneous pixel and its best 
matching pixel in the left image is consistent, this 
pixel can be defined as the GCP and its disparity 
value will be recorded. 
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Figure 1: Examples of the rod-shaped oriented filters in 
interval of 15o. 

 
Figure 2: Diagram of the three shiftable oriented filters, 
where the centers of the filters are marked in black. 

3 THE ENERGY FUNCTIONAL 

Generally, the energy function contains two parts in 
(2) 

( ) ( ( , ), , ) ( ( , ))E D C D x y x y S D x y dxdyλ
Ω

= + ∇∫∫      (2)

where the ( )C •  is the cost function, the ( )S •  is 
the smoothness function and Ω  is the image 
domain.  

3.1 The Cost Function 

According to the assumption of Lambertian surfaces, 
i.e. of objects that look equally bright from all 
viewing directions, the two points accurately 
matched have the similar intensity in general. Thus, 
we define the cost function as follows: 

( )2

1 2( , , ) ( , ) ( , ( , ))C D i j I i j I i j D i j= − −       (3)

where nI  is the intensity in image n =1,2. We 
assume two images have been rectified so that the 
disparity only appears on the y  axis. Equation (3) is 
the common frame of the  cost part.  

However, the expression of equation (3) is 
inclined to lead to local minimum. Because it is high 
possible that the grey value of one point in left image 

1I  is equal to the grey value of more than one points 

in 2I . Several disparity values of a point may make 
the cost part equal to zero. When a certain wrong 
value of disparity in one point cause the cost part is 
zero, the result may be a local minimum. 

In order to reduce the possibility of the local 
minimum, we utilize the prior knowledge of GCPs to 
flexibly limit the cost function. If a point has been 
established as GCPs, the real disparity at this point 
should be close to the disparity value ,i jD  calculated 
during finding out GCPs. The longer the distance 
between them is, the larger the cost value is. Thus, 
we can design the cost function as (4). The frame 
can ensure that only one minimum in GCPs. Thus, to 
some extent, the frame can reduce the possibility of 
local minimum. 

2
,

2
,

2
1 1

( , )

( , )
( ( , ), , ) ( , )1

( ( , ) ( , ( , )))

i j

i j

D i j Da
b

i j GCPs
C D i j i j D i j D

b

I i j I i j D i j otherwise

⎧ ⎛ ⎞−⎪ ⎜ ⎟
⎪ ⎝ ⎠ ∈⎪= ⎨ ⎛ ⎞−
+⎪ ⎜ ⎟

⎪ ⎝ ⎠
⎪ − −⎩

 
   (4)

3.2 The Smoothness Function 

The smoothness function is necessary so as to 
smooth the disparity surface, since it can be used to 
limit the excessive coarseness of the disparity 
surface or the discontinuities of ( , )D x y . So, it 
should be penalized if too large, and the larger the 
variation value is, the more the penalty is. However, 
the variation at different points should not be 
penalized as the same rules. For example, the 
variation appearing at the boundary is rational 
because we expect it to be discontinuous there, while 
the variation appearing at non-boundaries should be 
penalized severely. Thus, we utilized the image 
information to control the penalty strength and 
emphasis. 

( , )D x y∇  represents the smoothness feature of 
disparity surface. The penalty 
about ( , )D x y∇ contains two terms: the penalty 

about D∇  and the penalty about D I

I

⊥

∇ • ∇

∇
. The 

former means the disparity surface is required to be 

as smooth as possible. D I

I

⊥

∇ • ∇

∇
 presents the 

projection of the gradient disparity in the direction of 
the image gradient. So the penalty about it means 
that the gradient direction of disparity is supposed to 
be consistent with the image gradient direction. If a 
point locates in the non-boundary, we more 
emphasize the penalty about D∇ in this point than 
its disparity gradient direction. If a point locates in 

the boundary, the penalty about D I

I

⊥

∇ • ∇

∇
 is more 

important. The penalty emphasis and strength in a 
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point (x, y) depends on whether the point is at the 
boundary or not. For convenience, we utilize the 
image gradient information to sign whether the point 
is at the boundary (actually, there is other image 
information which can be used to sign the boundary, 
and we will discuss them in our future work). 
Usually, the boundary is linked with image gradient 
module. 

Summarily, the smoothness function is described 
as this model: 

1 2
( , ) ( ) ( ) ( ) ( )

D I
S D I I S D I S

I
α β

⊥∇ • ∇
∇ ∇ = ∇ ∇ + ∇

∇
   (5)

where 1( )S D∇ presents the function of D∇ , such 

as 2
1( )S D D∇ = ∇ ; 2 ( )

D I
S

I

⊥∇ •∇

∇
 is similar 

to 1( )S D∇ ; ( )Iα ∇  presents the weight of the 

penalty of 1( )S D∇  and ( )Iβ ∇  presents the weight 

of the penalty of 2 ( )
D I

S
I

⊥∇ •∇

∇
.  

Estimating ( )Iα ∇  and ( )Iβ ∇  is the key of 
estimating the smoothness function. We depict the 
constraint conditions of ( )Iα ∇  and ( )Iβ ∇  as below. 
Firstly, ( )Iα ∇  and ( )Iβ ∇  must be regularized: 

( ) ( ) 1I Iα β∇ + ∇ =      (6)
0>a   0>β      (7)

The larger D∇ at a point is, the more probably it 
is at the boundary. The opposite is similar. Thus, we 
can get: 

( ) ( )

( ) ( )

a I I if I b

a I I if I b

β

β

∇ > ∇ ∇ <

∇ < ∇ ∇ >

⎧
⎨
⎩

    (8)

where b is considered as the threshold to estimate 
whether the point (x, y) is at the boundary or not. 
Naturally, we can assume 

0

0

I

I

α

β

∂
<

∂ ∇

∂
>

∂ ∇

⎧
⎪⎪
⎨
⎪
⎪⎩

      (9)

In addition, for decreasing the ambiguousness 
near the threshold, we require that the weight ( )Iα ∇  
rapidly descends at a gradually fast speed while I∇  
approaches the threshold from left, and the 
descending speed begins to lower while I∇  leaves 
the threshold from right. Thus, we add additional 
conditions about α and β : 

2 2

2 2

2 2

2 2

0, 0

0, 0

if I b
I I

if I b
I I

α β

α β

⎧ ∂ ∂
< > ∇ <⎪

∂ ∇ ∂ ∇⎪
⎨
∂ ∂⎪ > < ∇ >⎪∂ ∇ ∂ ∇⎩

     (10)

Based on all conditions above, ( )Iα ∇ and ( )Iβ ∇  
can be approximately figured as figure 3, where 

0 0
lim ( )
I

r Iβ
∇ →

= ∇  and lim ( )t I
r Iβ

∇ →∞
= ∇  

 
Figure 3: Sketchy map of ( )Iα ∇  and ( )Iβ ∇ . 

Then, we define the model of ( )Iβ ∇  as (11) and 
( )Iα ∇  can be calculated through ( ) 1 ( )I Iα β∇ = − ∇  

according to (6). 

( )
m

m

e I f
I

I g
β

∇ +
∇ =

∇ +
     (11)

where e, f, g, and m are constants. According to 
conditions (6)-(9), these results are in (12). 

0

0
0

2 1
1 2
2 1
1 2

t

mt

mt

e r
r

g b
r

r
f b r

r

⎧
⎪ =⎪
⎪ −⎪ =⎨ −⎪
⎪ −

=⎪
−⎪⎩

and  00,0 1tm r r> < < <       (12)

where m is decided by the additional conditions (10). 
0

0 1
t

t

r r
m

r r
−

=
+ −

 and 0 1tr r+ >      (13)

4 SOLVING EULER-LAGRANGE 
EQUATIONS 

According to the variational principles, D(x, y) as the 
minimum of (1) must fulfill the Euler-Lagrange 
equations and boundary conditions: 

( ) 0

cos sin 0

x yD D D

x y

C S S
x y

S S
D D

λ

ν ν

∂ ∂⎧ − + =⎪ ∂ ∂⎪
⎨ ∂ ∂⎪ + =
⎪ ∂ ∂⎩

 
   (14)
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where 
cos
sin

ν
ν

⎡ ⎤
⎢ ⎥
⎣ ⎦

 represents a vector normal to the 

boundary of Ω . Equation (14) is solved by the 
gradient-descent method or, equivalently, by using a 
dynamic scheme as (15) 

( , , ) ( )

cos sin 0

x yD D D

x y

D t x y C S S
t x y

S S
D D

λ

ν ν

∂ ∂ ∂⎧ = − + +⎪ ∂ ∂ ∂⎪
⎨ ∂ ∂⎪ + =
⎪ ∂ ∂⎩

 
   (15)

where t is an artificial time. 
We discretize the equation by finite differences. 

All spatial derivatives are approximated by central 
differences, and for the discretization in t  we use 
explicit scheme as (16). 

( , , ) ( , , ) ( ( , , ), , )

( ( ( , , )) ( ( , , )))yx

D

DD

D t t i j D t i j C D t i j i j
t

SS
D t i j D t i j

x y
λ

+ Δ −
= −

Δ
∂∂

+ +
∂ ∂

 
   (16)

To avoid the local minimum, a linear scale-space 
approach is applied. Typically, we may expect that 
the algorithm converges to a local minimum of the 
energy functional that is located in the vicinity of the 
initial data. To avoid convergence to irrelevant local 
minimum, we embed proposed method into a linear 
scale-space framework (Robert and Deriche, 2000). 
We let 1 1: *I G Iσ

σ=  and 2 2: *I G Iσ
σ= , where * is the 

convolution operator, and Gσ  detects a Gaussian 
with standard deviation σ . We start with a large 
initial scale 0σ . Then we compute the disparity 

0
Dσ  at 

scale 0σ  as the asymptotic state of solution using 
some initial approximation. Next, we choose a 
number of scales: 1, (0,1)n nσ ησ η−= ∈ , and we get the 

i
Dσ  at each iσ  with the initial of 

1i
Dσ −

. Overall, we 
can modify the iterating formation as: 

( , , ) ( , , ) ( ( , , ) , , )
i i

i iD
D t t i j D t i j C D t i j x y

t

σ σ
σ σ+ Δ −

= −
Δ

( ( ( , , )) ( ( , , )))yx i i
DD SS

D t i j D t i j
x y

σ σλ
∂∂

+ +
∂ ∂
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( ( , ) ( , ( , )))

i

i
i

i i i

i j

i j

D i j Dk
g

i j G C P s
C D i j i j D i j D

g

I i j I i j D i j o th erw ise

σ
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σ σ σ

⎧ ⎛ ⎞−⎪ ⎜ ⎟
⎪ ⎝ ⎠ ∈⎪= ⎨ ⎛ ⎞−

+⎪ ⎜ ⎟
⎝ ⎠⎪

⎪ − −⎩

1 (0, , ) ( , , )i iD i j D i jσ σ+ = ∞  

(17) 

5 RESULTS 

In this section, we compare proposed method 
without considering occlusion with graph cuts 
method. All the experiment images come from the 
website http://vision.middlebury.edu/stereo. The 

images “cloth1” and “cloth3” are contained in the 
2006 datasets, the image “Teddy” is in the 2003 
database and the image “Tsukuba” is in the 2001 
database. In order to evaluate proposed method, the 
recognized evaluations (Scharstein and Szeliski, 2001) 
are defined as (18) and (19).   

1
2 2

( , )

1( ( , ) ( , ) )
x y

R disparityMap x y groundTruth x y
N

= −∑  
   (18)

( , )

1 ( ( , ) ( , ) )
x y

B disparityMap x y groundTruth x y
N

= − > Δ∑
 

   (19)

where N is the total number of pixels, Δ is a 
disparity error tolerance. For the experiments in the 
paper we use 1Δ = . R denotes the average error 
value and B denotes the ratio of the “bad pixels” in 
the disparity map. The consequences are showed in 
table 1 and figure 4. In the results of proposed 
method, the boundaries of objects can be 
distinguished clearly. It indicates that the proposed 
method owns to the ability of preserving 
discontinuousness.  

Table 1 presents that the average error value R in 
proposed method is lower than graph cuts method. It 
is mainly because that PDEs method has the 
characteristic of keeping continuousness. We list the 
detail comparison in figure 5. In some continuous 
areas, the proposed method can keep the disparity 
map continuous better than graph cuts method. The 
proportion of “bad pixels” in our method has no 
advantage comparing with graph cuts methods, 
especially in the image “Tsukuba” with much 
discontinuousness. The comparison in “Tsukuba” of 
table 1 can reflect this point. 

Table 1: Error comparison. The code of GC method comes 
from the same website above. 

 Cloth1 
R/B 

Cloth3 
R/B 

Tsukuba 
R/B 

Teddy 
R/B 

GC 
method 

1.015 
0.0104 

1.766 
0.0414 

1.247 
0.0424 

4.9603 
0.1317 

Proposed
method 

0.604 
0.0092 

0.889 
0.0247 

0.809 
0.0858 

1.7703 
0.1681 

6 CONCLUSIONS 

The assumption of continuousness renders PDEs 
method difficult to perfectly reconstruct disparity 
map. This paper adopts two strategies to preserve 
necessary discontinuousness for the disparity map. 
The results show that proposed method performs 
better than graph cuts method in “Cloth1” and 
“Cloth3”, mainly because there images with less 
discontinuousness meet the feature of PDEs. The 
proposed method can deal with images with much 
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discontinuousness such as “Tsukuba” and “Teddy” 
and gain approximate results of graph cuts method. 

There are some other aspects which can be 
improved. For example, occlusion problem should 
be considered, and this problem has exposed in 
“Tsukuba” and “Teddy”.  

Although it is more difficult for the PDEs 
method to preserves boundaries than some discrete 
energy methods such as graph cuts method, PDEs 
methods have its advantage on keep continuousness. 
If we can find some witty strategies to preserve 
necessary discontinuousness, PDEs method still can 
become a useful solution in disparity map 
reconstruction. 
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Figure 4:  The disparity map reconstructed by proposed 
method and graph cuts. Four group images (a) (b) (c) (d) 
respectively are related to Cloth1, Cloth3, Tsukuba and 
Teddy. In each group, the left-up, right-up, left-down and 
right-down images are respectively left image, ground 
truth, the result of GC and the result of proposed method.  
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Figure 5: The detail comparison of disparity maps. Three 
group images (a) (b) (c) respectively are related to Cloth3, 
Cloth1 and Teddy. In each group, the left-up, right-up, 
left-down and right-down images are respectively ground 
truth, local ground truth, local result of GC and local result 
of proposed method. 
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