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Abstract: A new set of features for robust change detection is proposed. These features are obtained from a 
transformation of the thresholded intensity difference image. Their performance is tested on two video 
sequences acquired in a human-machine interaction scenario under very different illumination conditions. 
Several performance measures are computed and a comparison with other well known classical change 
detection methods is done. The performed experiments show the effectiveness and robustness of our 
proposal. 

1 INTRODUCTION 

Detecting regions of change in images of the same 
scene taken at different times is of widespread 
interest due to a large number of applications in 
diverse disciplines. Common applications of image 
differencing include object tracking, intruder 
surveillance systems, vehicle surveillance systems 
and interframe data compression (Radke et al, 2005). 
Due to its simplicity, image differencing has become 
a very popular method for change detection. It only 
requires calculating the absolute values of the 
difference between the corresponding pixels in the 
two frames considered. In the context of surveillance 
applications, each frame is usually compared against 
a reference or background model (Cheung and 
Kamath, 2004), (Migliore et al, 2006). Large values 
in the difference map indicate regions of change. 
The crucial point here is the determination of the 
optimal decision thresholds allowing for minimal 
error probabilities and thus guaranteeing results 
which are robust against noise changes over time, 
e.g. due to changes in illumination conditions. This 
indicates that in general threshold values should be 
calculated dynamically based on the image content 
and that empirically selecting a value is not 
appropriate for most applications. Rosin, (Rosin, 
2002), (Rosin and Ioannidis, 2003) surveyed and 
reported experiments on many different criteria for 
choosing the decision threshold. 

The decision rule in many change detection 
algorithms is cast as a statistical hypothesis testing. 
The decision as to whether or not a change has 

occurred at a given pixel corresponds to choosing 
one of two hypotheses: the null hypothesis 0H  or 
the alternative hypothesis 1H , corresponding to no-
change and change decisions respectively. 
Characterizing the null hypothesis is usually much 
easier, since in the absence of any change, the 
difference between image intensities can be assumed 
to be due to noise alone. A significance test on the 
difference image can be performed to assess how 
well the null hypothesis describes the observations, 
and this hypothesis is correspondingly accepted or 
rejected. Modelling the background noise in static 
applications is straightforward since any required 
estimation can be done off-line for the used camera 
system. However, a real time sequence is much 
more challenging since noise features may change 
over time and noise estimation must be done on-line 
from unchanged regions which are not known a 
priori (Thoma and Bierling, 1989). Aach et al (Aach 
et al, 1993), (Aach et al, 2001) characterized the 
noise in moving video as zero-mean Gaussian 
random variables. The variances for the noise were 
estimated from regions with very small intensity 
differences. Bruzzone and Prieto (Bruzzone and 
Prieto, 2000) noted that while the variances 
estimated this way may serve as good initial guesses, 
using them in a decision rule may result in a false 
alarm rate different from the desired value. 

In this paper, background noise is modelled by 
using a new set of features as an alternative to the 
usual intensity differences. We will show the 
robustness of this approach to changes in the 
illumination conditions. Section 2 of this paper 
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explains the feature extraction procedure. In section 
3, the experiments which have been carried out are 
described and section 4 is devoted to the 
conclusions. 

2 FEATURE EXTRACTION 
METHOD 

The first step of the feature extraction method 
consists of thresholding the absolute value of the 
difference image ( ) ( ) ( )xIxIxD 12 −=  with the 
lowest possible value, i.e., zero, as indicated in (1). 
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An example of the resulting binary image for 
the difference of two frames from a well known 
video sequence is shown in figure 1. 

 
Figure 1: Binarized difference image for two frames of the 
mom and daughter image sequence. 

It is clear that the density of “black points” in 
the unchanged parts of the image is higher than in 
the regions of change. It is precisely these 
differences in density what we intend to capture. The 
simplest approach to this issue would probably be to 
use a sliding window over the difference image and 
assign the number of “black points” contained in the 
window to the center pixel. However, density 
measured in such a way is highly dependent on the 
size and shape of the selected window which is not 
appropriate. For this reason, an alternative set of 
features is proposed. 

These features are obtained from the 
transformation of the binarized difference image in 
two stages. In the first stage, unidimensional 
connected components in the binary image are 
computed. For this purpose, the four main 
directions: horizontal, vertical, diagonal and inverse 
diagonal are considered. This transformation assigns 

each pixel the area of the corresponding connected 
component it belongs to. In this way, four different 
transformation matrices are obtained. It is clear that 
it has no sense to use 4- or 8- bidimensional 
connectivity since what it would probably be 
obtained is just one connected component which is 
completely useless in this case. Figure 2 shows a 
simple example of a binary matrix and the result of 
the transformation for the horizontal direction. 

In the second stage of the feature calculation, a 
new transformation is performed. This time, each 
pixel belonging to a connected component computed 
in a certain direction is assigned the area contained 
in the intersection of this connected component with 
the connected components in the remaining 
directions. Again, four new matrices are obtained. 
The example in figure 2 shows the areas obtained 
from the intersection with the horizontal connected 
components. The four density measures for each 
pixel are then obtained from the values assigned to 
the pixel as a result of this final transformation. 
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Figure 2: Example of transformations to obtain the 
proposed features. (a) Binary matrix, (b) result of the first 
transformation, (c) result of the second and final 
transformation. 

3 EXPERIMENTAL RESULTS 

In order to demonstrate the effectiveness and 
robustness of the proposed set of features in the 
detection of changes in images, two video sequences 
with different illumination conditions were tested. 
The image sequences correspond to a head and 
shoulders scene in a human-machine interaction 
scenario and were acquired under normal and low 
illumination conditions in an indoor setting. An 
image resolution of 720*576 pixels was used. 

For the purpose of comparison, some classical 
change detection techniques were also tried. Since 
interesting changes are often associated with 
localized groups of pixels, it is common for the 
change decision at a given pixel to be based on a 
small block of pixels in its neighbourhood. Sliding 
windows of sizes 1*1 (the pixel itself), 3*3 and 5*5 
pixels were used over the intensity difference image 
to give ordered sets of 1, 9 and 25 features, 
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respectively. As indicated in Aach et al (Aach et al, 
1993), a window size between 3 and 5 pixels is an 
acceptable choice in most change detection 
applications. 

In all cases, a single Gaussian was used to 
model the noise in the unchanged regions, i.e., 
regions without motion. Samples from these regions 
were used to estimate the parameters of a 
Mahalanobis matrix. By setting different thresholds 
on the Mahalanobis distance ( )xDM  calculated as 
in (2), the ROC curves for normal and low light 
conditions were obtained. 

( ) ( ) ( )μμ −Σ−= − xxxD T
M

1  
 

    (2) 

Where μ  is the mean vector and Σ  is the 
covariance matrix. 
 

Three different experiments were performed. 
A first experiment consisted of testing change 

detection in several frames of the video sequence 
acquired under normal illumination conditions. The 
parameters of the Mahalanobis matrix were 
estimated by using samples of noise from this video 
sequence and the threshold was set by choosing the 
“corner” of the corresponding ROC curve as the 
operating point. Figure 3 shows the change masks 
resulting from the detection procedure by using the 
5*5 sliding window and the proposed set of features. 
It can be seen that the result provided by the 5*5 
window is slightly better than the one provided by 
our method. 

A second experiment consisted of testing 
change detection in several frames of a video 
sequence acquired under poor illumination 
conditions. The parameters of the Mahalanobis 
matrix were estimated by using samples of noise 
from this video sequence and the threshold was also 
set by choosing the “corner” of the corresponding 
ROC curve as the operating point. Figure 4 shows 
the change masks resulting from the detection 
procedure by using the 5*5 sliding window and the 
proposed set of features. In this case, the result 
provided by our features slightly outperform the one 
obtained by using the 5*5 window. 

A third experiment consisted of testing change 
detection again in several frames of a video 
sequence acquired under poor illumination 
conditions. However, this time, the parameters of the 
Mahalanobis matrix were estimated by using 
samples of noise from the video sequence acquired 
under normal illumination conditions. The threshold 
was also set by choosing the operating point 
corresponding to illumination with normal light. Our 
purpose was to test the influence of the training set 
in the performance of the change detection method. 

Figure 5 depicts the masks obtained for the 5*5 
sliding window and our features. While the 
performance of the proposed features does not seem 
to be affected by the change in the training 
conditions, it is clear that the results obtained with 
the 5*5 window are very different and much worse 
than in the second experiment. 

 
Figure 3: Change masks obtained for normal illumination 
with the 5*5 sliding window (left) and our method (right). 

 
Figure 4: Change masks obtained for poor illumination 
with the 5*5 sliding window (left) and our method (right). 

 
Figure 5: Change masks for poor illumination and training 
samples from normal illumination with the 5*5 sliding 
window (left) and our method (right). 

In order to confirm these observations, a more 
quantitative analysis was carried out. 

The results of the low level pixel based 
comparison between the hand-labelled ground truth 
and the resulting image for different frames of the 
two sequences were based on the following values: 
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True positives (TP): number of change pixels 

correctly detected. 
False positives (FP): number of no-change 

pixels incorrectly flagged as change by the 
algorithm. 

True negatives (TN): number of no-change 
pixels correctly detected. 

False negatives (FN): number of change pixels 
incorrectly flagged as no-change by the algorithm. 
 

From these four quantities, the two following 
performance measures were used as suggested by 
Rosin (Rosin and Ioannidis, 2003): 

          ( )
( )FNTNFPTP

TNTPPCC
+++

+
=    

 
    (3) 

   ( ) ( ) 1−+++= FNTNTNFPTPTPYC      (4) 

The well known PCC coefficient is the most 
obvious approach to combine all four values and 
also the usual way to assess a classifier’s 
performance. However, it tends to give misleading 
estimates when the amount of change is small 
compared to the overall image. The Yule coefficient 
YC (Sneath and Sokal, 1973) tries to overcome this 
problem by minimising the effect of the expected 
large volume of true negatives. 

Figures 6, 7, 8, 9, 10 and 11 show the values 
obtained for these performance measures calculated 
on a number of frames of both video sequences. 

It can be concluded that the proposed method 
exhibits a good behaviour as measured by all the 
coefficients and it is just slightly worse than the 5*5 
sliding window method under normal light 
conditions. Above all, its performance remains 
nearly completely invariant against changes in the 
training set as opposite to what happens with the 
remaining techniques. This is important since it 
suggests that in a real time application, noise 
modelling could take place off-line without the need 
to be updated to changing illumination conditions 
which may be a difficult task and provide bad 
estimations as it was already mentioned in the 
introduction. 

4 CONCLUSIONS 

A new set of robust and effective features for change 
detection in sequences of images has been proposed. 
The features are obtained from a transformation of 
the thresholded intensity difference image. Several 
experiments under two different illumination 
conditions have been carried out. A qualitative and 

quantitative analysis has been performed and some 
well known change detection techniques have been 
tried for the purpose of comparison. The results 
indicate that the proposed features perform well 
when compared with other classical change 
detection methods and what it is very important, this 
performance remains invariant against changes in 
the training conditions so that noise modelling could 
be done off-line which may be very useful for real 
time applications. 

 
Figure 6: PCC coefficients for normal illumination 
conditions and training samples from normal illumination. 

 
Figure 7: PCC coefficients for poor illumination 
conditions and training samples from poor illumination. 

 
Figure 8: PCC coefficients for poor illumination 
conditions and training samples from normal illumination. 
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Figure 9: YC coefficients for normal illumination 
conditions and training samples from normal illumination. 

 
Figure 10: YC coefficients for poor illumination 
conditions and training samples from poor illumination. 

 
Figure 11: YC coefficients for poor illumination 
conditions and training samples from normal illumination. 
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