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Abstract: This paper presents a new technique to recover structureatidn from a large number of images acquired
by an intrinsically calibrated perspective camera. We dies@ method for computing reliable camera motion
parameters that combines a camera—dependency graph, ddschbes the set of camera locations and the
feasibility of pairwise motion calculations, and an algiom for computing the weights on the edges of this
graph. A new criterion for evaluating the reliability of teesential matrices thus produced with respect to the
epipolar constraint is here introduced. It is composed @ main elements, namely, the uncertainty of the
renormalization process by which the essential matrix itveld and the error between the estimated matrix
and its decomposition into the motion parameters of traiosiaand rotation. Experimental results show that
there exists a clear correlation between the proposedililjaneasure and the error in the estimation of such
motion parameters. The performance of the proposed mestdehionstrated on a sequence of short base-line
images where it is made clear that the strategy based on tieeshpaths in terms of unreliability provides
remarkably superior results to those obtained from thespaiticonsecutive camera locations.

1 INTRODUCTION movement between a pair of views which is suitable
for carrying out a multiple view calibration. The main
The purpose of calibration from multiple views con- ideais to employ this measure for the purpose of eval-
sists in recovering the spacial location of a certain set Uating beforehand an estimation of the validity of a
of points along with the determination of the position Certain pair of views and collecting such information
of the camera from where these points were viewed. in the process qf selection of the best combination of
Despite the problem of obtaining such a 3D struc- Views that provides thg least recovery error between
ture from the motion of a camera has been exten- WO given camera locations.
sively studied for the last two decades (Hartley and In general, it is known that the accuracy of the es-
Zisserman, 2003) it is remarkable that any previous timation of both the motion parameters and the recov-
approaches based their strategies on choasingec-  ered structure may greatly degrade when an increas-
utiveviews rather than on a more advantageous com-ing number of closely consecutive views are added
bination, that is, the one that would provide the least into the computations. This is mainly due to inac-
recovery error. It seems therefore quite advisable to curacies accumulated throughout as well as to short
try to establish a feasible mechanism for indirectly baselines. Nevertheless, the larger the baseline is, the
estimating this error as a mean of selecting the bestbetter the accuracy should become. Hence, the pairs
among all such combinations. of views that must be taken into account in the com-
This paper is focused on the proposal and justi- putations should be as apart each other as possible to
fication of a new measure of reliability that captures improve the recovery results. In the purpose of effi-
the error of the recovered 3D structure and the cameraciently considering all possible combinations of cam-
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era locations, we suggest the usage of the graph strucunreliability which estimates how close the epipolar
ture we callCamera—Dependency Grag@DG). constraint is fulfilled by the resulting motion parame-
The CDG is composed of a set of nodes represent-ters as a combination of the uncertainty of the essen-
ing each view of the scene taken from a different lo- tial matrix and its decomposition error.
cation of the camera, whereas the weight onthe edges  Chronologically, multiple view reconstruction
corresponds to the degree of reliability of the pair of was approached for the first time by Tomasi and
views being connected. Since the measure proposedKanade (Tomasi and Kanade, 1992) that used factor-
in this paper will be shown to closely correlate with ization on affine cameras. An extension for perspec-
the recovery error, it is suggested that the most trust- tive cameras was given later in (Sturm and Triggs,
worthy sequence of views, in other words, the one 1996). Perspective effect was handled using both
with the smallest error, would be obtained by select- epipolar geometry (Sturm and Triggs, 1996; Schaf-
ing the path in CDG that minimizes the total amount falitzky and Zisserman, 2002; Martinec and Pajdla,
of unreliability, since it is that measure which is aiin- 2005) and trifocal tensor (Fitzgibbon and Zisserman,
direct estimator of the recovery error. 1998). In all these methods, points need to be visible
The characterization of the unreliability of a cam- in at least three views so as to glue partial reconstruc-
era pair is carried out by estimating the uncertainty of tions. Otherwise, a sequence of independently com-
its epipolar constraint, i.e., the relative position and puted fundamental matrices or trilinear tensors might
orientation of the camera. This is accomplished by be optimally consistent with the image data, but not
way of two partial error estimations. The first one en- necessarily consistent with a unique camera trajec-
compass the error produced in the iteratieerection tory. This is an important constraint on views.
by which the essential matrix is obtained. The second  The study of the essential matrix as a method of
comes from thelecompositiorof this matrix into a determining the epipolar geometry was initially per-
translation vector and a rotation matrix. In this paper formed in (Longuet-Higgins, 1981) and later general-
we will show how the combination of these two val- ized in (Luong and Faugeras, 1996) by the introduc-
ues correlates with the recovery error in most of cases. tion of fundamental matrix when internal camera pa-
As a consequence, the proper selection of views basedameters were unknown. Two different methods for
on such a measure will improve the accuracy of the estimating the stability of fundamental matrix were
recovered structure and motion. introduced in (Csurka et al., 1997), namely, a sta-
This paper is organized as follows. First, a review tistical one and an analytical one. The first proce-
of some previous works in a similar problem is car- dure yielded better results in case the noise level of
ried out, followed by the description and justification data was known, despite this is not the usual case be-
of the measure of unreliability proposed here. After- sides being computational expensive, while the sec-
wards, the experimental section will be described as ond method performed better if the noise was moder-
well as the results obtained for the purpose of con- ate.
firming our claims. This section will focus in two as- A different approach was introduced by Kanatani
pects, namely, the proof of the correlation between in (Kanatani, 2000). Starting from the same linear
our criterion and the recovery error, and the usage hypothesis describing the epipolar constraint, he de-
of CDG as a route through substantially better multi- rived a nonlinear optimization method whose optimal
ple view calibrations. Finally, the conclusions drawn unbiased estimate was computed based on an itera-
from the obtained results will be discussed along with tive process ofenormalizatiorwithout enforcing the
the future work necessary to fulfil this research. rank constraint. The obtained solution was afterwards
correctedin order to fulfil that constraint. Experi-
ments indicated that the obtained estimates were in
the vicinity of the theoretical accuracy bound. This
2 PREVIOUSWORK work is the origin of our work, which has been ex-

. tended to encompass more complex calibrations de-
The only attempt to our knowledge of evaluating the scribed by the paths in CDGs.

epipolar constraint quality to estimate a multiple view

reconstruction is that of Martinec & Pajdla (Mar-

tinec and Pajdla, 2006). They introduced a so called

reliability—importancematrix in which thereliability 5 CAMERA-DEPENDENCY

is based on the number of supporting inliers and the GRAPH (CDG)

importance on finding the shortest paths in a graph

induced by a known epipolar geometry. Compara- In this section we introduce the new concept of
tively, our work employs a different approach for the Camera—Dependency Grag@DG) suitable to com-
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pute the external camera parametdostween any  an algorithm to find the shortest paths that also ful-

two camera locations as a path of intermediate po- fil a number of conditions is necessary. A path is only

sitions. Specifically, a CDG is a graph-&6(V,E) feasible if it always has enough common points visi-

where the set of nodeE represents camera locations ble from any three successive positions in it. This is

and the set of edges relates two positions whenever equivalent to the existence of positions formtrign-

the calculation of their relative movement is feasible, glesand the whole path beinigiangle-connecteda

i.e., when enough common points can be seen fromproperty any path in a CDG must fulfil. Besides, the

the two positions. Consequently, the complete move- task of combining the pairwise displacements along a

ment between two camera positions is a concatenationpath in order to attain the complete movement must

of the intermediate displacements expressed as a patlalso be carefully addressed. Nonetheless, the descrip-

in CDG, as shown in Figurel. tion of these algorithms are out of the scope of this
The accuracy of the results greatly depends on paper and will not be addressed here.

how paths are selected from CDG. As mentioned

above, the recovery error is greatly dependent on the

baselinedistance between successive camera Ioca—4 UNRELIABILITY MEASURE

tions. Besides, the amount of error also accumu-

lates and the total accuracy decreases as the number OF ESSENTIAL MATRICES

of intermediate positions increases. Therefore, in or-

der to improve the total performance of the multiple |n this section we define our measurenfreliabil-
VieW Calibration two main Strategies can be attempted, |ty based on the epipo'ar Constraint encompassed by
i.e., USing locations with Iarger baselines and rEdUCing means of the essential matric€sthat will be used

the number of intermediate positions, especially those tg form the weights in CDGs. Our starting point is

with worse estimates. the approach by Kanatani (Kanatani, 1996; Kanatani,
2000), where a theoretical accuracy bound on fun-
Edges biw Poa camera damental matrices is described. Despite that in our
CL;;aﬂggnnspgi;Tst _. Px‘\”j'“’”s approach the fundamental matrix has been turned
into an essential matrix, yet the same theory holds
> here. We basically quantify the error made in the two
20 P, processes employed to compute an estimate of the
movement parameters, namely, tiemormalization
P, o error, coping with the error dgr_ing the Ieast—sq.uares
area fitting of G, and thedecompositiorerror, accounting
Spnce = i’ for the error carried out in the decomposition Gf
Points Y \ ’ into its translation vector and rotation matrix.
Path btw.

Po and Ps

Figure 1: Camera-Dependency Graph (CDG). Graph of de- 4.1 Renormalization Error
pendencies where nodes are camera locations and edges

connect cameras sharing enough common points |n3|de_|_he uncertainty of an estimaGis measured from the
their observable areas. .
actualG by thecovariance tensof/[G] = E[? ((G —

v
Our approach selects a combination of interme- &) © (G — G))? ], where E[o] denotes expecta-
The operator® stand for the tensor prod-

diate views that connects two camera locations with 10N , a-r

the purpose of reducing the recovery error as much Yt @mong matrices, that is, A& = (Ajj) andB =

as possible. Thehortestpath in a CDG where edge  (Bii)» the (ijkl) element of their tensor product is

weights are unreliabilities of pairwise camera motion AiiBu.  For tensors? = (Rjq) and 7 = (Tij),

is chosen. Since the shortest path corresponds to théhe product?Z! is a tensor whoséijkl) element

combination having the smallest summation of unre- @€Y mn pq—1PimnPkipaTmnpg Whereas théijkl ) ele-

liabilities and these values correlate with the error, the ments of tensof is given byPRijx = &jdx — Gij G,

resulting camera movement and 3D data will conse- beingdi; the Kronecker's delta.

qguently present a much lower amount of error com- There exists (Kanatani, 2000}laeoretical lower

pared to any other feasible path. bound(TLB) on the covariance tensa¥[G] which
Some additional issues must be coped with in or- represents an accuracy bound in the form

der to perform in practice such calculations. First,

2
€ _
1Rotation matrix and translation vector. 'V[G] - N (TS g -'PS)7 @
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where7 > S for tensorsT” andS means that7 —.5)

The first process is a Newton iteration based on

is a positive semi—definite tensor, and the operation a linear approximation of the decomposability con-

(o), denotes the Moore—Penrose’s inverse of rank
The(ijkl) element of the tensaf® = (P, ) in Eq. (1)
is given byR,jx = &ij & —_(GiTj Gl)/IIG"|2, whereG'
is the cofactor matrix o6.
On the one hand, from the renormalization step,

which employs the unbiased least—squares eigenvalue

fitting algorithm to approximat& (Kanatani, 2000),
the minimumresidualJ = (Gg; GGg) is extracted,
providing an estimate of the squared noise ledek
J/(1—8/N) after renormalizationGg is the eigen-
matrix with the smallest eigenvalue of tenspr The
covariance tensal’[G] of the estimatés is then

e

N (s ()
where the estimatg is computed froneigenvalues
Ai andeigenmatrice$s; obtained in the renormaliza-
tion algorithm asg = 58 | \iGi ® G;.

On the other hand, th®oot Mean Squarer-
ror (RMS) of G is defined asmsgG] = (E[[|?(G —
G)||?])¥? and there exists a relation between this
measure of accuracy and the covariance tefi§@]
given by the trace of a tens@r as

rmgG] > /tr(V[G]) 3)

wheretr(7) = zfj:lTijij . Therefore, putting Eq. (1)

and Eq. (3) together and writing them in terms of their
eigenvalues, we obtain that
1

o>, 851y [E e (4
Ml 2 Ni;)‘_i_ Ni;}‘_i/_sr )

where); are the eigenvalues of tensgrwhile A/ are
these of tensaPS G PS. Therenormalizatiorerrore,
is then defined as the lower bound in Eq.(4).

The relation betweermgG] and the TLB shows
that renormalization attains this bound when higher
order terms of noise are omitted (Kanatani, 2000).

V(6] =

straint that can be carried out up to the same level of
error attained in the renormalization. The decompo-
sition itself is a robust method that provides a transla-
tion t being the unit eigenvector of matrf@G " and

a rotationR = Vdiag(1,1,detVU))UT, whereV
andU come from the SVD of matrix-t x G.
Remarkably, this method always provides a de-
composable solution, sinéeis anexactrotation ma-
trix. Furthermore, the vectdris always very close to
the valid solution. Both facts are true eveiifis not
decomposable (Kanatani, 1996). Consequently, the
decomposition can be seen as an ultimate stage in the
optimal correction of the essential matfxobtained

by renormalization, producing an improved result.

Figure 2: Decomposition Error. Symbd&, G¢, andGgq
correspond to essential matrices after renormalization, ¢
rection, and decomposition, respectivel andey stand
for recovery and decomposition erroiS; is the manifold
of decomposable matrices a@Gdrepresents the true one.

As a way to estimate the error in the calculation of
the movement parametefg, we suggest to measure
how far the matrixG is from being truly decompos-
able. Therefore, thdecompositiorrror is defined as

€4 = [|Gc— Gul| ®)

Hence, in practice this bound is a good approximation WhereGc comes from theorrectionandGq =t x R,

for the estimation of the error of the essential matrix.
Nevertheless, if any further step is involved in the ob-
taining of the movement parameters, as it is in our
case, a complementary measure is needed.

4.2 Decomposition Error

beingt andR obtained fromG. by decomposition
Our claim is that the farther a matri@ is from the
decomposability constraint, the greater its decompo-
sition differs from the real one and, therefore, the less
reliable the matrix becomes, that isgif;, < €4, then

Ec, < Eg,, as depicted in Fig.2.

Two further steps are required to obtain the estimate 4.3 Unréliability Measure

of the translatiort and the rotatiorkR from an essen-
tial matrix G. First, a geometricorrectionof G pre-
viously computed by renormalization to make it de-
composable into the for®s =t x R. Second, the
decompositionto its movement parameters.

In Sec. 5.1 we show that in practice there are some
cases where there exists a clear correlation between
€4 and therecoveryerror defined a&g = |G — G|,
whereG is the true essential matrix af&}; is the one
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. . C lati btw_
obtained after decomposition. In other cases, the cor- Recovery Error and Unreliability

relation is clearer with the renormalization erepr

In order to improve the correlation with respect to
Eg in any situation, the two previous measures are
combined in one single value calledreliability vg
defined as follows

°¢ Correlation
Index

21
VG = &4 & = [|Gec— Gq| - N|Zl)‘_|/ (6) N ""
= Viewing
The valuevg corresponds to the weights on the ~ “™@*®

Noise Level in

edges of CDG and the paths, representing sequence: Image Points

of camera locations, will be selected to be the shortest (a)

ones in terms of this measure of unreliability. Poste- )

riorly, these paths are used to recover the complete Recovery brrr an Renosll o

camera movement between to given positions. As
said, sincevg correlates with the recovery erréi

and the paths thus obtained have the least possible
unreliability, it follows that the movement recovered
from these paths will have less error than other kind
of feasible paths as shown in Sec. 5.2.

. [*® Correlation
Index

14
Viewing

5 EXPERIMENTSAND RESULTS .

Noise Level in
Image Points

This section describes the data employed and the ex- (b)

periments carried out, as well as the results obtained, )

in order to show the feasibility of the CDG framework R ey Bt il Decomp Error
based on the unreliability measure defined before as a
way to perform multiple view calibrations.

The goals of the experiments are, first, to establish
the correlation between the unreliabilitg of the es- : |
timatedG and the recovery errdeg so as their use les Correlation
can be considered equivalent. Secongd, and the - Index
CDG derived are applied to recover the camera move- 2
ments and the 3D structure employing the sets of im- Viewing
age points from a ( generated ) sequence of locations Angle
along a circular trajectory of the camera as data. Our o et ie
aim is to display the recovery results attained by us- ©
ing the shortest path in terms of the unreliability

are better than those of the usual path of consecutive '9ure 3: Experiment results (1). Correlation indidgsbe-
camera locations tween recovery errdég and (a) unreliabilitwg, (b) renor-

malization erroen, and (¢) decomposition err@fec

Noise Level in

5.1 Description of the Data _ _
two concentric spheres of radil,ax and Rmn, re-

Both the ease of obtaining a sufficient number of data SPectively, bein@Rmin = ki - Rmax. M camera localiza-
to perform a generous and varied number of experi- ions were comput_ed in a circular trajectory around
ments in order to prove our claims, the ability of con- the spheres at a distanBgam = k2 - Rmax, separated
trolling the all the setting factors and the noise levels, bY intervals ofy degrees. The orientation of the cam-
as well as the necessity of having a precise ground®€ra plane is orthogonal to the radial direction.
truth to compare our results with, have compelled us  The set ofimagepoints for each camera position
to generate the spacial data that fit our requirementswas generated projecting space points by means of
at the first stages of our research. the perspective camera model and adding two kinds

The data consist of a sgpacepoints{rq}a—1,..N of perturbations afterwards. First, the camera view-
randomly generated inside the region determined by ing angley, € {7°,14°,28°} permits to limit the po-
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Mean Error Reduction

sitions observing the same common points. Second, in Rotation Matrix Recovery
an amount of noisg € {0.0,1076,107%,1074,1073}
was also added to image points to simulate the error
appearing in the process of point extraction.
Constants used in the settings of each experi-
ment areN = 500, k; = 90%, k, = 3, y=5°, and
M = 36(°/5° = 72, respectively. In total, there were
#{w} -#{&i} = 3-5= 15 sets of experiments, where -
image points were affected by different noise levels . ing ™
and viewing angles while both 3D points and camera Angte
localization remained constant (ground truth).

Ermmor
Reduction

Noise Level in
Image Points

@

Mean Error Reduction
in Trans. Vector Recovery

5.2 Unréeliability vs. Recovery Error

In order to evaluate the suitableness of the unreliabil-

ity measureig defined in Sec. 4, for each of the pre-

vious data sets, the correlation betwe®grand the re-

covery erroilEg was computed, along with the renor-

malization errore, and the decomposition errag,

defined in Eq. (4) and Eq. (5), respectively.
Eachfeasiblé pair of camera locations form an 28

edgegj in CDG. Once the corresponding essential viewing *

matrix Gj; for this edge and its decomposition into ~ A"'® ] )

correspondingi; and Ri; were obtained using the Mrocan Pomt

algorithm in Sect.4, the value\sGiJ., Eryj and €d; (b)

were computed, as well as the recovery efgr=

IGij - Gij || Notice thaiGij = tij x Rij. in Structure Recovery
For any viewing angley, and image noise; an

index of correlation § was computed between error

Eg and each one of the previous accuracy measures

- Vg, &, andgyq — as themeanvalue of all the par-

tial correlationg{p;,i =1,...,N} obtained as follows.

A correlationp; is calculated by taking the node

as theorigin and employing the corresponding re- 28

covery error and the accuracy measures to the rest, wing

of nodesn;j, i # j, to compute a correlation coeffi-  angle :

cient. That is, ifX € {Eg,} andY; € {vg;,&,€4 }, o Noise Level in

whereEg, = {EG”.}, Vg, = {VG”}, & = {erij}, and o 9

& = {sdij} with j =1,...,N, thenp; = p(X,Y;) =

v . . Figure 4: Experiment results (Il). Mean error reduction be-
couX;,Yi)/(0x - ovy)._Indicesl, as a function ofy tween consecutive and the shortest paths of (a) rotatiyn, (b

andg; are plotted in Fig. 3. o translation, and (c) 3D reconstruction, respectively.
The results show that the correlation index be-

Fwe_en the unre'liabilith and the recovery errdeg 53 Shortest vs. Consecutive Paths

is higher than eithes; oregq alone. Besides, the values

of this index is pretty high and stable against noise in

the image plane and variations in the viewing angle. The objective of this section is to demonstrate the
Moreover, a reciprocal behaviour ef andeq is ex- suitability of employing the shortest path in a CDG
hibited, that isg, presents a higher correlation when based on the unreliability for recovering the move-
that ofeq is lower, and vice versa. As a consequence ment parameters corresponding to the camera loca-
of such results, we state that the unreliability measure tions along the aforementioned circular trajectory as
vg defined in Eq. (6) is a useful and robust indirect well as the 3D space positions of the sets of image

estimate of the recovery errég in general. points. Apart from the shortest path of unreliabil-
ities vg between essential matrices, the more usual
2Sharing enough observable common points. path ofconsecutiv&eamera locations was also taken
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Recovered Camera Position Recovered Camera Position

Real = Blue Real = Blue
Shortest = Green Shortest = Green
Consecutive = Red Consecutive = Red

Recovered Camera Pasition Recovered Camera Position

Real - Blue Real = Blue
Shortest = Green Shortest = Green
Consecutive = Red Consecutive = Red

(b)

Figure 5: Some recoverg results (I). Camera location in case Figure 6: Some recovery Results (I1). Camera location in

W= 14° and (a)e; = 107 °, and (b)e; = 103, respectively.  casey, = 28° and (a)g; = 10°°, and (b)g; = 1073, re-

Blue lines are the true camera trajectories, while greesslin ~ spectively. Blue lines are the true camera trajectoriediewh

are the camera trajectory recovered using shortest paiths, a green lines are the camera trajectory recovered using-short
the red ones corresponds to the camera trajectory recoverecest paths, and the red ones corresponds to the camera trajec-
using consecutive paths. Units are pixels. tory recovered using consecutive paths. Units are pixels.

into account in such a task. The error between the rowery,, this advantage may not exist and a worse
obtained results and the actual ground truth was cal-result may appear in few cases due to some out-
culated afterwards in order to make comparisons. In lier locations, as it happens whep= 7° andg;
other words, the translation ery, rotation erroEg, {0.0,10°%,107°,10-4}. On the other hand, if, = 7°
and space points err&; are calculated. andg; = 1073, the reduction is very big because the
This process took at every step a location as the consecutive path provided a very poor result.
origin and computed the set of paths to the rest of  InFig. 5 and Fig. 6 we plot some results depicting
them. The procedure was repeated then varying thethe shape of the actual camera trajectory along with
origin to cover all possible camera locations and the the two kinds of trajectories recovered using the short-
mean values for all the previous error magnitudes est paths and the consecutive paths. In both groups of
were computed. Fig. 4 pictures the reduction in the plots, we selected two instances corresponding to two
amount of error when the shortest path to recover the levels of image point noise, i.es, = 10°% and 10°3.
motion parameters was used instead of the consecuDue to the obvious space limitations it is in fact im-
tive path. The error reduction was obtained dividing possible to show all the results obtained for all the
the error of a consecutive path and of a shortest pathpossible combinations of viewing angle and amount
connecting the same origin and final locations. of error in image points. Hence, only these two exam-
The use of the shortest path definitely reduced the ples of reconstructed trajectories have been selected
total amount error in the calculations of both cam- 1o illustrate the performance of our approach.
era movements { andR ) and 3D structure, espe- Therefore, our aim is to display that, first, the tra-
cially wheny, was wider. This is because it is pos- jectories recovered using the shortest—path strategy
sible in that case to find paths which jump to more were substantially closer to the real one, and, second,
separate locations, providing as a consequence largehow the error accumulated by the consecutive path
baselines that increases the accuracy. In case of nargrowing as successive camera locations went farther
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from the origir?. Moreover, it can be observed that sides, it was also shown by some examples how the
such an error grew accordingly to the amount of noise better performance of our approach can be appreci-
added to the image points. So in Fig. 5 (a) the scale of ated in the precision of the recovered trajectories.
the error is smaller than that in Fig. 5 (b). The same This method can be used in applications that in-
can be stated from Fig. 6 (a) and Fig. 6 (b). volve dense sequences of images, like those from au-
It is evident that the recovered trajectory deviates tonomous robot navigation, estimation of camera tra-
from the true one as the location goes farther from the jectories or relative position, as well as for 3D point
origin. The scale in coordinat@ds notthe same asin  recovery. The future work will consist in applying this
coordinateX andY in order to show such deviation approach to problems such as simultaneous localiza-
and can be seen as the error in this direction since thetion and mapping, or robot navigation, as an alterna-
true value isZ = 0.0. Errors in directionsX andY tive way to increase the precision of these tasks.
are more difficult to plot here because their sizes is
smaller compared to the range of these coordinates.
Finally, while the order of the errors producedby ACKNOWLEDGEMENTS
consecutive paths in coordinatésvere around 1
in Fig. 5 (a) and Fig. 6 (a), it was considerably larger The research described in this paper has been funded

in Fig. 5 (b) and Fig. 6 (b), i.e., between 1 and 10, by the Kankenhi No.19700188.
which is around one thousand times bigger. This

is similar to the order differences in the noise level
present in the image points existing in these figures.
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