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Abstract: This paper presents a new technique to recover structure andmotion from a large number of images acquired
by an intrinsically calibrated perspective camera. We describe a method for computing reliable camera motion
parameters that combines a camera–dependency graph, whichdescribes the set of camera locations and the
feasibility of pairwise motion calculations, and an algorithm for computing the weights on the edges of this
graph. A new criterion for evaluating the reliability of theessential matrices thus produced with respect to the
epipolar constraint is here introduced. It is composed of two main elements, namely, the uncertainty of the
renormalization process by which the essential matrix is derived and the error between the estimated matrix
and its decomposition into the motion parameters of translation and rotation. Experimental results show that
there exists a clear correlation between the proposed reliability measure and the error in the estimation of such
motion parameters. The performance of the proposed method is demonstrated on a sequence of short base-line
images where it is made clear that the strategy based on the shortest paths in terms of unreliability provides
remarkably superior results to those obtained from the paths of consecutive camera locations.

1 INTRODUCTION

The purpose of calibration from multiple views con-
sists in recovering the spacial location of a certain set
of points along with the determination of the position
of the camera from where these points were viewed.
Despite the problem of obtaining such a 3D struc-
ture from the motion of a camera has been exten-
sively studied for the last two decades (Hartley and
Zisserman, 2003) it is remarkable that any previous
approaches based their strategies on choosingconsec-
utiveviews rather than on a more advantageous com-
bination, that is, the one that would provide the least
recovery error. It seems therefore quite advisable to
try to establish a feasible mechanism for indirectly
estimating this error as a mean of selecting the best
among all such combinations.

This paper is focused on the proposal and justi-
fication of a new measure of reliability that captures
the error of the recovered 3D structure and the camera

movement between a pair of views which is suitable
for carrying out a multiple view calibration. The main
idea is to employ this measure for the purpose of eval-
uating beforehand an estimation of the validity of a
certain pair of views and collecting such information
in the process of selection of the best combination of
views that provides the least recovery error between
two given camera locations.

In general, it is known that the accuracy of the es-
timation of both the motion parameters and the recov-
ered structure may greatly degrade when an increas-
ing number of closely consecutive views are added
into the computations. This is mainly due to inac-
curacies accumulated throughout as well as to short
baselines. Nevertheless, the larger the baseline is, the
better the accuracy should become. Hence, the pairs
of views that must be taken into account in the com-
putations should be as apart each other as possible to
improve the recovery results. In the purpose of effi-
ciently considering all possible combinations of cam-
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era locations, we suggest the usage of the graph struc-
ture we callCamera–Dependency Graph(CDG).

The CDG is composed of a set of nodes represent-
ing each view of the scene taken from a different lo-
cation of the camera, whereas the weight on the edges
corresponds to the degree of reliability of the pair of
views being connected. Since the measure proposed
in this paper will be shown to closely correlate with
the recovery error, it is suggested that the most trust-
worthy sequence of views, in other words, the one
with the smallest error, would be obtained by select-
ing the path in CDG that minimizes the total amount
of unreliability, since it is that measure which is a in-
direct estimator of the recovery error.

The characterization of the unreliability of a cam-
era pair is carried out by estimating the uncertainty of
its epipolar constraint, i.e., the relative position and
orientation of the camera. This is accomplished by
way of two partial error estimations. The first one en-
compass the error produced in the iterativecorrection
by which the essential matrix is obtained. The second
comes from thedecompositionof this matrix into a
translation vector and a rotation matrix. In this paper
we will show how the combination of these two val-
ues correlates with the recovery error in most of cases.
As a consequence, the proper selection of views based
on such a measure will improve the accuracy of the
recovered structure and motion.

This paper is organized as follows. First, a review
of some previous works in a similar problem is car-
ried out, followed by the description and justification
of the measure of unreliability proposed here. After-
wards, the experimental section will be described as
well as the results obtained for the purpose of con-
firming our claims. This section will focus in two as-
pects, namely, the proof of the correlation between
our criterion and the recovery error, and the usage
of CDG as a route through substantially better multi-
ple view calibrations. Finally, the conclusions drawn
from the obtained results will be discussed along with
the future work necessary to fulfil this research.

2 PREVIOUS WORK

The only attempt to our knowledge of evaluating the
epipolar constraint quality to estimate a multiple view
reconstruction is that of Martinec & Pajdla (Mar-
tinec and Pajdla, 2006). They introduced a so called
reliability–importancematrix in which thereliability
is based on the number of supporting inliers and the
importance, on finding the shortest paths in a graph
induced by a known epipolar geometry. Compara-
tively, our work employs a different approach for the

unreliability which estimates how close the epipolar
constraint is fulfilled by the resulting motion parame-
ters as a combination of the uncertainty of the essen-
tial matrix and its decomposition error.

Chronologically, multiple view reconstruction
was approached for the first time by Tomasi and
Kanade (Tomasi and Kanade, 1992) that used factor-
ization on affine cameras. An extension for perspec-
tive cameras was given later in (Sturm and Triggs,
1996). Perspective effect was handled using both
epipolar geometry (Sturm and Triggs, 1996; Schaf-
falitzky and Zisserman, 2002; Martinec and Pajdla,
2005) and trifocal tensor (Fitzgibbon and Zisserman,
1998). In all these methods, points need to be visible
in at least three views so as to glue partial reconstruc-
tions. Otherwise, a sequence of independently com-
puted fundamental matrices or trilinear tensors might
be optimally consistent with the image data, but not
necessarily consistent with a unique camera trajec-
tory. This is an important constraint on views.

The study of the essential matrix as a method of
determining the epipolar geometry was initially per-
formed in (Longuet-Higgins, 1981) and later general-
ized in (Luong and Faugeras, 1996) by the introduc-
tion of fundamental matrix when internal camera pa-
rameters were unknown. Two different methods for
estimating the stability of fundamental matrix were
introduced in (Csurka et al., 1997), namely, a sta-
tistical one and an analytical one. The first proce-
dure yielded better results in case the noise level of
data was known, despite this is not the usual case be-
sides being computational expensive, while the sec-
ond method performed better if the noise was moder-
ate.

A different approach was introduced by Kanatani
in (Kanatani, 2000). Starting from the same linear
hypothesis describing the epipolar constraint, he de-
rived a nonlinear optimization method whose optimal
unbiased estimate was computed based on an itera-
tive process ofrenormalizationwithout enforcing the
rank constraint. The obtained solution was afterwards
corrected in order to fulfil that constraint. Experi-
ments indicated that the obtained estimates were in
the vicinity of the theoretical accuracy bound. This
work is the origin of our work, which has been ex-
tended to encompass more complex calibrations de-
scribed by the paths in CDGs.

3 CAMERA-DEPENDENCY
GRAPH (CDG)

In this section we introduce the new concept of
Camera–Dependency Graph(CDG) suitable to com-
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pute the external camera parameters1 between any
two camera locations as a path of intermediate po-
sitions. Specifically, a CDG is a graph G= (V ,E)
where the set of nodesV represents camera locations
and the set of edgesE relates two positions whenever
the calculation of their relative movement is feasible,
i.e., when enough common points can be seen from
the two positions. Consequently, the complete move-
ment between two camera positions is a concatenation
of the intermediate displacements expressed as a path
in CDG, as shown in Figure1.

The accuracy of the results greatly depends on
how paths are selected from CDG. As mentioned
above, the recovery error is greatly dependent on the
baselinedistance between successive camera loca-
tions. Besides, the amount of error also accumu-
lates and the total accuracy decreases as the number
of intermediate positions increases. Therefore, in or-
der to improve the total performance of the multiple
view calibration two main strategies can be attempted,
i.e., using locations with larger baselines and reducing
the number of intermediate positions, especially those
with worse estimates.

Figure 1: Camera-Dependency Graph (CDG). Graph of de-
pendencies where nodes are camera locations and edges
connect cameras sharing enough common points inside
their observable areas.

Our approach selects a combination of interme-
diate views that connects two camera locations with
the purpose of reducing the recovery error as much
as possible. Theshortestpath in a CDG where edge
weights are unreliabilities of pairwise camera motion
is chosen. Since the shortest path corresponds to the
combination having the smallest summation of unre-
liabilities and these values correlate with the error, the
resulting camera movement and 3D data will conse-
quently present a much lower amount of error com-
pared to any other feasible path.

Some additional issues must be coped with in or-
der to perform in practice such calculations. First,

1Rotation matrix and translation vector.

an algorithm to find the shortest paths that also ful-
fil a number of conditions is necessary. A path is only
feasible if it always has enough common points visi-
ble from any three successive positions in it. This is
equivalent to the existence of positions formingtrian-
glesand the whole path beingtriangle-connected, a
property any path in a CDG must fulfil. Besides, the
task of combining the pairwise displacements along a
path in order to attain the complete movement must
also be carefully addressed. Nonetheless, the descrip-
tion of these algorithms are out of the scope of this
paper and will not be addressed here.

4 UNRELIABILITY MEASURE
OF ESSENTIAL MATRICES

In this section we define our measure ofunreliabil-
ity based on the epipolar constraint encompassed by
means of the essential matricesG that will be used
to form the weights in CDGs. Our starting point is
the approach by Kanatani (Kanatani, 1996; Kanatani,
2000), where a theoretical accuracy bound on fun-
damental matrices is described. Despite that in our
approach the fundamental matrix has been turned
into an essential matrix, yet the same theory holds
here. We basically quantify the error made in the two
processes employed to compute an estimate of the
movement parameters, namely, therenormalization
error, coping with the error during the least–squares
fitting of G, and thedecompositionerror, accounting
for the error carried out in the decomposition ofG
into its translation vector and rotation matrix.

4.1 Renormalization Error

The uncertainty of an estimateG is measured from the
actualḠ by thecovariance tensorV [G] = E[P ((G−
Ḡ) ⊗ (G − Ḡ))P⊤], where E[◦] denotes expecta-
tion. The operator⊗ stand for the tensor prod-
uct among matrices, that is, ifA = (Ai j ) and B =
(Bi j ), the (i jkl ) element of their tensor product is
Ai j Bkl. For tensorsP = (Pi jkl ) and T = (Ti jkl ),
the productP T P⊤ is a tensor whose(i jkl ) element
are∑3

m,n,p,q=1Pi jmnPklpqTmnpq, whereas the(i jkl ) ele-
ments of tensorP is given byPi jkl = δi j δkl − Ḡi j Ḡkl ,
beingδi j the Kronecker’s delta.

There exists (Kanatani, 2000) atheoretical lower
bound(TLB) on the covariance tensorV [G] which
represents an accuracy bound in the form

V [G] ≻
ε2

N

(

P SG P S)−
7 (1)
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whereT ≻ S for tensorsT andS means that(T −S)
is a positive semi–definite tensor, and the operation
(◦)−r denotes the Moore–Penrose’s inverse of rankr.
The(i jkl ) element of the tensorP S= (PS

i jkl ) in Eq. (1)

is given byPi jkl = δi j δkl −(Ḡ†
i j Ḡ

†
kl)/‖Ḡ†‖2, whereḠ†

is the cofactor matrix of̄G.
On the one hand, from the renormalization step,

which employs the unbiased least–squares eigenvalue
fitting algorithm to approximateG (Kanatani, 2000),
the minimum residualJ = (G9;G G9) is extracted,
providing an estimate of the squared noise levelε2 =
J/(1− 8/N) after renormalization.G9 is the eigen-
matrix with the smallest eigenvalue of tensorG . The
covariance tensorV [G] of the estimateG is then

V [G] =
ε2

N
(G)−8 (2)

where the estimateG is computed fromeigenvalues
λi andeigenmatricesGi obtained in the renormaliza-
tion algorithm asG = ∑8

i=1 λi Gi ⊗Gi.
On the other hand, theRoot Mean Squareer-

ror (RMS) of G is defined asrms[G] = (E[‖P (G−

Ḡ)‖2 ])1/2 and there exists a relation between this
measure of accuracy and the covariance tensorV [G]
given by the trace of a tensorT as

rms[G] ≥
√

tr(V [G]) (3)

wheretr(T ) = ∑3
i, j=1Ti ji j . Therefore, putting Eq. (1)

and Eq. (3) together and writing them in terms of their
eigenvalues, we obtain that

rms[G] ≥

√

ε2

N

8

∑
i=1

1
λi

≥

√

ε2

N

7

∑
i=1

1
λ′

i
= εr (4)

whereλi are the eigenvalues of tensorG while λ′
i are

these of tensorP SG P S. Therenormalizationerrorεr
is then defined as the lower bound in Eq.(4).

The relation betweenrms[G] and the TLB shows
that renormalization attains this bound when higher
order terms of noise are omitted (Kanatani, 2000).
Hence, in practice this bound is a good approximation
for the estimation of the error of the essential matrix.
Nevertheless, if any further step is involved in the ob-
taining of the movement parameters, as it is in our
case, a complementary measure is needed.

4.2 Decomposition Error

Two further steps are required to obtain the estimate
of the translationt and the rotationR from an essen-
tial matrix G. First, a geometriccorrectionof G pre-
viously computed by renormalization to make it de-
composable into the formG = t × R. Second, the
decompositioninto its movement parameters.

The first process is a Newton iteration based on
a linear approximation of the decomposability con-
straint that can be carried out up to the same level of
error attained in the renormalization. The decompo-
sition itself is a robust method that provides a transla-
tion t being the unit eigenvector of matrixGG⊤ and
a rotationR = Vdiag(1,1,det(VU⊤))U⊤, whereV
andU come from the SVD of matrix−t×G.

Remarkably, this method always provides a de-
composable solution, sinceR is anexactrotation ma-
trix. Furthermore, the vectort is always very close to
the valid solution. Both facts are true even ifG is not
decomposable (Kanatani, 1996). Consequently, the
decomposition can be seen as an ultimate stage in the
optimal correction of the essential matrixG obtained
by renormalization, producing an improved result.

Figure 2: Decomposition Error. SymbolsGr , Gc, andGd
correspond to essential matrices after renormalization, cor-
rection, and decomposition, respectively.EG andεd stand
for recovery and decomposition errors.SG is the manifold
of decomposable matrices and̄G represents the true one.

As a way to estimate the error in the calculation of
the movement parametersEG, we suggest to measure
how far the matrixG is from being truly decompos-
able. Therefore, thedecompositionerror is defined as

εd = ‖Gc−Gd‖ (5)

whereGc comes from thecorrectionandGd = t×R,
being t and R obtained fromGc by decomposition.
Our claim is that the farther a matrixG is from the
decomposability constraint, the greater its decompo-
sition differs from the real one and, therefore, the less
reliable the matrix becomes, that is, ifεd1 ≤ εd2 then
EG1 ≤ EG2, as depicted in Fig.2.

4.3 Unreliability Measure

In Sec. 5.1 we show that in practice there are some
cases where there exists a clear correlation between
εd and therecoveryerror defined asEG = ‖Ḡ−Gd‖,
whereḠ is the true essential matrix andGd is the one
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obtained after decomposition. In other cases, the cor-
relation is clearer with the renormalization errorεr .

In order to improve the correlation with respect to
EG in any situation, the two previous measures are
combined in one single value calledunreliability νG
defined as follows

νG = εd · εr = ‖Gc−Gd‖ ·

√

ε2

N

7

∑
i=1

1
λ′

i
(6)

The valueνG corresponds to the weights on the
edges of CDG and the paths, representing sequences
of camera locations, will be selected to be the shortest
ones in terms of this measure of unreliability. Poste-
riorly, these paths are used to recover the complete
camera movement between to given positions. As
said, sinceνG correlates with the recovery errorEG
and the paths thus obtained have the least possible
unreliability, it follows that the movement recovered
from these paths will have less error than other kind
of feasible paths as shown in Sec. 5.2.

5 EXPERIMENTS AND RESULTS

This section describes the data employed and the ex-
periments carried out, as well as the results obtained,
in order to show the feasibility of the CDG framework
based on the unreliability measure defined before as a
way to perform multiple view calibrations.

The goals of the experiments are, first, to establish
the correlation between the unreliabilityνG of the es-
timatedG and the recovery errorEG so as their use
can be considered equivalent. Second,νG and the
CDG derived are applied to recover the camera move-
ments and the 3D structure employing the sets of im-
age points from a ( generated ) sequence of locations
along a circular trajectory of the camera as data. Our
aim is to display the recovery results attained by us-
ing the shortest path in terms of the unreliabilityνG
are better than those of the usual path of consecutive
camera locations.

5.1 Description of the Data

Both the ease of obtaining a sufficient number of data
to perform a generous and varied number of experi-
ments in order to prove our claims, the ability of con-
trolling the all the setting factors and the noise levels,
as well as the necessity of having a precise ground
truth to compare our results with, have compelled us
to generate the spacial data that fit our requirements
at the first stages of our research.

The data consist of a setspacepoints{rα}α=1,...,N
randomly generated inside the region determined by

(a)

(b)

(c)
Figure 3: Experiment results (I). Correlation indicesIρ be-
tween recovery errorEG and (a) unreliabilityνG, (b) renor-
malization errorεren, and (c) decomposition errorεdec.

two concentric spheres of radiusRmax andRmin, re-
spectively, beingRmin = k1 ·Rmax. M camera localiza-
tions were computed in a circular trajectory around
the spheres at a distanceDcam = k2 ·Rmax, separated
by intervals ofγt degrees. The orientation of the cam-
era plane is orthogonal to the radial direction.

The set ofimagepoints for each camera position
was generated projecting space points by means of
the perspective camera model and adding two kinds
of perturbations afterwards. First, the camera view-
ing angleγv ∈ {7o,14o,28o} permits to limit the po-
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sitions observing the same common points. Second,
an amount of noiseεi ∈ {0.0,10−6,10−5,10−4,10−3}
was also added to image points to simulate the error
appearing in the process of point extraction.

Constants used in the settings of each experi-
ment areN = 500, k1 = 90%, k2 = 3, γ = 5o, and
M = 360o/5o = 72, respectively. In total, there were
#{γv} ·#{εi} = 3 ·5 = 15 sets of experiments, where
image points were affected by different noise levels
and viewing angles while both 3D points and camera
localization remained constant (ground truth).

5.2 Unreliability vs. Recovery Error

In order to evaluate the suitableness of the unreliabil-
ity measureνG defined in Sec. 4, for each of the pre-
vious data sets, the correlation betweenνG and the re-
covery errorEG was computed, along with the renor-
malization errorεr and the decomposition errorεd,
defined in Eq. (4) and Eq. (5), respectively.

Each feasible2 pair of camera locations form an
edgeei j in CDG. Once the corresponding essential
matrix Gi j for this edge and its decomposition into
correspondingti j and Ri j were obtained using the
algorithm in Sect.4, the valuesνGi j , εr i j , and εdi j

were computed, as well as the recovery errorEi j =
‖Ḡi j −Gi j‖. Notice thatGi j = ti j ×Ri j .

For any viewing angleγv and image noiseεi an
index of correlation Iρ was computed between error
EG and each one of the previous accuracy measures
– νG, εr , andεd – as themeanvalue of all the par-
tial correlations{ρi , i = 1, . . . ,N} obtained as follows.
A correlationρi is calculated by taking the nodeni
as theorigin and employing the corresponding re-
covery error and the accuracy measures to the rest
of nodesn j , i 6= j, to compute a correlation coeffi-
cient. That is, ifXi ∈ {EGi} andYi ∈ {νGi ,εr i ,εdi},
whereEGi = {EGi j }, νGi = {νGi j }, εr i = {εr i j }, and
εdi = {εdi j } with j = 1, . . . ,N, thenρi = ρ(Xi ,Yi) =

cov(Xi ,Yi)/(σXi ·σYi ). IndicesIρ as a function ofγv
andεi are plotted in Fig. 3.

The results show that the correlation index be-
tween the unreliabilityνG and the recovery errorEG
is higher than eitherεr orεd alone. Besides, the values
of this index is pretty high and stable against noise in
the image plane and variations in the viewing angle.
Moreover, a reciprocal behaviour ofεr andεd is ex-
hibited, that is,εr presents a higher correlation when
that ofεd is lower, and vice versa. As a consequence
of such results, we state that the unreliability measure
νG defined in Eq. (6) is a useful and robust indirect
estimate of the recovery errorEG in general.

2Sharing enough observable common points.

(a)

(b)

(c)
Figure 4: Experiment results (II). Mean error reduction be-
tween consecutive and the shortest paths of (a) rotation, (b)
translation, and (c) 3D reconstruction, respectively.

5.3 Shortest vs. Consecutive Paths

The objective of this section is to demonstrate the
suitability of employing the shortest path in a CDG
based on the unreliabilityνG for recovering the move-
ment parameters corresponding to the camera loca-
tions along the aforementioned circular trajectory as
well as the 3D space positions of the sets of image
points. Apart from the shortest path of unreliabil-
ities νG between essential matrices, the more usual
path ofconsecutivecamera locations was also taken
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(a)

(b)
Figure 5: Some recovery results (I). Camera location in case
γv = 14o and (a)εi = 10−6, and (b)εi = 10−3, respectively.
Blue lines are the true camera trajectories, while green lines
are the camera trajectory recovered using shortest paths, and
the red ones corresponds to the camera trajectory recovered
using consecutive paths. Units are pixels.

into account in such a task. The error between the
obtained results and the actual ground truth was cal-
culated afterwards in order to make comparisons. In
other words, the translation errorEt, rotation errorER,
and space points errorEr are calculated.

This process took at every step a location as the
origin and computed the set of paths to the rest of
them. The procedure was repeated then varying the
origin to cover all possible camera locations and the
mean values for all the previous error magnitudes
were computed. Fig. 4 pictures the reduction in the
amount of error when the shortest path to recover the
motion parameters was used instead of the consecu-
tive path. The error reduction was obtained dividing
the error of a consecutive path and of a shortest path
connecting the same origin and final locations.

The use of the shortest path definitely reduced the
total amount error in the calculations of both cam-
era movements (t and R ) and 3D structure, espe-
cially whenγv was wider. This is because it is pos-
sible in that case to find paths which jump to more
separate locations, providing as a consequence larger
baselines that increases the accuracy. In case of nar-

(a)

(b)
Figure 6: Some recovery Results (II). Camera location in
caseγv = 28o and (a)εi = 10−6, and (b)εi = 10−3, re-
spectively. Blue lines are the true camera trajectories, while
green lines are the camera trajectory recovered using short-
est paths, and the red ones corresponds to the camera trajec-
tory recovered using consecutive paths. Units are pixels.

rower γv, this advantage may not exist and a worse
result may appear in few cases due to some out-
lier locations, as it happens whenγv = 7o and εi ∈
{0.0,10−6,10−5,10−4}. On the other hand, ifγv = 7o

andεi = 10−3, the reduction is very big because the
consecutive path provided a very poor result.

In Fig. 5 and Fig. 6 we plot some results depicting
the shape of the actual camera trajectory along with
the two kinds of trajectories recovered using the short-
est paths and the consecutive paths. In both groups of
plots, we selected two instances corresponding to two
levels of image point noise, i.e.,εi = 10−6 and 10−3.
Due to the obvious space limitations it is in fact im-
possible to show all the results obtained for all the
possible combinations of viewing angle and amount
of error in image points. Hence, only these two exam-
ples of reconstructed trajectories have been selected
to illustrate the performance of our approach.

Therefore, our aim is to display that, first, the tra-
jectories recovered using the shortest–path strategy
were substantially closer to the real one, and, second,
how the error accumulated by the consecutive path
growing as successive camera locations went farther
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from the origin3. Moreover, it can be observed that
such an error grew accordingly to the amount of noise
added to the image points. So in Fig. 5 (a) the scale of
the error is smaller than that in Fig. 5 (b). The same
can be stated from Fig. 6 (a) and Fig. 6 (b).

It is evident that the recovered trajectory deviates
from the true one as the location goes farther from the
origin. The scale in coordinatesZ is not the same as in
coordinatesX andY in order to show such deviation
and can be seen as the error in this direction since the
true value isZ = 0.0. Errors in directionsX andY
are more difficult to plot here because their sizes is
smaller compared to the range of these coordinates.

Finally, while the order of the errors produced by
consecutive paths in coordinatesZ were around 10−3

in Fig. 5 (a) and Fig. 6 (a), it was considerably larger
in Fig. 5 (b) and Fig. 6 (b), i.e., between 1 and 10,
which is around one thousand times bigger. This
is similar to the order differences in the noise level
present in the image points existing in these figures.
Consequently, whereas the error in the consecutive–
path trajectories had the same order as the image
points noise, the error of the shorted–path trajectories
was far smaller as can be seen in the depicted exam-
ples, being these trajectories really close to the ground
truth. Moreover, the viewing angleγv also reduces the
error of the recovered trajectories nearly to one half
whenγv = 28o with respect to the case ofγv = 14o.

6 CONCLUSIONS

We presented in this paper a new method for multiple
view reconstruction based on the definition of anun-
reliability measure that is shown to indirectly estimate
the recovery error. Experiments exhibited a clear cor-
relation between our criterion and the error in the es-
timation of the motion parameters provided by the
essential matrix computation and decomposition into
translation and rotation. In addition to this, the con-
cept of Camera–Dependency Graph(CDG) was in-
troduced consisting of a graph where nodes represents
camera positions and edges the feasibility of comput-
ing an essential matrix between such locations.

By employing a CDG whose weights are com-
posed of the unreliability measures we could obtain
a better result for the motion parameters estimation
whenever the shortest paths in the CDG were em-
ployed rather than the usual paths of consecutive cam-
era locations. It was proven that the reduction in the
recovery error was larger in the case of using shortest–
path trajectories than using consecutive paths. Be-

3Position(0.0,0.0,0.0) in both groups of images.

sides, it was also shown by some examples how the
better performance of our approach can be appreci-
ated in the precision of the recovered trajectories.

This method can be used in applications that in-
volve dense sequences of images, like those from au-
tonomous robot navigation, estimation of camera tra-
jectories or relative position, as well as for 3D point
recovery. The future work will consist in applying this
approach to problems such as simultaneous localiza-
tion and mapping, or robot navigation, as an alterna-
tive way to increase the precision of these tasks.
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