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Abstract: In this paper, a fast wireframe-visibility algorithm is introduced. The algorithm’s inputs are 3D wireframe 
model of an object, internal and external camera calibration parameters. Afterwards, the algorithm outputs 
the 2D image of the object with only visible lines and surfaces. 2D image of an object is constructed by 
using a camera model with the given camera calibration parameters and 3D wireframe object model. The 
idea behind the algorithm is finding the intersection points of all lines in 2D image of the object. These 
intersection points are called as critical points and the lines having them are critical lines. Lines without any 
critical points are regarded as normal lines. Critical and normal lines are processed separately. Critical lines 
are separated into smaller lines by its critical points and depth calculation is performed for the middle points 
of these smaller lines. For the normal lines, depth of the middle point of the normal line is calculated to 
determine if it is visible or not. As a result, the algorithm provides the minimum amount of point’s depth 
calculation. Moreover, this idea provides much faster process for the reason that there aren’t any resolution 
and memory problems like well-known image-space scan-line and z-buffering algorithms. 

1 INTRODUCTION 

In order to produce a display of a three-dimensional 
object, transformation of the modelling and world-
coordinate descriptions to viewing coordinates, then 
to device coordinates; identification of visible lines; 
and the application of surface-rendering procedures 
should be processed. This study deals with 
determining visibility of object edges which is 
referred as wire-frame-visibility algorithms. They 
are also called visible-line detection or hidden-line 
detection algorithms (Hearn and Baker, 1997).   

Visible line detection is one of the most difficult 
in problem computer graphics. Visible line detection 
algorithms attempt to determine the lines or edges 
that are visible or invisible to an observer located at 
a specific point in space. Algorithms are grouped in 
two parts; object-space and image-space algorithms. 
In the object-space algorithms, invisible lines are 
designated in 3D object model and than the visible 
parts are transformed into 2D image. On the other 
hand, in the image space algorithms, the invisible 
lines are removed directly in 2D image. In general, 
image-space algorithms are preferred since they are 
faster than the object-space algorithms. (Hearn and 
Baker, 1997) 

Well-known image-space visible line detection 
algorithms are z-buffering, scan line methods, etc. 
Z-buffering works by testing pixel depth and 
comparing the current position with stored data in a 
buffer: z-buffer. On the other hand the scan line 
algorithms process the scene in scan line order 
(Dong, X., 1999).   

In this study, a new and fast visible line 
detection algorithm is introduced for wireframe 
model. The algorithm is a type of image-space 
algorithms. It should be remembered that in 
wireframe model; objects are drawn as though made 
of wires with only their boundaries showing. In this 
study, object models in 3D are assumed to be 
represented by lines. This is reasonable since any 
curved shape can be approximated by defining some 
lines on the curve.  

The algorithm is prepared as if it is much faster 
than the scan-line method for the reason that it does 
not have any resolution problem. Besides, memory 
requirement of the algorithm is much less than z-
buffering method since it does not require pixel by 
pixel process.  

This paper presents the implementation and the 
performance of the algorithm in its sections. In the 
second section of the paper, mathematical relation 
between 3D and 2D is explained in the aspects of 3D 
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object representation, 2D image construction and the 
depth calculation. In the third section, the algorithm 
is described step by step. The simulation of the 
algorithm is implemented in the Matlab 
programming and results are presented in the forth 
section. In the conclusion section, results of the 
study are evaluated.   

2 2D TO 3D CONCEPT 

In this section, 3D object representation, 2D image 
construction, perspective camera model and depth 
calculation method are explained. 

2.1 3D Object Representation 

In this study, 3D objects are represented in 
wireframe model. The model is represented by 
points, lines and surfaces correspondingly. As an 
example, let’s consider a cube as shown in Figure 1. 
3D coordinates of the points a, b, c, d, e, f, g and h 
are defined for a wireframe model representation. 
Next, the lines are expressed by its beginning and 
the ending points as line ab, ef, bd, etc. Finally, the 
surfaces are defined as abcd, acge, etc. 

 
Figure 1: 3D model of a cube. 

Understanding of the 3D geometry of the object 
is necessary since the 2D view will be considered. 
Any plane surface in 3D can be expressed as 
following (Hearn and Baker, 1997): 

 

 Ax + By + Cz + D = 0 (1) 
 

where (x,y,z) is any point on the plane and the 
coefficients A, B, C and D are constants describing 
the spatial properties of the plane. If three successive 
polygon vertices (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) 
are selected A, B, C and D values can be obtained as 
following (Hearn and Baker, 1997): 

A = y1 (z2-z3) + y2 (z3-z1) + y3 (z1-z2) (2) 
  

B = z1 (x2-x3) + z2 (x3-x1) +z3 (x1-x2)  (3) 
  

C = x1 (y2-y3) + x2 (y3-y1) + x3 (y1-y2) (4) 
  

D = –x1 ( y2z3- y3z2 ) – x2 ( y3z1 - y1z3 )  
– x3 ( y1z2 - y2z1 ) 

(5) 

2.2 2D Image Construction 

Camera model is the main issue to discuss during the 
2D image construction process. Because 3D world 
coordinates are transformed into the image 
coordinates according to the camera model. In this 
paper, the perspective camera model is employed 
which is applicable to CCD cameras, IIR systems, 
X-ray images and etc. A point in the world is 
transformed into pixel coordinates after three steps 
using perspective camera model which is described 
in Zisserman and Hartley, 2003.  

First of all, a point [ ]Tzyx NNNN =  in the 
world coordinate frame (WCF) is related to the 
camera coordinate frame (CCF) as: 

[ ] )( TNRZYXp c
w

T
cccc −==  (6) 

where [ ]Tzyx TTTT =  is the camera position 

expressed in the WCF and c
wR  is the rotation matrix 

relating the two coordinate frames. Recall that point 
cp  satisfies the plane equation as following: 
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For the second step, cp  is expressed in the image 
coordinates by using “similar triangles”, a point in 
the CCF is transformed to the image coordinate 
frame (ICF) as: 
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where f  is the effective focal length. ip  is also 
affected by the distortion coefficient of the lens and 
becomes: 
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where κ  is the distortion coefficient of the total lens 
system. Finally, dp  is expressed in terms of pixel 
coordinates by taking pixel size and image centre 
into account as: 
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Therefore, camera coordinates of a point is 
projected into the image coordinates by using the 
camera calibration parameters. Method for finding 
the camera calibration parameters is out of scope of 
this study. The parameters are assumed to be known 
precisely. Camera model block diagram is shown in 
Fig. 2.  
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Figure 2: Perspective Camera Model. 

2.3 Depth Calculation 

Transformation from world frame to the camera 
frame results in alignment of the location of the 
object with the line of sight direction of the camera. 
Thus, visible or invisible parts should be decided in 
camera coordinates. At the same time, surface 
coefficients A, B, C and D in equation (1) should be 
calculated in camera coordinate frame by using the 
equations (2), (3), (4) and (5). Since the camera is 
located at the origin of the camera coordinate frame, 
z coordinate of any point is nothing but its depth 
according to the camera. If any two points having 
same x and y coordinates are investigated, visible 
point has smaller z value than the invisible point 
since it is closer to the camera. 

In Figure 2, inverse camera model process is also 
shown in dashed lines, which converts the image 
pixel coordinates to the camera coordinates. 
Consequently, depth is calculated by this inverse 
process. 

Let’s explain the depth calculation step by step. 
First, 

pixp  in equation (10) is known and dp  can be 
obtained directly from 

pixp  as below:  

[ ] [ ]Tyyxx
T

ddd CySCxSvup )()( −−==  (11) 
From equation (9), distorted image coordinates 

are known as: 
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(12) 

 

From the relations in equation (12), u and v can be 
obtained simply by iteration in which known du  and 

dv  values are used. After that, by considering the 
equation (8), cX  and cY  are calculated as below:  

 

f
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(13) 
 

Thus, we obtain the x and y coordinates of the 
camera coordinates. By substituting them into 
equation (7), the value of cZ , which is exactly equal 
to the depth of the point, is found by using the 
equation below: 
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Therefore, depth calculation is succeeded as in 
equation (15) for given x and y pixel coordinates of 
the point. Coefficients of the plane to which the 
point corresponds in 3D should be known, too. 

3 THE ALGORITHM 

The visible line detection algorithm introduced in 
this paper is based on finding the critical points in 
the image. Critical points are the intersection points 
of the lines in the image. Critical points are simply 
found as calculation of intersection of the lines with 
known beginning and ending points, slopes and 
constant terms. Remember that any line can be 
expressed as: 

 

ii cxmy +=  (16) 
 

where im  is the slope and ic  is the constant term of 
the line. Parameters im  and ic  are calculated by 
using the beginning ( bx , by ) and the ending ( ex , ey ) 
points of the line as following: 
 

eb

eb

xx
yym

−
−

=   
(17) 

  

Rw
c , T 

3D World 
coordinates 

point N 

Perspective 
projection, f 

pc: 3D camera 
coordinates 

( Xc , Yc , Z c ≡ DEPTH ) 
AXc+BYc+CZc+D = 0

Transformation 
to pixel 

coordinates 

DEPTH 
CALCULATION 
inverse camera 

model 

Internal 
Distortion

pi 

pd 

ppix 

VISAPP 2008 - International Conference on Computer Vision Theory and Applications

272



 

bb mxyc −=  or ee mxyc −=  (18) 
 

Critical point calculation starts with finding the 
intersection point ( tionerx secint , tionery secint ) of any two 

lines having line parameters 1m , 1c , 2m  and 2c .  
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If the intersection points coordinates tionerx secint  
and tionery secint  are in the range of the lines beginning 
and ending points, it is regarded as critical points. 
Otherwise, it is not a critical point. 

To make the importance and the necessity of the 
critical points more clear, let’s work on an example. 
In Figure 3, 2D image of a cube is shown without 
visible line detection. Camera view side is also 
illustrated in the figure. Critical points are marked as 
well. It should be noted that the beginning and the 
ending points of the lines are not marked even they 
are also intersection points. The lines without any 
critical points will be investigated after the 
investigation of the critical lines. 

There is one more important subject one should 
notice that any line of a cube is a member of two 
surfaces of the cube. This can be shown in Figure 3 
since the line fg is a member of the surface afgk and 
fgmh. Thus, if we name the surfaces afgk and fgmh 
as native surfaces, visibility of the line fg should be 
decided according to its native surfaces visibilities. 

As observed in Figure 3, point b and d are the 
critical points. They are included in the lines ac, fg, 
ce, gh which are also called as critical lines. 
Therefore, visibility check should be applied to lines 
ab, bc, fb, bg, gd, dh, cd, de. It is achieved by taking 
the middle points of these lines for two times since 
the lines have two native surfaces. Middle points are 
also marked in Figure 3. Let’s call these middle 
points as mi where i is form 1 to 8 for this case. First 
of all, the surfaces which include the point mi’s 
should be listed. This is simply achieved by 
checking the coordinates of the point according to 
the surface borders coordinates. Note that the native 
surfaces will be included in this surface list as well. 
Afterwards, at each mi the depths of the all surfaces 
in the list are calculated as explained in section 2 
and are written in the depth matrix. If the minimum 
member of the depth matrix is equal to the depth of 
the currently selected native surface, the line is 
visible and its state should be set to 1. Otherwise it is 
hidden and its state should be set to 0. Thus, the 

visibilities of the critical lines are decided. One 
should recall that this process is done for two times 
since a line has two native surfaces for this example.  

 
Figure 3: Critical points of a cube. 

When it comes to the visibilities of the normal 
lines which do not have any critical points on it, it is 
decided in a similar way of the critical lines. In this 
case the middle points of the normal lines are taken 
and the visibility of that point is investigated just 
like critical lines. 
To sum up, algorithms steps are presented as 
following:  

Step 1 Convert the 3D wire-frame from World to 
3D camera frame 

Step2 Calculate the coefficients (A, B, C and D) of 
all the surfaces on the object 

Step3 Convert the coordinates from camera to 
image frame. 

Step4 Calculate the parameters (m and c) of all 
lines. 

Step5 Calculate the critical points in the image 
Step6 Investigate the visibility of the critical lines 

one by one by separating the line according to 
its critical points. 

Step7 Investigate the visibility of the normal lines. 
Step8 Plot the visible lines 

4 SIMULATION RESULTS 

The algorithm is implemented in Matlab. The results 
are presented in this section for two experiments. 
First, two surfaces with different depths is presented. 
In the second experiment, 3D wireframe model is 
defined for five prisms. Camera parameters, 
rotations and translations are kept same for both of 
the experiments. 

Figure 4, 5 and 6 are the simulation results for 
the first experiment. One triangle and one 
parallelogram are defined in 3D wireframe model. 
Thus, corner point’s coordinates and the points that 
construct the lines and the surfaces are defined. In 
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Figure 4, two surfaces are illustrated in the World 
coordinate system. Star in the figure shows the 
camera location. It is obviously seen in Figure 4 that 
the triangle is in front of the parallelogram. After the 
transformation from 3D to 2D is applied by using 
the camera calibration parameters, Figure 5 is 
obtained. Critical points are also marked by stars in 
Figure 5. The algorithm runs for 4 critical and 3 
normal lines. Figure 6 is the result as expected. 11 
pieces of lines are investigated during the algorithm. 
Therefore, depth calculation is performed for only 
11 times in this experiment. 

 

 
Figure 4: Two surfaces in the world coordinate frame. 

 
Figure 5: 2D image and the critical points. 

 
Figure 6: 2D image after visible line detection. 

For the second experiment, the results are 
presented in Figure 7, 8, 9 and 10. 

Five prisms are defined having different heights, 
widths and lengths. These prisms are shown in 
Figure 7 in World coordinate system. Figure 8 is 
also put to present the camera coordinate system. 
Stars in the figures stand for the camera location. As 
shown in Figure 8, camera is at the origin of the 
camera coordinate system. 

 

 
Figure 7: Five prisms in the world coordinate frame. 

 
Figure 8: Five prisms in the camera coordinate frame. 

Figure 9 is the 2D image of the prisms without 
considering the invisible lines under the camera 
parameters. Critical points are also marked in the 
figure. Figure 10 is the result of the visible line 
detection algorithm. In this experiment, there exist 
200 critical points and 60 normal lines. Depth 
calculation is done for 321 times. Even though 321 
depth calculations seem to be a large number, 
duration for the program is shorter than z-buffer or 
scan-line method in Matlab. Furthermore, there isn’t 
any resolution or memory troubles during the 
algorithm. 

If the prisms numbers are to be increased, time 
for visible line detection will be increased obviously. 
However, it would be still faster than the scan-line 
or z-buffering methods. 
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Figure 9: 2D image of prisms and the critical points. 

 
Figure 10: 2D image after visible line detection. 

5 CONCLUSIONS 

In this paper, a visible line detection algorithm is 
introduced for wireframe model. The algorithm is 
designed as fast as possible. Such algorithm would 
be applicable for air or land vehicles since the rate of 
the performance is the most critical term in those 
applications.  

The algorithm performance should be compared 
with the well-known image-space algorithms like z-
buffering and scan-line method in order to conclude 
the subject. 

The z-Buffer algorithm is one of the most 
common hidden-line algorithms to implement in 
either software or hardware. The algorithm is an 
image-space algorithm. The z-buffer is extension of 
the frame buffer idea. Frame buffer is used to store 
the attributes (intensity) of each pixel in. The z 
buffer is a separate depth buffer, with the same 
number of entries as the frame buffer, used to store 
the z coordinate or depth of eve- visible pixel in 
image-space. Visibility of a pixel is decided by 
comparing the z-values of the saved x, y values 
(Dong, X., 1999). Conceptually, the algorithm is a 

search over x and y and visibility decision is done 
pixel by pixel. 

When it comes to the scan line algorithms 
process the scene in scan line order. Scan line 
algorithms operate in image-space. They process the 
image one scan line at a time rather than one pixel at 
a time. By using area coherence of the polygon, the 
processing efficiency is improved over the pixel 
oriented method (Dong, X., 1999). However, 
resolution of the scan line makes troubles in time 
and precision. 

The algorithm explained in this paper does not 
have any resolution and memory problems. This 
algorithm bases on finding the intersection points of 
the all lines of the object in 2D image coordinates. 
These intersection points are called as critical points 
and the lines having them are called as critical lines. 
Lines without any critical points are called as normal 
lines. Depth calculation is achieved for the separated 
critical lines by critical points and the normal lines. 
This approach provides much faster process 
especially when it is compared with scanning line or 
z-buffer methods. The only constraint for this 
algorithm is wireframe 3D model representation. 
This constraint will not cause any problem in real-
life experiments since any curved shape can be 
approximated by defining some lines on that curve.  
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