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Abstract: Creating high dynamic range images of non-static scenes is a challenging task. Carefully preventing strong
camera shakes during shooting and performing image-registration before combining the exposures cannot
ensure that the resulting HDR image is consistent. This is eventually due to the presence of moving objects
in the scene that causes the so called ghosting artifacts. Currently there is no robust solution that produces
satisfactory results in any circumstance. Our method consists of two main steps. First, the probability of
belonging to the static part of the scene is estimated for each pixel of the N exposures, yielding N weight
images. In the second phase, we segment the areas of the weight-images with lower and higher probability
values, and smoothly propagate their influence until a significant change in luminosity is detected or a pixel
with a corresponding high probability of belonging to the background is approached. This represents an
attempt to spread the influence of lower weights to the surrounding pixels of the same object. Results produced
with our technique show a significant reduction or total removal of ghosting artifacts.

1 INTRODUCTION

High dynamic range images are commonly created by
combining a set of images acquired with varying ex-
posure time (Debevec and Malik, 1997). Ideally, the
information contained in the pixels of one exposure
must be combined with the corresponding pixels of
the other exposures representing the same features of
the scene. This is usually accomplished by attempting
to avoid camera shakes during shooting and by per-
forming an extra image registration step before merg-
ing the exposures. However, although this may maxi-
mize the overlap between the exposures, it is not pos-
sible to guarantee that the same spatial locations in
the low dynamic range images represent the same de-
tails of the scene; this is due to the non-static nature
of most scenes encountered in practical applications.
This situation eventually occurs in the regions of the
image space where movement was present or where
the image registration algorithm failed to properly
align the shots. Combining an exposure set suffering
from such inconsistencies will surely cause ghosting
artifacts to be visible in the resulting HDR image, in

the form of semi-transparent features. Unless ghost-
ing is involved only in a reasonably small area of the
image, it usually produces unacceptable results; this
restricts the use of high dynamic range imaging only
to static scenes.

2 PREVIOUS WORK

Some authors treat ghosting as an analogous prob-
lem to image-registration; a possible solution would
then be tracking object movements across the expo-
sures and use this information to warp the pixels of
the images accordingly, in order to produce an ac-
curate alignment (Bogoni, 2000). These techniques
rely on motion estimation by optical-flow, and it is not
possible to ensure they work properly with any kind
of movement; for example they inevitably fail when
details in some exposures do not have any correspon-
dence in others, due to occlusion.

Ward in (Reinhard et al., 2005) proposes to de-
tect and segment movement regions and replace each
segment with information extracted from a single ex-
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posure. Movement is detected using a measure based
on a weighted variance of pixel values across the ex-
posures, for each location; regions are then selected
by marking only the locations where the variance ex-
ceeds a threshold value. The main drawback of this
method is that ghost regions are replaced by pixels
from a single reference image; if a segmented ghost
occurs in an area where the dynamic range is high,
any exposure will contain underexposed or saturated
pixels in that area (or eventually both). Moreover the
weighted variance, does not always work properly as
a measure for detecting movement; in particular it
usually fails when the pixel values of the moving ob-
ject are similar to those of the background. This moti-
vated Jacobs et al. in (Jacobs et al., 2005) to introduce
an auxiliary measure based on entropy that is insen-
sitive to the amount of contrast in the pixel data and
efficiently allows to detect movement of features that
are similar to the background; nonetheless detected
areas are again replaced with pixels of a single expo-
sure.

Grosch in (Grosch, 2006) describes a similar ap-
proach based on the idea that the functions that map
the intensity of any pixel of one exposure to the cor-
responding intensity in another exposure can be re-
trieved, if the camera response function and the expo-
sure times are known. He then uses such functions to
predict pixel values across the exposures and create
an error map. The error map is thresholded in order
to mark invalid locations, that are replaced with pixels
from one or possibly more exposures. The algorithm
however cannot remove ghosts whose colors are sim-
ilar to the ones of the background, and the dynamic
range in movement areas remains limited.

A different approach is described in (Khan et al.,
2006) and it consists in assigning to each pixel of ev-
ery exposure its probability of belonging to the back-
ground. The weights used for pixel values when com-
bining the exposures, are then chosen to reduce the
effect of underexposed or saturated pixels as well as
to reduce the influence of pixels with a low likeli-
hood of belonging to the background. The procedure
used in order to compute these probabilities can be
eventually reiterated to get progressively more accu-
rate results. The method, although computationally
expensive compared to the others, works fairly well
as long as the exposures prevalently capture the back-
ground, and it is able to reduce ghosting artifacts in
regions where the dynamic range is high. However
the algorithm is based on non-parametric kernel den-
sity estimation whose efficiency is dependent on a
good choice of the smoothing parameters. In addition
a density estimation approach is applied to data sets
that are not suitable, since analogous elements even-

tually correspond to different values due to variations
in overall brightness across the exposures.

3 DETECTING BACKGROUND
PIXELS

We treat ghosting as an analogue problem of detect-
ing pixels belonging to the static part of the scene (the
background). First, for each location in image space,
a statistical model of the background is created, based
on information related to the pixels of a neighbor-
hood; successively, the chance of belonging to this
class is evaluated for the pixels of interest. A low
probability is likely to be a caused by the local pres-
ence of ghosts. Our approach shares similarities with
the iterative scheme suggested in (Khan et al., 2006),
however we bring important improvements that make
it more suitable for high dynamic range applications
and lead to a superior removal of ghosts, as shown in
our results.

A three-element vector of the form (c1,c2,c3) ∈
ℜ3 is associated to an arbitrary pixel; its elements cor-
respond to the color information of that pixel. Let
R be the total number of exposures; for each spa-
tial location (i, j) the set Ni, j of neighboring pixels
is used as an approximate representation of the back-
ground and it is defined as Ni, j = { f (x,y,r) | r ∈
[1..R], i−1≤ x≤ i+1, j−1≤ y≤ j+1, x 6= i,y 6= j},
where f (x,y,r) ∈ ℜ3 denotes the three-components
pixel color values at coordinates (x,y) in the r-th ex-
posure. If we think of an exposures sequence as a
M×N×R image, Ni, j can be seen as the set of all the
pixels in a rectangular 3× 3×R region in 3d-space
excluding all the central pixels. The probability p for
a pixel at coordinates (i, j,r) with r = 1..R of belong-
ing to the class Ni, j is estimated by a non-parametric
kernel density estimation approach. The probabilities
p̂(x) where x ∈ℜ3 denotes a generic pixel vector, are
then given by

p̂(x) =‖H ‖−1 ∑
N
i=1 w(Xi)K(H−1(x−Xi))

∑
N
i=1 w(Xi)

. (1)

N is the total number of samples, the vectors Xi are
the sample pixels that constitute the model of the
background, w is a weight function that limits the in-
fluence of those pixels that are under-exposed or sat-
urated, and have little chance to be part of the back-
ground; the latter is achieved by reusing the values
p̂(x) from the previous iteration of the algorithm as
described in (Khan et al., 2006). K is a d-variate ker-
nel function, and H is a symmetric positive definite
d×d bandwidth matrix.
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Since the particular shape of the kernel function
generally does not have a critical impact in perfor-
mance terms (Silverman, 1986), a standard multivari-
ate Gaussian kernel with identity covariance matrix is
often a reasonable choice for K, that is

K(x) =
1

(2π)
d
2

exp(−1
2

xTx) (2)

On the other hand it is well known that the use of
density estimation approaches can bring useful results
only when the bandwidth values (or alternatively,
smoothing parameters) are properly set. Non-suitable
bandwidth values are the cause of undersmoothing or
oversmoothing (Silverman, 1986), and for this reason
their importance is to be considered vital. Moreover,
the “goodness” of the smoothing parameters strongly
depends on the nature of the data set in question that
could significantly change between different locations
in image space. In addition, it must be mentioned that
density estimation approaches work correctly as far as
same observations correspond to equal vector values
in the data set of samples, and this is not the case for
high dynamic range applications, due to overall inten-
sity variations across the exposures.

3.1 Pre-Transforming Pixel Values

Density estimation is a reasonable approach as long
as analogue observations of a quantity actually corre-
spond to equal sampled values. However the variation
in pixel intensity between any pair of exposures can
be described by an intensity-mapping-function (IMF)
τi, j that maps the brightness of an arbitrary pixel in
the i-th exposure into the corresponding brightness
in the j-th exposure. Often, only the subset of IMFs
τi between adjacent exposures is considered, where
τi stands for τi,i+1. It has been proved that IMFs
are theoretically always monotonic increasing (Gross-
berg and Nayar, 2003). Let’s have a sequence of R
exposures and let c be a pixel value; the functions
ϒc(r) = τr−1(...(τ0(c))), where r ∈ [1,R] and τ0(c) =
c, describe how the intensity of corresponding pixels
varies in function of the exposure number. A function
ϒc, given by the composition of monotonic increas-
ing functions, is monotonic increasing too; from this
it follows it has an inverse. However IMFs in prac-
tice do not describe the accurate correspondence be-
tween pixel intensities due to factors such as clamp-
ing, quantization errors and noise, that usually have a
significant influence in darker and brighter areas of an
image. This suggests the introduction of a valid pixel
range, typically V = [20,240], where the mentioned
factors can be considered negligible to some extent.
Considering only pixel values c ∈V , and an arbitrary

exposure s, the function

ϒ̃c(r;s) =
{

τr−1(...(τs(c))) r > s
c r = s

can be considered monotonic increasing in the inter-
val s ≤ r ≤ l, where l = max{r | ϒ̃c(r;s) ∈ V}. This
intuitively suggests that intensities of corresponding
well exposed pixels can and should be transformed
into the same value.

We only experimented with a naive approach
based on histogram matching. We choose the “best”
reference exposure of the sequence and perform a “re-
laxed” intensity alignment to it for all the other expo-
sures. We typically choose the exposure whose in-
tegral of the luminance channel histogram in the in-
tervals [0,20] and [240,255] is lowest, preferring the
one that uses more bins. Intensity alignment is per-
formed by simple histogram matching, although for
this application a more robust radiometric alignment
approach like the one described in (Kim and Polle-
feys, 2004) could be eventually used. We reduce
the loss of information due to intensity alignment, by
introducing a simple measure of its “harmfulness”.
Let’s have two images A, B and denote by A→ B the
resulting image of an intensity-alignment of A to B (A
matches B). We attempt to quantify the loss of infor-
mation due to the intensity-alignment operation by

lossA,B =
| {histL((A→ B)→ A) > 0} |

| {histL(A) > 0} |

where histL(X) is the luminance channel histogram
of an image X, and | {histL(X) > 0} | returns the to-
tal number of used bins. This is justified by the fact
that transforming an image A into A→ B would most
likely cause a certain amount of pixels to be clamped
to the valid color range, and transforming A→ B back
to its original intensity would yield a resulting image
(A→ B)→ A suffering from posterization artifacts.
The quantity lossA,B is in the range (0,1] and it is
used to define a linear interpolation factor t between
the original image and the intensity-matched version
of it, in the following way,

t =
{

k k ≤ 1
1 k > 1

where

k = lossA,B
1−tolerance 0≤ tolerance < 1

and the factor tolerance determines when to start to
linearly interpolate. We set by default tolerance =
0.3. Density estimation is finally performed on the
set of intensity-aligned images (with opportune “re-
laxation”), while the output weights of the algorithm
are of course used with the original set of exposures.
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3.2 Estimating Bandwidth Matrices

In (Raykar and Duraiswami, 2006) Vikas et al. de-
scribe methods to quickly compute the optimal band-
width value for univariate data, and in (Zhang et al.,
2004) an algorithm to estimate full bandwidth matri-
ces in the multivariate case is proposed. A natural ap-
proach would then be applying such algorithms to the
pixel data contained in Ni, j, and repeating this step at
each location (i, j); nevertheless the amount of calcu-
lations required would become unacceptable. Using a
decorrelated color space like Lαβ or CIELAB makes
the choice of a product kernel (H diagonal) reason-
able. This led us to consider the possibility of estimat-
ing the bandwidth parameters using a straightforward
and fast method. We used a slightly modified version
of Scott’s rule (Scott, 1992), that in its original form
is

h̃i ≈ n−
1

d+4 σi

where d is the dimensionality of the n samples, and σi
is their standard deviation in the i-th dimension. Con-
cerning the terms σi, we prefer to compute weighted
standard deviations of the following form,

σ̃ =

√
∑

n
i=1 w(xi) · (xi− x̃)2

∑
n
i=1 w(xi)

where w(xi) are the sample weights, x̃ is the weighted
mean of the samples xi, and n is the total number of
samples. We use the pixel weights obtained from the
last iteration of the algorithm to reduce the influence
of the pixels that are incorrectly exposed and have lit-
tle chance of belonging to the background. We finally
propose the following bandwidth matrix for an arbi-
trary neighborhood set Ni, j:

Hi,j =
∣∣Ni, j

∣∣− 1
7 diag

(
σ̃L(Ni, j), σ̃α(Ni, j), σ̃β(Ni, j)

)
(3)

where we respectively denoted by σ̃L(Ni, j), σ̃α(Ni, j)
and σ̃β(Ni, j) the weighted standard deviations of the
luminance and color data of the pixels of the neigh-
borhood Ni, j.

In addition, it is possible to obtain satisfactory re-
sults and save computation time by precalculating the
set of matrices Hi,j in the beginning and reusing it at
every iteration, or alternatively by applying (3) to the
entire set of pixels of all the exposures in order to ob-
tain only one global suitable bandwidth matrix.

3.3 Weights Propagation

It often happens that although some portions of a
moving object are correctly detected and assigned
low probabilities of belonging to the static part of the

scene, other parts are still given higher weights. This
can be due to several reasons like similarity of object
and background colors, or more generally to limita-
tions in the density estimation approach. Intuitively,
if a portion of a moving object has low chances of
belonging to the background, this should be eventu-
ally valid also for all the other portions of the same
object. We describe a method that attempts to prop-
agate the influence of the lower probabilities to the
surrounding areas of the image representing the same
feature. After each iteration of the procedure de-
scribed in the previous sections, a new M×N×R ma-
trix of normalized weights is available. Before merg-
ing the exposures, we compute two threshold values
to segment the areas with relatively low and high like-
lihood of being part of the static part of the scene;
the values we use are respectively the 10-th percentile
and the 60-th percentile of all the pixel weights. For
each exposure, two morphological operation are ap-
plied to the binary images relative to the lower and
higher weights: respectively close and open using a
disc shaped structuring element of 7 pixels radius.
The former image is multiplied by a low value (we
use 0.01), and its nonzero pixels replace the corre-
sponding ones in the latter image. This procedure
yields R constrain-images that can be used in conjunc-
tion with the original exposures to perform an image-
driven propagation; the approach used is the one de-
scribed in (Lischinski et al., 2006) that minimizes the
following quadratic functional:

f = arg min
f

{
∑
x

w(x)( f (x)−g(x))2+

+λ∑
x

(
| f ′x(x)|2

|L′x(x)|α + ε
+

∣∣ f ′y(x)
∣∣2∣∣L′y(x)
∣∣α + ε

)}
Intuitively the first term aims to keep the resulting
pixel weights given by f, as close as possible to the
values g(x) of the constrain-image, while the second
term is necessary to keep the gradient of the objec-
tive function small, allowing however large changes
when the gradient of the log-luminance channel L of
the underlying image is significant. The weights w(x)
and the parameters λ, α, and ε can be used to control
the type of propagation; in our experiments we used
the default values λ = 0.2, α = 1, ε = 0.0001, while
w(x) is equal to 1 in correspondence of the nonzero
values of the constrain image, and 0 otherwise. The
propagated weights are then multiplied element by el-
ement by the original weight matrix, and used either
to combine the exposures, or to perform an extra it-
eration of the algorithm (Figure 1). Lischinski et al.
in their paper describe a fast method that is able to
minimize the functional f in a fraction of second for a
640×400 image. In order to save memory and com-
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Figure 1: The main steps of the propagation process:
weights obtained from density estimation; low and high
weights segmented; propagated weights; final weights.

putation time, in case of big images, we perform the
propagation step on downsampled versions of the ex-
posures, and resize the results back to their original
dimensions.

4 RESULTS AND CONCLUSION

We compared our approach to the one described in
(Khan et al., 2006). Reinhard’s photographic opera-
tor was used to tonemap the generated HDR images
(Reinhard et al., 2002). Our approach does not require
any setting to be adjusted by the user. In all the exper-
iments shown we used only one global bandwidth ma-
trix that is reused at every iteration: the more general
approach described resulted in a significant increase
of computation time with little benefits. For Khan’s
method, we used a default identity bandwidth matrix,
and 3×3×R neighborhoods. We included in Figure
2 some of the exposures used for generating the final
HDR images. Figure 3 shows the results of the exper-
iments. In the first scene, ghosting is localized and oc-
curs in regions that have high dynamic range; artifacts
are completely removed only with our algorithm. In
the second scene, the situation is similar but less expo-
sures were available. Density estimation alone could
not distinguish properly the background, while the
weight propagation helped to improve the results. Fi-
nally we considered a handheld set of exposures in-
tentionally left unaligned, and where chaotic move-
ment is present; this sequence does not hold the as-
sumption that the background is prevalently captured
and suffers from critical occlusion and parallax prob-
lems. In spite of this, our method proved a remarkable
robustness against feature misalignments. In all the
cases that have been considered, our approach showed
a significant improvement in reducing ghosting arti-

facts, and when the previously mentioned assumption
holds, ghosts can be completely eliminated even with
a single iteration.
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Figure 2: Some of the exposures used in the experiments. From left to right, the original sequences contained respectively
seven, five, and six exposures.

Figure 3: Results obtained without any ghost removal applied (left column); with Khan’s method (middle column); with our
method (right column). Six iterations of Khan’s method have been used for the first two sequences, and four iterations for the
third one; further iterations did not improve significantly the final image. All the results produced with our method required
only a single iteration. In the first sequence, ghosting artifacts of the car on the right are completely removed only with our
algorithm. The propagation approach works fairly well also with ghosting artifacts caused by feature misalignments.
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