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Abstract: In this paper, we propose a new method for the measurement of shape similarity. Our proposed method 
encodes the contour of an object by using the curvature of the object. If one objects are similar (under 
translation, rotation, and scaling) in shape to the other, these codes themselves or their cyclic shift have the 
same values. We compare our method with other methods such as CSS (curvature scale space), and shape 
context. We show that the recognition rate of our method is 100 % and 90.40 % for the rotation and scaling 
robustness test using MPEG7-CE-Shape1 and 81.82 % and 95.14 % for the similarity-based retrieval test 
and the occlusion test using Kimia's silhouette. In particular, the value of the occlusion test is approximately 
25 % higher than those of CSS, SC. Moreover, we show that the computational cost of our method is not so 
large by comparison our method with above methods.  

1 INTRODUCTION 

A measurement of shape similarity for shape-based 
retrieval in image databases should correspond with 
our visual perception. This basic property leads to 
the following requirements: 

1. A shape similarity measure should present 
recognition of perceptually similar objects 
that are not mathematically identical. 

2. It should not depend on scale, orientation, 
and position of objects. 

3. A measure must return high similarity when 
we compare an object with those obtained by 
varying its shape by moderate articulation 
and occlusion. For instance, the similarity 
measure of all hands in Figure 1 must be 
large when they are compared with each 
other and small when they are compared with 
other objects such as heads, faces, and 
aeroplanes. 

4. It should be free from digitization noise and 
segmentation errors. 

We aim to apply a shape similarity measure to the 
classification of image databases, where the object 
classes are generally unknown. Therefore, a shape 
similarity measure is required to be universal in the 
sense that it allows us to identify and distinguish 
between objects of arbitrary shapes without any 
restriction on a shape assumption. In practice, the 

computational complexity to measure a shape 
similarity should be small. In particular, we 
concentrate our effort on the above requirements 2 
and 3. 

Our method encodes the contour of an object by 
using the curvature of the object. We use this code 
as a shape similarity measure. If two objects are 
perceptually similar (translation, rotation, and 
scaling) in shape, these codes themselves or their 
cyclic shift have the same values, and vice versa. 

Our method is compared with previous ones 
such as the well-known Fourier descriptor, CSS 
(curvature scale space), and shape context. These 
previous methods have several drawbacks. For 
example, in the case of Fourier descriptors (FDs), 
the mapping from the original object to the 
representation features (e.g. FD magnitudes or 
phase) is not one-to-one, i.e. the original object 
cannot be uniquely reconstructed from the 
representation features. The computational cost of 
CSS is large. Our method can overcome this 
drawback. 

This paper is organized as follows: Section 2 
presents the outline of our method. Here, we define 
our code and describe the process to construct it and 
how it is used to compare the similarity of two 
objects. In Section 3, we report the experimental 
results obtained using the shape databases 
MPEG7_CE-Shape1 (Mokhtarian and Bober, 2003) 
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and Kimia’s silhouette (Belongie, Malik, and 
Puzicha, 2002). The experiment is composed of 
three parts with the following main objectives: 

A: robustness to scaling and rotation by using  
MPEG7_CE-Shape1, 

B: performance of the similarity-based retrieval by 
using Kimia’s silhouette, and 

C: robustness to occlusion by using Kimia’s 
silhouette.  

In Section 4, we summarize our conclusions. 

        
    Original         Rotated       Articulated        Occluded 

Figure 1: Variations of a sample shape. 
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Figure 2: Curvature images of a leaf image and its rotated 
image.  

2 PROPOSED METHOD 

First, we discuss the properties of curvature; then, 
we define our code. 

2.1 Curvature of a Planar Curve 

The curvature of a planar curve is invariant under 
rotation and translation. It is also inversely 
proportional to the scale. Therefore, it is useful to 
compare objects by using their curvatures. However, 
direct use of curvature is difficult due to the 
digitization errors. Figure 2 describes the curvature 
images of a leaf and its rotation image. The values of 
their curvature functions are slightly different. On 
the other hand, the shapes of their curvature images 
are similar. In particular, the positions of their 
extreme points are almost equal to each other. This 
property is an important aspect of our method and 
extreme points of a curvature are used in our method. 

2.2 Definition of our Code 

Our method encodes the contour of an object as 
follows: 

1. Compute the curvature of the object. For this, 
we use the same method as that used in CSS 
(Mokhtarian and Mackworth, 1992, Costa 
and Cesar, 2001). 

2. Extract extreme points of the curvature 
function and select points of an object corres-
ponding to them. Hereafter, we call these 
points as “interest points.” Intuitively, these 
points are like the corner points of an object. 

3. Let },...,,,{ 03211 pppppp nn == +
 denote the 

set of interest points obtained by the above 
step. Then, we construct a code of the object 
defined as follows: 
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( ik  is the value of the curvature of an object 
corresponding to ip ). 
 
Figure 3 represents an outline of the construction of 
our code.  
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Figure 3: Outline of the construction of our code. 

Each column of our code in (1) represents the infor- 
mation of triangles 11 +− iii ppp with ni ,...,3,2,1= . 

The meaning of the components 1ic , 2ic , 3ic , and 

4ic of the i -th column of the above code is the follo- 
wing: 

1ic , 2ic : information of a side of 11 +− iii ppp , 

3ic : information of the area of 11 +− iii ppp ,  

4ic : information of convexity.  
By using this code, we compare the similarity 
between two objects. It is invariant under translation 
and scaling. Rotation causes only a cyclic shift of a 
column in it. Moreover, the mapping from an object 
to this code is injective. 

2.3 Application to Shape Matching 

The process of comparing two objects by using our 
code is as follows. 
 

Let },...,,{},,...,,{ 2121 nm qqqppp  denote the sets of 
interest points of two objects A and B , 
respectively. 

1. Compute the value of the curvature 
corresponding to ip  and jq  with mi ,...,3,2,1=  
and 

nj ,...,3,2,1=  ( nm ≥ ). 
2. If nm > , remove the interest points of A  such 
that the values of the curvature are the top nm −  
ranked points in the ascending order of the absolute 
value. 
3. Construct both codes. 
4. The codes of A and B  are denoted by (6) and (7), 
respectively 
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(The meaning of each component is the same as that 
in Section 2.2.). Then, we determine that the i -th 
column of CA  and the j -th column of CB  are 
common if the following conditions are held: 

a. ,|| 111 tba ji <−  
b. ,|| 122 tba ji <−  
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We construct the nn× -matrix 

)( ijcomCOM =  such that if the i -th column 
of CA  and the j -th column of CB  are 
common, 1=ijcom ; otherwise, 0=ijcom . 

5. Compute the following number:  

4321 sssss +++=  (8) 

where  

Extract the interest points  

Approximate an object  
by using triangles 

Set triangles in turn 

1p  

2p  3p  

4p  

1p
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We use above s  to measure the similarity 
between two objects. We call s  the similarity 
number. 

6. For all i with 11 3 −≤≤ ti ( ntn 8.05.0 3 ≤≤ ), 
remove the interest points of A  and B such that 
their absolute values of curvature sorted in the 
ascending order are less than or equal to that of 

)( inm +− -th and less than or equal to that of i -
th, respectively. Thereafter, repeat steps 3 to 5 by 
replacing n  with in − . 

7.   We denote the similarity number of the i -th  
trial by is ( ss =0 ). Compute the mean value of 
each similarity number, i.e. 

∑
−

=

=
1

03

31 t

i

is
t

S  
 

  (13) 
 

S  is the definition of the similarity between A   
and B. 
 

Here, we provide an additional explanation 
about S  and the parameters 4321 ,,, ssss . If S  is 
small, the similarity between A  and B is high, and 
vice versa. The role of 1s  is to measure how many 
common parts of a shape exist between A  and B. It 
is used to measure the rough similarity. 2s  is used to 
calculate how many common connected parts of the 
shape exist between A  and B. It is used to measure 
the close similarity. In fact, 2s  is not small unless 
the shapes of A  and B are considerably close (e.g. 
A  and B are similar in shape). 3s  is mainly used to 

compute the local difference between A  and B. 4s  
is large if nm −  is large. This parameter plays a role 
to distinguish dissimilar shapes.  

Due to step 6, S  remains small if the curvatures 
of A  and B are similar; otherwise S  becomes large. 
Therefore, S  is small when the shapes of A  and B 
are similar or almost similar (e.g. moderate 
articulation and occlusion).  

3 EXPERIMENTS 

The first experiment evaluates the robustness to 
scaling and rotation by using MPEG7_CE-Shape1. 
The second and third experiments evaluate the 
performance of the similarity-based retrieval and 
robustness to occlusion by using Kimia’s silhouette.  

3.1 Robustness to Rotation and Scaling 

3.1.1 Robustness to Rotation 

The database MPEG7_CE-Shape1 includes 420 
shapes: 70 basic shapes and 5 derived shapes from 
each basic shape by rotation through angles: 9°, 36°, 
45°, 90° and 150°. Each of these 420 images was 
used as a query image. The number of correct 
matches was computed in the top 6 retrieved images. 
Thus, the best result is 2520 matches. Figure 4 
shows some shape instances in MPEG7_CE-Shape1. 

       
Figure 4: Shape instances in MPEG7_CE-Shape1. 

3.1.2 Robustness to Scaling 

The database includes 420 shapes: 70 basic shapes 
are the same as in 3.1.1 and 5 shapes are derived 
from each basic shape by scaling digital images with 
factors 2, 0.3, 0.25, 0.2, and 0.1. Each of these 420 
images was used as a query image. The number of 
correct matches was computed in the top 6 retrieved 
images. Thus, the best possible result is 2520 
matches. In Table 1, the results of rotation and 
scaling tests are presented. The presented results 
except for our method are based on (Mokhtarian and 
Bober, 2003, Latecki, Lakamper and Eckhardt, 
2000). 
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Table 1: Results of rotation and scaling tests. 

 Fourier CSS Proposed method 
rotation 100% 100% 100% 

 scaling 86.35% 89.76% 90.40% 

The parameters 1t , 2t  and 
3t  in these experiments 

are: ,1.01 =t 4.22 =t , nt 7.03 = . The scaling robustness 
test is difficult because several objects are severely 
distorted under reduced factors of 0.2 and 0.1. 
Figure 5 shows a severely distorted sample reduced 
by a factor of 0.1. 

  
Original 0.1 

Figure 5: Shape of a running person and its scaled-down 
and re-sampled version. 

3.2 Performance of the 
Similarity-based Retrieval 

The database Kimia’s silhouette includes 99 shapes 
and is divided into 9 classes of various shapes. Each 
image was used as a query, and the number of 
images belonging to the same class was counted in 
the top 11 matches. Since the maximum number of 
correct matches for a single query image is 11, the 
total number of correct matches is 1089. Some of its 
samples are shown in Figure 6, where the shapes 
positioned in the same row belong to the same class. 

 

 

 
Figure 6: Example shapes in Kimia’s silhouette. 

Most images of the database consist of several basic 
shapes and their occluded and articulated shapes. A 
few images include similar but different animals as 
shown in third row of Figure 6. In Table 2, the 
results of this experiment are presented. The 
parameters 1t , 2t  and 

3t  in this experiments are: 
,1.01 =t 9.22 =t , nt 8.03 = . Proposed method + SC in 

Table 2 means a combined method of proposed 
method and shape context. The recognition rate of 
proposed method + SC is better than that of 

proposed method. This is because the interior 
information of SC is added to the exterior 
information of our method. 

Table 2: Results of the similarity-based retrieval. 

 
 
 
 
 
 

3.3 Robustness to Occlusion 

In this experiment, we took three image classes (fish, 
aeroplane and art object images) which consist of 
eight images respectively. We changed their images, 
and each image was impaired by 10-25% from four 
different directions (front, rear, right, and left). For 
each class, 96 images were tested, and the number of 
the correct matches was counted. Some of the 
original images and samples of occluded images are 
shown in Figure 7. In Table 3, the results are 
presented. 

    

       

                 
Figure 7: Example shapes of original and occluded images. 

Table 3: Results of the occlusion tests. 

 10% 20% 25% total 
CSS 91.67% 72.92% 47.92% 70.88% 
SC 90.76% 66.67% 54.17% 70.49% 
Proposed method 100% 96.88% 88.55% 95.14% 

The parameters 1t , 2t  and 
3t  in this experiments are: 

,1.01 =t 9.22 =t , nt 7.03 = . Since our method uses the 
shape of the contour to measure the similarity, it is 
more suitable for recognition of partially occluded 
objects than CSS and SC. There exists a previous 
result (Krolupper and J. Flusser, 2007) deals with the 
recognition of the partial occlusion of objects. It also 
takes into account the invariance to the affine 
transformation. However, it could not be used to 
convex objects such as triangle, rectangular, since it 

 Recognition rate 
CSS  73.19% 
Shape context(SC) 76.86% 
Proposed method 81.82� 
Proposed method + SC 87.51�  
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is employed the zero-crossing points of curvature. 
Our method can be applied for those objects. 

3.4 Remark on Computational Cost 

CSS involves large computational costs due to the 
iterations of a Gaussian filter. The cost is at least 100 
times larger than that of our method, where the 
Gaussian filter is used only once. For example, the 
calculation time by Matlab programming with 
Pentium(R) D 3.2GHz processor to construct the 
CSS image of a leaf in Figure 3 is about 150 s, while 
the calculation time to construct our code is about 
1.4 s. The computational cost to compare the 
similarity of two objects by using our code (except 
for the complexity of computing the curvature) is 
low. It requires about 0.25 s. Figure 8 shows the 
relationship between the length of the contour of a 
leaf image given in Figure 2 and the calculation time 
of three methods (CSS, shape context, our method). 
It follows that the calculation time of our method is 
about one-hundredth lower than that of CSS, but 
about five times greater than that of shape context by 
Figure 8. The vertical line of Figure 8 is the 
logarithm of the calculation time and the horizontal 
axis is the length of contour. 
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Figure 8: Graphs between the length of the contour of a 
leaf image and the calculation times of CSS, shape context 
and proposed method. 

4 CONCLUSIONS 

We have proposed a new method of shape matching. 
It is shown that the computational cost of our 
method is lower than that of CSS. In our method, the 
recognition rates of the rotation and scaling 
experiments are 100% and 90.40%, respectively. 
These results are slightly better than CSS’s results. 
In the similarity-based retrieval and occlusion 
experiments, the recognition rates of our method are 

81.82% and 95.14%, respectively. These results are 
greater than that of the CSS and SC. Fourier 
descriptors and shape context have smaller 
computational complexities than our method due to 
a Gaussian filter. The recognition performance of 
our method is better than those of Fourier descriptor 
and shape context in the above experiments. 
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