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Abstract:

In computer vision, the extraction of dense and accurate disparity maps is a computationally expensive and

challenging problem, and high quality results typically require from several seconds to several minutes to be
obtained. In this paper, we present a new post-processing technique, which detects the incorrect
reconstructed pixels after the initial matching process and replaces them with correct disparity values.
Experimental results with Middlebury data sets show that our approach can process images of up to
3MPixels in less than 3.3 msec, producing at the same time semi-dense (up to 99%) and accurate (up to
94%) disparity maps. We also propose a way to adaptively change, in real time, the density and the accuracy
of the extracted disparity maps. In addition, the matching and post-processing procedures are calculated
without using any multiplication, which makes the algorithm very fast, while its reduced complexity
simplifies its implementation. Finally, we present the hardware implementation of the proposed algorithm.

1 INTRODUCTION

Stereo vision has been traditionally one of the most
extensively investigated topics in computer vision.
In general, stereo algorithms can be divided into two
major categories, global and local methods (Brown
et al., 2003). Global methods are more accurate and
can produce dense disparity maps but they are
computationally more expensive and usually they
are unsuitable for real-time applications. Local
methods attempt to determine the corresponding
points using area or window-based algorithms, they
yield less accurate disparity maps but they are better
qualified for real-time stereo matching due to the
reduced computational complexity.

In this paper, we present an area-based
technique that is capable to generate fairly accurate
disparity maps of pictures up to 3MPixels in real-
time. The whole architecture can be accommodated
in a single FPGA device, operating in a highly
parallel and fully pipelined manner. Our algorithm
comprises three steps: pre-processing, disparity
computation using AD algorithm and post-
processing using a new filtering technique. A
fundamental characteristic of the proposed algorithm
is that the user can use an optional external
parameterization, in order to modify, in real time,
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the density and the accuracy of the output results.
This advantageous feature is important for many
real-time applications, since it is possible to increase
the density of the extracted disparity map in order to
obtain a more detailed view of the scene structure, or
to increase its accuracy in order to obtain a more
accurate localization. It is also worth noticing that
the matching and post-processing procedures can be
calculated without using any multiplications. This is
another advantage, since we reduce the complexity
of the algorithm by exploiting only the relationships
between neighboring pixels.

2 RELATED WORK

Using Dynamic Programming, (Gong and Yang,
2003) introduce a weak consistency constraint,
which expresses the visibility constraint in the image
space by re-formulating and extending the
consistency check. For evaluating the reliability of a
given match, a reliability measure is introduced. It is
based on the cost difference between the globally
best disparity assignment that includes the match
and the globally best assignment that does not
include the match (Gong and Yang, 2005). As a
result, instead of relying on the smoothness
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constraint to remove mismatches, the approximate
reliability measure to detect mismatches is used, in
order to selectively assign disparities to pixels when
the corresponding reliabilities exceed a given
threshold. A generalized ground control points
(GGCPs) scheme is used in (Kim et al., 2005),
where multiple disparity candidates are assigned to
all pixels by local matching using the oriented
spatial filters.

A different method is presented in (Boykov et
al., 2001). Using graph cuts, dense features are
defined and extracted during the correspondence
process. The boundary condition is enforced to the
whole boundary of a dense feature, producing
accurate results in areas where features are detected
and no matches in featureless regions. A similar
algorithm is presented in (Veksler, 2002), where
dense features are defined as sets of connected
pixels such that the intensity edges on the boundary
of these sets are stronger than their matching errors.
After computing all dense features, pixels that
belong to a dense feature will be assigned with the
same disparity value.

3 PROPOSED ALGORITHM

3.1 Pre-Processing and Disparity
Estimation

Since in many practical cases the initial intensity
values are unreliable, a Laplacian prefilter is applied
first in the initial frames for intensity normalization.
Then, a weighted mean filter is used to reduce the
noise on the initial disparity estimation. The filter
can be described by the following equation:

F(x,y)=%(f(x—l,y)+f(x+1,y))+%f(x,y) (1)

where f'is the original image, and £ the filtered one.
Of course, a two-dimensional filter produces better
results, but also increases the computational cost.
Then, assuming that the source images are
rectified, the matching cost for a scanline is
calculated using the Absolute Differences (AD) of
intensities, which is given by the following equation:

d(st’)=minD(IL(st’)_1R(x+D,Y)) (2)
where D is the disparity value that belongs to the

interval [0, d,./ and I;, I are the intensity values in
the left and right image, respectively.

3.2 Post-processing

While an AD algorithm is fast and simple, it does
not exhibit high accuracy and introduces several
mismatches in the initial disparity maps. Thus, an
efficient post-processing filtering is required.
Typical linear or ordered filtering techniques have
performed inadequately, as they tend to oversmooth
objects and distort their edges. A new non-linear
filtering technique is proposed instead.

Assuming that the scene is piecewise constant,
a mode filtering is applied first in the initial disparity
map. It is based on the ranking of the pixels in a
small neighborhood according to their disparity
values. Then, the mode value in this ordered list can
be used as the depth value for the central pixel. Of
course, the computational effort required rises
quickly with the number of disparity values to be
sorted. For this reason, a 3x3 neighborhood is
chosen, although an increase in the number of
neighbor pixels contributes to better results.

Next, an one-dimensional filtering technique is
employed, in order to incorporate in a
computationally efficient manner all the available
disparity information between scanlines. Two
horizontal and two vertical simple filters are used to
modify single pixels with different values in a small
neighborhood, while two adaptive filters are used in
larger areas. Since the incorrect reconstructions are
randomly distributed on the initial disparity maps, a
soft modification procedure is adopted, where
incorrect disparities are gradually replaced, making
at the same time the reliable areas more reliable.

In order to separate the incorrect disparities
from the correct ones, the following heuristics are
used:

1. Any reliable area in the disparity map must have
more than 3 pixels of the same disparity value in
range. Any area smaller than this will be an
unreliable one and its disparity values will be set to
undefined.

2. Any undefined area between a near and a far
object belongs to the near object. This heuristic may
be justified by the observation that these undefined
areas are mainly caused by occlusions, where far
objects are occluded by near objects.

Although it is difficult to determine accurate
depth values at object boundaries, experimental
results show that these heuristics work well in
practice and produce satisfactory results. Next, we
will examine the post-processing filters separately
and then we will present the block diagram of the
proposed algorithm. The rules for the two horizontal
simple filters are as follows:
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e Check for each pixel in the disparity map if the
right and left pixels exhibit the same disparity,
different from that pixel. In this case, set its disparity
value equal to the other two pixels.

e Check for each pixel in the disparity map if the
right and left pixels do not exhibit the same disparity
value, different from the central pixel. In this case,
set its disparity value to undefined.

Figure 1 illustrates the horizontal filtering rules.
For vertical filtering, two identical filters are used
with exactly the same rules but in vertical direction.

For adaptive filtering, two separate filters with

complementary functions are used. The first one is
applied to areas where adjacent pixels have similar
incorrect disparity values and its size is adaptively
changed depending on the number of incorrect
pixels. The second filter is applied to undefined
areas, in order to propagate reliable disparities. In
default operation, its size is adaptively modified
depending on the number of undefined pixels in
range. The rule for this filter is as follows:
o If the detected undefined area is among objects
with the same disparity value, then replace it with
the disparity value of this object. Otherwise replace
it with the disparity value of the nearest object.

An example of each filter is shown in Figures 2
and 3. In the rest of this work we will mention these
filters as Adaptive Undefined (AU) filter and
Adaptive Propagation (AP) filter, respectively.

The advantage of the proposed post-processing
technique is that the user, through some external
parameter setting, is able to increase the accuracy of
the resulted disparity map with respect of its density
and vice versa. Its use is optional, while the default
filtering operation has been described above. To do
this, we modify the effectiveness of the AP filtering
by introducing three separate variables. The first
variable determines the maximum undefined search
area (win_siz) and the second one the maximum
undefined area between two different objects
(und _rep) that can be replaced by reliable
disparities. However, experimental results with real
scenes show that the replacement of large undefined
areas between two different objects produce more
wrong “corrections”, caused either by the second
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Figure 1: Rules for horizontal filtering.
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Figure 2: Example of AU filtering.
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Figure 3: Examples of AP filtering: (a) When the
undefined area is among objects with the same disparity
value and (b) when the undefined area is among objects
with different disparity values.

heuristic we used or by the assumption that an
undefined area between two different objects has
only one disparity value that depends only from the
nearest object. To eliminate these errors, we
introduced a third variable (max_und) to determine
the maximum undefined area between two different
objects that can be replaced by only one disparity
value. If the undefined area exceeds this threshold,
the filter determines the mid point of the undefined
area and propagates the disparity values of each
object in each part.

To summarize, Figure 4 shows a diagram of the
proposed post-processing algorithm. Horizontal and
vertical filters are used interchangeably in order to
use better the local depth information. In addition,
AP filters are used between horizontal and vertical
filters to propagate the correct information in
undefined areas. In order to improve the visibility of
the diagram, we have separated it into two blocks.
Notice that the AU filter is used only in the second
block, when reliable features have become stronger
and the detection of unreliable areas is easier.

4 HARDWARE DESCRIPTION

4.1 Pre-processing

The implementation of a simple weighted mean
filter is straightforward and can be seen in Figure 5.
The filters process one pixel per clock cycle, so they
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Figure 4: Diagram of the proposed post-processing algorithm.
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do not impose any speed degradation on the system.
4.2 Disparity Estimation

Due to the great computational complexity of the
disparity map estimation, a highly parallel structure
has been implemented, as shown in Figure 6. The
right image is fed in a parallel manner into the
adders, while the left is fed serially. On each column
of the array, the absolute difference of the pixels of
the two images is calculated, and compared to the
current minimum. After each scan line has been
processed, the disparities of the pixels are computed
and are sent to the next unit of the system.

4.3 Post-processing

The mode filter is the input block of the post-
processing unit. In order to calculate the mode value
in a 3x3 neighborhood, the unit shown in Figure 7
must be included. After the first three lines of
disparity values have been stored in the serial
memories, 3x3 blocks are fed into the mode filter,
while the next line is read. The control logic units
are used to route the input image to the respective
memory block, allowing the pipelined processing of
each 3x3 block.

In the first stage of mode filter, which is
depicted in Figure 8, each ‘Neighb Comp’ sub-
block compares one disparity value with the other
eight of the 3x3 neighborhood, and if it stands more
than 4 times, then the output is assigned as logic
one. The priority encoder generates an output based
on the highest ‘Neighb_ Comp’ sub-block that emits
a logic one and, finally, the mux selects the mode
disparity for the central pixel.

The horizontal and vertical filtering blocks
present the simplest hardware architecture of our
system. For horizontal filters, only three log,D-bit
comparators are used to compare the neighboring
pixels and provide the proper results. Vertical filters
use a similar architecture, while the unit of Figure 7
must be included once again.

In AU filtering block, after the detection of a
reliable area, a counter calculates the unreliable
pixels in range. If the filtering rules are
accomplished, the unreliable pixels are modified to
undefined and the others remain unmodified, driving
the output of the filter in every clock cycle. AP
filter, which is demonstrated in Figure 9, is fed with
undefined pixels after the detection of a reliable
area. The ‘Und_Counter’ sub-block counts them and
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Figure 6: Disparity estimation unit.
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Figure 7: Memory block for two-dimensional filtering.

the result is sent to ‘Replace’ sub-block. The
‘Sel Disp’ sub-block selects the proper disparity
value and sends it to ‘Replace’ sub-block, in order
the undefined pixels to be replaced with that value.

4.4 Circuit Characteristics

All units described above operate in a fully pipelined
manner. Output latencies are not of importance,
since they are in the order of a few microseconds.
After an initial latency period, output is given once
per clock cycle. The total output latency of the
system depends on the width of the input images and
the values of the filtering parameters, that is 11/ +
4’Win_Siz’ + 38 clock cycles. This architecture was
implemented on an FPGA device of the Cyclone II
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family of Altera Devices and the maximum
operating clock frequency was found to be 150
MHz. The proposed hardware architecture requires
3W+21 8-bit registers, 2IW+18D log,D-bit registers,
W+60 comparators, W subtraction elements, 1 4-bit
and 1 8-bit counter, 6 8-bit adders, 20 8-bit shifters,
4 logyD-bit MUXes and a small number of logic
gates.

S EXPERIMENTAL RESULTS

In this section, we present results for some image
pairs with different disparity ranges, using the test
procedure reported by Scharstein and Szeliski
(Scharstein and Szeliski, 2002), available at
www.middlebury.edu/stereo. The initial and the
resulting disparity maps for the default filtering
operation are shown in Figure 10, where black pixels
represent the undefined pixels and not zero disparity.
It can be seen that before the filtering process,
the initial disparity maps present high number of
incorrect reconstructions and object boundaries are
not clearly distinguishable. After post-processing,
they are significantly cleaner and the -cluttered
background has been significantly improved. For
example, the camera on the tripod in Figure 12(d) is
clearly distinguishable, while in Figure 12(c) it is
part of the background. As with all area-based
methods, our algorithm performs better on textured
areas, whilst in textureless and occluded regions the
replacement of incorrect disparities is satisfactory.
The proposed algorithm is very fast and can be
implemented in real-time stereo systems like
autonomous mobile robot applications. In Table 1, a
comparison of our algorithm with other semi-dense
approaches is presented. We also mention that
density for Teddy data set is 36.48%, where 71.3%
of them are found correctly in 3.1 msec. In terms of
performance, we tested our algorithm on a notebook
Intel Pentium M 1.5 GHz, while the execution times
for other algorithms are as given by their authors.
Quantitative results in Table 1 show that the
proposed algorithm presents higher map density than
most of the compared algorithms, but also higher
error rate. However, other related approaches use
some of the state-of-the-art algorithms and are
lacking in robustness, while in our approach we use
only some simple computations. Furthermore, in
many real-time applications, it is more important to
identify adequately and fast the space occupied by
each object in the scene, rather than to have an
accurate but slow reconstruction of it. Therefore, an
increase in error rate can be balanced by the signifi-
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Figure 8: Mode filtering block.
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Figure 9: AP filtering block.

cant increase in computational speed, which is
essential for time critical applications. Moreover,
results on Teddy data set indicate that it can retain
its robustness even for large-size images with
difficult scenes and larger disparity ranges.

Figures 11 and 12 show the plots of density and
error rate as a function of variables win_siz and
und_rep. The results indicate that images with larger
undefined areas and larger disparity range present
smaller density and higher error rate than the smaller
ones. We should also notice that our approach is not
dependent on the disparity range but only on the size
of the images.

6 CONCLUSIONS

In this paper, we have presented a new post-
processing algorithm  and its  hardware
implementation. A non-linear filtering procedure
and a way to adaptively change in real time the
density and the accuracy of the extracted disparity
maps, provide a unique feature against other related
methods, taking advantage of a fully pipelined
architecture. The extracted disparity maps are semi-
dense but the localization of objects is quite good,
suitable for many real-time applications, where high
performance and satisfying accuracy are essential.
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Figure 10: Results on Tsukuba (top row), Sawtooth
(middle row) and Teddy (bottom row) data sets. (a)
Ground truth, (b) initial disparity map, (c) final disparity
map.

Table 1: Comparative results. Density (D) is the
percentage of matches generated, error rate (e) is the
percentage of bad pixels far from the true disparity by
more than 1.
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Figure 11: Density and error rate as a function of win_siz.

=Teddy

Tsukuba Sawtooth

D(%) |e(%)| Time(s) |D(%)|e(%)| Time(s)
Proposed 81.7 | 9.8 | 0.0021 | 87.9(33.7| 0.0025
Algorithm
Gong and
Yang (2003) 71 [1.03| 0.047 | 72 |0.23| 0.093
Gong and
Yang (2005) 76 10.32| 0.062 | 89 |0.07| 0.141
Veksler
(2002) 66 |0.38 1 76 |1.62 6
Kim et al.
(2005) 952 10.24| 4.4 98.910.07| 11.8
Veksler
(2003) 75 10.36 6 87 10.54 13
Szel.&Scharst.
(2002) 34 - Bl ;
Sara(2002) | 45 | 14| - |52 [16] -

Experimental results with real-world images have
demonstrated that the proposed algorithm is
comparable to other methods, indicating at the same
time a clear advantage regarding computation time.
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