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Abstract: In computer vision, the extraction of dense and accurate disparity maps is a computationally expensive and 
challenging problem, and high quality results typically require from several seconds to several minutes to be 
obtained. In this paper, we present a new post-processing technique, which detects the incorrect 
reconstructed pixels after the initial matching process and replaces them with correct disparity values. 
Experimental results with Middlebury data sets show that our approach can process images of up to 
3MPixels in less than 3.3 msec, producing at the same time semi-dense (up to 99%) and accurate (up to 
94%) disparity maps. We also propose a way to adaptively change, in real time, the density and the accuracy 
of the extracted disparity maps. In addition, the matching and post-processing procedures are calculated 
without using any multiplication, which makes the algorithm very fast, while its reduced complexity 
simplifies its implementation. Finally, we present the hardware implementation of the proposed algorithm.  

1 INTRODUCTION 

Stereo vision has been traditionally one of the most 
extensively investigated topics in computer vision. 
In general, stereo algorithms can be divided into two 
major categories, global and local methods (Brown 
et al., 2003). Global methods are more accurate and 
can produce dense disparity maps but they are 
computationally more expensive and usually they 
are unsuitable for real-time applications. Local 
methods attempt to determine the corresponding 
points using area or window-based algorithms, they 
yield less accurate disparity maps but they are better 
qualified for real-time stereo matching due to the 
reduced computational complexity.  

In this paper, we present an area-based 
technique that is capable to generate fairly accurate 
disparity maps of pictures up to 3MPixels in real-
time. The whole architecture can be accommodated 
in a single FPGA device, operating in a highly 
parallel and fully pipelined manner. Our algorithm 
comprises three steps: pre-processing, disparity 
computation using AD algorithm and post-
processing using a new filtering technique. A 
fundamental characteristic of the proposed algorithm 
is that the user can use an optional external 
parameterization, in order to modify, in real time, 

the density and the accuracy of the output results. 
This advantageous feature is important for many 
real-time applications, since it is possible to increase 
the density of the extracted disparity map in order to 
obtain a more detailed view of the scene structure, or 
to increase its accuracy in order to obtain a more 
accurate localization. It is also worth noticing that 
the matching and post-processing procedures can be 
calculated without using any multiplications. This is 
another advantage, since we reduce the complexity 
of the algorithm by exploiting only the relationships 
between neighboring pixels. 

2 RELATED WORK 

Using Dynamic Programming, (Gong and Yang, 
2003) introduce a weak consistency constraint, 
which expresses the visibility constraint in the image 
space by re-formulating and extending the 
consistency check. For evaluating the reliability of a 
given match, a reliability measure is introduced. It is 
based on the cost difference between the globally 
best disparity assignment that includes the match 
and the globally best assignment that does not 
include the match (Gong and Yang, 2005). As a 
result, instead of relying on the smoothness 
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constraint to remove mismatches, the approximate 
reliability measure to detect mismatches is used, in 
order to selectively assign disparities to pixels when 
the corresponding reliabilities exceed a given 
threshold. A generalized ground control points 
(GGCPs) scheme is used in (Kim et al., 2005), 
where multiple disparity candidates are assigned to 
all pixels by local matching using the oriented 
spatial filters. 

A different method is presented in (Boykov et 
al., 2001). Using graph cuts, dense features are 
defined and extracted during the correspondence 
process. The boundary condition is enforced to the 
whole boundary of a dense feature, producing 
accurate results in areas where features are detected 
and no matches in featureless regions. A similar 
algorithm is presented in (Veksler, 2002), where 
dense features are defined as sets of connected 
pixels such that the intensity edges on the boundary 
of these sets are stronger than their matching errors. 
After computing all dense features, pixels that 
belong to a dense feature will be assigned with the 
same disparity value. 

3 PROPOSED ALGORITHM 

3.1 Pre-Processing and Disparity 
Estimation 

Since in many practical cases the initial intensity 
values are unreliable, a Laplacian prefilter is applied 
first in the initial frames for intensity normalization. 
Then, a weighted mean filter is used to reduce the 
noise on the initial disparity estimation. The filter 
can be described by the following equation: 

1 1( , ) ( ( 1, ) ( 1, )) ( , )
4 2

F x y f x y f x y f x y= − + + +  (1) 

where f is the original image, and F the filtered one. 
Of course, a two-dimensional filter produces better 
results, but also increases the computational cost. 

Then, assuming that the source images are 
rectified, the matching cost for a scanline is 
calculated using the Absolute Differences (AD) of 
intensities, which is given by the following equation: 

( , ) min ( ( , ) ( , ) )d x y I x y I x D yD L R= − +  (2)

where D is the disparity value that belongs to the 
interval [0, dmax] and IL, IR are the intensity values in 
the left and right image, respectively.  

3.2 Post-processing 

While an AD algorithm is fast and simple, it does 
not exhibit high accuracy and introduces several 
mismatches in the initial disparity maps. Thus, an 
efficient post-processing filtering is required. 
Typical linear or ordered filtering techniques have 
performed inadequately, as they tend to oversmooth 
objects and distort their edges. A new non-linear 
filtering technique is proposed instead. 

Assuming that the scene is piecewise constant, 
a mode filtering is applied first in the initial disparity 
map. It is based on the ranking of the pixels in a 
small neighborhood according to their disparity 
values. Then, the mode value in this ordered list can 
be used as the depth value for the central pixel. Of 
course, the computational effort required rises 
quickly with the number of disparity values to be 
sorted. For this reason, a 3x3 neighborhood is 
chosen, although an increase in the number of 
neighbor pixels contributes to better results. 

Next, an one-dimensional filtering technique is 
employed, in order to incorporate in a 
computationally efficient manner all the available 
disparity information between scanlines. Two 
horizontal and two vertical simple filters are used to 
modify single pixels with different values in a small 
neighborhood, while two adaptive filters are used in 
larger areas. Since the incorrect reconstructions are 
randomly distributed on the initial disparity maps, a 
soft modification procedure is adopted, where 
incorrect disparities are gradually replaced, making 
at the same time the reliable areas more reliable. 

In order to separate the incorrect disparities 
from the correct ones, the following heuristics are 
used: 
1.  Any reliable area in the disparity map must have 
more than 3 pixels of the same disparity value in 
range. Any area smaller than this will be an 
unreliable one and its disparity values will be set to 
undefined. 
2.  Any undefined area between a near and a far 
object belongs to the near object. This heuristic may 
be justified by the observation that these undefined 
areas are mainly caused by occlusions, where far 
objects are occluded by near objects. 

Although it is difficult to determine accurate 
depth values at object boundaries, experimental 
results show that these heuristics work well in 
practice and produce satisfactory results. Next, we 
will examine the post-processing filters separately 
and then we will present the block diagram of the 
proposed algorithm. The rules for the two horizontal 
simple filters are as follows: 
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do not impose any speed degradation on the system. 

4.2 Disparity Estimation 

Due to the great computational complexity of the 
disparity map estimation, a highly parallel structure 
has been implemented, as shown in Figure 6. The 
right image is fed in a parallel manner into the 
adders, while the left is fed serially. On each column 
of the array, the absolute difference of the pixels of 
the two images is calculated, and compared to the 
current minimum. After each scan line has been 
processed, the disparities of the pixels are computed 
and are sent to the next unit of the system. 

4.3 Post-processing 

The mode filter is the input block of the post-
processing unit. In order to calculate the mode value 
in a 3x3 neighborhood, the unit shown in Figure 7 
must be included. After the first three lines of 
disparity values have been stored in the serial 
memories, 3x3 blocks are fed into the mode filter, 
while the next line is read. The control logic units 
are used to route the input image to the respective 
memory block, allowing the pipelined processing of 
each 3x3 block.  

In the first stage of mode filter, which is 
depicted in Figure 8, each ‘Neighb_Comp’ sub-
block compares one disparity value with the other 
eight of the 3x3 neighborhood, and if it stands more 
than 4 times, then the output is assigned as logic 
one. The priority encoder generates an output based 
on the highest ‘Neighb_Comp’ sub-block that emits 
a logic one and, finally, the mux selects the mode 
disparity for the central pixel.  

The horizontal and vertical filtering blocks 
present the simplest hardware architecture of our 
system. For horizontal filters, only three log2D-bit 
comparators are used to compare the neighboring 
pixels and provide the proper results. Vertical filters 
use a similar architecture, while the unit of Figure 7 
must be included once again. 

In AU filtering block, after the detection of a 
reliable area, a counter calculates the unreliable 
pixels in range. If the filtering rules are 
accomplished, the unreliable pixels are modified to 
undefined and the others remain unmodified, driving 
the output of the filter in every clock cycle. AP 
filter, which is demonstrated in Figure 9, is fed with 
undefined pixels after the detection of a reliable 
area. The ‘Und_Counter’ sub-block counts them and 

 
Figure 5: Block diagram of weighted mean filter. 

 

Figure 6: Disparity estimation unit. 

 
Figure 7: Memory block for two-dimensional filtering. 

the result is sent to ‘Replace’ sub-block. The 
‘Sel_Disp’ sub-block selects the proper disparity 
value and sends it to ‘Replace’ sub-block, in order 
the undefined pixels to be replaced with that value.  

4.4 Circuit Characteristics 

All units described above operate in a fully pipelined 
manner. Output latencies are not of importance, 
since they are in the order of a few microseconds. 
After an initial latency period, output is given once 
per clock cycle. The total output latency of the 
system depends on the width of the input images and 
the values of the filtering parameters, that is 11W + 
4’Win_Siz’ + 38 clock cycles. This architecture was 
implemented on an FPGA device of the Cyclone II 
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family of Altera Devices and the maximum 
operating clock frequency was found to be 150 
MHz. The proposed hardware architecture requires 
3W+21 8-bit registers, 2W+18D log2D-bit registers, 
W+60 comparators, W subtraction elements, 1 4-bit 
and 1 8-bit counter, 6 8-bit adders, 20 8-bit shifters, 
4 log2D-bit MUXes and a small number of logic 
gates. 

5 EXPERIMENTAL RESULTS 

In this section, we present results for some image 
pairs with different disparity ranges, using the test 
procedure reported by Scharstein and Szeliski 
(Scharstein and Szeliski, 2002), available at 
www.middlebury.edu/stereo. The initial and the 
resulting disparity maps for the default filtering 
operation are shown in Figure 10, where black pixels 
represent the undefined pixels and not zero disparity. 

It can be seen that before the filtering process, 
the initial disparity maps present high number of 
incorrect reconstructions and object boundaries are 
not clearly distinguishable. After post-processing, 
they are significantly cleaner and the cluttered 
background has been significantly improved. For 
example, the camera on the tripod in Figure 12(d) is 
clearly distinguishable, while in Figure 12(c) it is 
part of the background. As with all area-based 
methods, our algorithm performs better on textured 
areas, whilst in textureless and occluded regions the 
replacement of incorrect disparities is satisfactory.  

The proposed algorithm is very fast and can be 
implemented in real-time stereo systems like 
autonomous mobile robot applications. In Table 1, a 
comparison of our algorithm with other semi-dense 
approaches is presented. We also mention that 
density for Teddy data set is 36.48%, where 71.3% 
of them are found correctly in 3.1 msec. In terms of 
performance, we tested our algorithm on a notebook 
Intel Pentium M 1.5 GHz, while the execution times 
for other algorithms are as given by their authors. 
Quantitative results in Table 1 show that the 
proposed algorithm presents higher map density than 
most of the compared algorithms, but also higher 
error rate. However, other related approaches use 
some of the state-of-the-art algorithms and are 
lacking in robustness, while in our approach we use 
only some simple computations. Furthermore, in 
many real-time applications, it is more important to 
identify adequately and fast the space occupied by 
each object in the scene, rather than to have an 
accurate but slow reconstruction of it. Therefore, an 
increase in error rate can be balanced by the signifi- 

  
Figure 8: Mode filtering block. 

 
Figure 9: AP filtering block. 

cant increase in computational speed, which is 
essential for time critical applications. Moreover, 
results on Teddy data set indicate that it can retain 
its robustness even for large-size images with 
difficult scenes and larger disparity ranges. 

Figures 11 and 12 show the plots of density and 
error rate as a function of variables win_siz and 
und_rep. The results indicate that images with larger 
undefined areas and larger disparity range present 
smaller density and higher error rate than the smaller 
ones. We should also notice that our approach is not 
dependent on the disparity range but only on the size 
of the images. 

6 CONCLUSIONS 

In this paper, we have presented a new post-
processing algorithm and its hardware 
implementation. A non-linear filtering procedure 
and a way to adaptively change in real time the 
density and the accuracy of the extracted disparity 
maps, provide a unique feature against other related 
methods, taking advantage of a fully pipelined 
architecture. The extracted disparity maps are semi-
dense but the localization of objects is quite good, 
suitable for many real-time applications, where high 
performance and satisfying accuracy are essential. 
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