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Abstract: In this paper, we analyze the multiple view geometry under the case where various dimensional imaging
sensors are used together. Although the multiple view geometry has been studied extensively and extended
for more general situations, all the existing multiple view geometries assume that the scene is observed by the
same dimensional imaging sensors, such as 2D cameras. In this paper, we show that there exist multilinear
constraints on image coordinates, even if the dimensions of camera images are different each other. The new
multilinear constraints can be used for describing the geometric relationships between 1D line sensors, 2D
cameras, 3D range sensors etc., and for calibrating mixed sensor systems.

1 INTRODUCTION However, these existing research works assume
that the scene is observed by homogeneous multiple

The multiple view geometry is very important for de- cameras, that is the dimensions of images of multiple
scribing the relationship between images taken from Cameras are the same. Since it is sometimes impor-
multiple cameras and for recovering 3D geometry f@ntto combine different type of sensors, such as line
from images (Hartley and Zisserman, 2000; FaugerasSensors, 3D range sensors and cameras, the assump-
and Luong, 2001). The traditional multiple view ge- tion of homogeneous cameras is the big disadvantage
ometry assumes the projection from the 3D space Of the existing multiple view geometry. On the other
to 2D images (Faugeras and Keriven, 1995; Triggs, and, the traditional multiple view geometry has been
1995; Heyden, 1998; Hartley and Zisserman, 2000). €xtended gradually for non-homogeoneous sensors.
As a result, the traditional multiple view geometry is Sturm (Sturm, 2002) analyzed a method for mixing
limited for describing the case, where enough num- catadioptric cameras and perspective cameras, and
ber of corresponding points are visible from a static Showed that the multilinear relationship between stan-
configuration of multiple cameras. Recently, some dard perspective cameras and catadioptric cameras
efforts for extending the multiple view geometry for €an be_ described by non-square tensors. Thlrthala_ et
more general point-camera configurations have been@l- (Thirthala and Pollefeys, 2005) analyzed the tri-
made (Hartley and Schaffalitzky, 2004; Shashua and linear relationship between a perspective camera and
Wolf, 2000: Sturm, 2005: Wexler and Shashua, 2000: two 1D radial cameras for describing the relationship
Wolf and Shashua, 2001). Wolf et al. (Wolf and between standarad cameras and catadioptric cameras.
Shashua, 2001) studied the multiple view geometry Although these results show some posibility of the
on the projections fronN dimensional space to 2D ~ Use of non-homogeneous sensors, these are limited
images and showed that it can be used for describingfor Specific camera combinations.

the relationship of multiple views obtained from mov- Thus, we in this paper analyze the multiple view
ing cameras and moving points with constant speed.geometry for general mixed dimensional cameras in
Hayakawa et al. (Hayakawa and Sato, 2006) showedvarious dimensional space, and show the multilin-
that it is possible to define multilinear relationships ear relationships for various combinations of non-
for general non-rigid motions. homogeneous cameras. We also show that these mul-

Kozuka K. and Sato J. (2008).

MULTIPLE VIEW GEOMETRY FOR MIXED DIMENSIONAL CAMERAS.

In Proceedings of the Third International Conference on Computer Vision Theory and Applications, pages 5-12
DOI: 10.5220/0001072500050012

Copyright © SciTePress



VISAPP 2008 - International Conference on Computer Vision Theory and Applications

tilinear relationships can be used for calibrating mul- Table 1: The minimum number of corresponding points re-
tiple dimensional cameras and for transfering corre- quired for computing the multiple view geometry of mixed

sponding points to different dimensional cameras.

2 PROJECTION FROM PXTO P"

Let us consider a projective camd?avhich projects
a pointX in thekD projective space to a pointin the
nD projective space.

X ~ PX (1)

where,~ denotes equality up to a scale. The camera
matrix, P, of this camera ign+ 1) x (k+ 1) and has
((k+1) x (n+1)—1) DOF.

3 MULTIPLE VIEW GEOMETRY
OF MIXED DIMENSIONAL
CAMERAS

We next consider the properties of the multiple view
geometry of mixed dimensional cameras, which rep-
resent geometric relationships of multiple cameras
with various dimensions. Let us considdd pro-
jective spacepPX, and a set of various dimensional
cameras in the space. Considetypes of cameras
C' (i=1,---,k) which induce projections frorRk to

P (i =1,--- k) respectively. For exampl&?! type
cameras project a point PK to a point inP?, andC?
type cameras project a point P to a point in P2,
Suppose there arg cameras of typ€' (i=1,--- ,k)

in the kD space. Then, we have totally = SK | n;
cameras in th&D space. In this paper, a set of these
cameras is represented bk @imensional vectom,

as follows:
»
n= [nl7n27”' 7nk]

)

Now, we consider DOF oN view geometry of

mixed dimensional cameras, and specify the number

of points required for computing théview geometry

of mixed dimensional cameras. Since camera matri-
ces fromPX to P' are(k+1) x g + 1), the DOF ofN
cameras iN((k+1)(i+1) —1). ThekD homogra-
phy is represented bk + 1) x (k+ 1) matirx, and so

it has(k+1)? — 1 DOF. Since thesh cameras are in

a singlekD projective space, the total DOF of thede
cameras is as follows:

ini((k-i-l)(i—i-l)—1)_(k+1)2+1 3)

(k+1)(nTi—k)+kN —k

L

(4)

where,i = [1,2,--- K| ". Thus, theN view geometry
of mixed dimensional cameras haDOF. The very

dimensional cameras in the 3D space. Note, the multiple
view geometries ofi " = [3,0,0], [2,0,0] and[1,1,0] do not
exist, since the image information is not enough for defining
the multiple view geometry in these cases.

4 Views 3 Views 2 Views
nt # n’ # n’ #
[4,0,0] | 13| [2,1,0] | 10 | [0,2,0] | 7
8,201 9 |[12,0]| 7 |[101]| 7
[2,2,0]| 7 |[0,3,0]| 6 |[0,1,1] | 6
[130]| 7 |[20,1]| 7 |[0,0,2] |5
[0,40]] 6 |[1,1,1]| 6

[8,0,1] 7 | [0,2,1]| 6

[2,2,1] 7 | [1,0,2]| 6

[1,2,1]1] 6 | [0,1,2]| 6

[0,3,1]| 6 | [0,0,3]| 5

[2,0,2]| 6

[1,1,2]| 6

[0,2,2]| 6

[1,0,3]| 6

[0,1,3]| 6

[0,04]] 5

special case of the multiple view geometry of mixed
dimensional cameras is the traditional multiple view
geometry of 2D cameras which induce projections
from P2 to P2. In this casek = 3 andn = [0,2,0] .

SupposeM points in thekD space are projected
to theseN cameras. Then we have image informa-
tion with Mn"i DOF from these cameras. Thus, the
following inequality must hold for fixing all the ge-
ometry ofN cameras ant¥l points in thekD space.

Mn'i > L+kM (5)

By substituting (4) into (5), we find that the following
condition must hold for computing the multiple view
geometry of mixed dimensional cameras.

kN — k

M>k+1
2 K+ +nTifk

(6)

(6) shows the minimum number of corresponding
points required for computing the multiple view ge-
ometry of mixed dimensional cameras.

The complete table of the minimum number of
corresponding points for mixed dimensional cameras
in the 3D space is as shown in table 1.

In the following part of this paper, we show the

detail of the multiple view geometry of some example
combinations of different dimensional cameras.
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\ where the indiceg a andmtake 1 through 3, and all
v, *C the other indices take 1 or 2 in (11) and (12). The
X tensorg;ji takes 1 if{i, j,k} is even permutation, and
it takes—1 if {i, j,k} is odd permutation. Similarly,
the tensok;; takes 1 if{i, j } is even permutation, and
V2 it takes—1 if {i, j} is odd permutation.

The 3x 2 x 2 tensorz;* is the trifocal tensor, and
the 3x 2 x 2 x 2 tensorQ % is the quadrifocal ten-
sor of the mixed dimensional cameras. Note there is
no 2 view geometry in this case, since the combina-
tion of a 2D camera and a 1D line camera does not
have enough information for defining the 2 view con-

Vi

C

Figure 1: N view geometry of a 2D camei@? andN — 1

1D camera€! (i=1,--- ,N—1). straints. Also, there is no linear constraint for more
than 4 views.
By substitutingn = [N —1,1,0]" andk = 3 into
4 NVIEW GEOMETRY OF (4), we find that theN view geometry hasN — 11
—IN—1.1.0T DOF in this case, and therefore the trifocal tensor
n= [ » ] 7 has 10 DOF, and the quadrifocal tensprhas 17

DOF.

From (6), we find that the minimum number of
corresponding points required for computing the tri-
focal tensorr is 10, while the minimum number of
corresponding points for the quadrifocal tengplis

In this section, we consider thid view geometry
of n=[N-110]", i.e. a single 2D camera and
(N—1) 1D cameras and no 3D camera in the 3D
space. Let a 3D poinX = [X1, X2, X3 X4T be pro-
jected tox = [x},x?,x% " in a 2D cameraC?, and let

i Iyl 21T i 1 '
Xgelprqeﬁltedltm N [\g ] .'nFl.D Illne_lfzﬁmeraﬁi_ We next consider linear estimation af tensor
t(iloﬁs é:.aiﬁ,be_de)sci:ir?bsr:zdmt,)v);1 Lllr;inégihe. carﬁz;aapr?;?r(i:c-esand NEnsor. Sjiter tensor is 3<2x 2, it has 11
P2 of C2 andP? of C? as follows: unknowns except a scale. On the other hand, a set

of corresponding points in three views provides us a

X ~ P2X @) single constraint for' tensor from (11). Thus, we re-
Vi~ Pilx (=1 N—1) ) quire 11 corresponding points for computinigensor
linearly.
where,P? is a 3x 4 matrix andP! are 2x 4 matrices Similarly, @ tensor is 3x 2 x 2 x 2 and has 23
respectively. By reformulating (7) and (8), we have unknowns except a scale. Since (12) provides us
the following equation fok: 2 linearly independent constraints fqr tensor, we
can computey tensor linearly from 12 correspond-
p2 X X ing points.
p% Vi ;‘X Once the trifocal tensar is obtained, the epipolar
| = ) line I = v)\&ejpexe7;% in the 2D image can be com-
1 : puted fromv; andvz in 1D images. Similarly, once
Prn-1 VN-1 XA, the quadrifocal tensor is obtained, the corresponding

point x in the 2D image can be computed from the

where,\ denotes a scalqr. Extracting tfid + 4) X pointsvy, v, andvs in 1D images by using (12).
(N +4) sub-square matrii of the left most matrix

in (9), and computing the determinantidf, we have
the following multilinear constraints of mixed dimen-

sional cameras: 5 NVIEW GEOMETRY OF
_ _ T
detM = 0 (10) n=[0,N—-11]

By expanding (10) in 3 views and 4 views, we have \We next consider thél view geometry in the case
the following trilinear constraints and quadrilinear where a 3D range sensor and multiple 2D cameras
constraints respectively: existin the 3D space, i.&c=3andn = [O,N—1,1]".

: (11) Leta 3D pointX = [X1, X2 X3 X4 " be measured

o by a 3D range sens@?, and lety = [y*,y?,y3,y*"]"
XVIEVEEiamE bekeldQP™M = Om  (12) be the data measured by this sensor as shown in Fig. 2.

X V:JLVESJ'bSkC‘Ti be
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world
coordinates

3

C
range sensor
coordinates

Figure 2: N view geometry of a 3D range sens6f and
N -1 2D camera€? (i=1,--- ,N—1).

Suppose the poirX is also observed byN — 1) 2D
camerag? asxj = X', x*, 3" (i=1,--- ,N—1).

Then, the projection in the 3D range sensor and
the 2D cameras can be described as follows:

y P3X (13)
Xi ~ PX (i=1---,N-1) (14)
where,P? is a 4x 4 matrix with 15 DOF, andP? is
3 x 4 projection matrices with 11 DOF.
From the similar analysis with section 4, we can

derive the following bilinear, trilinear and quadrilin-
ear constraints for the mixed dimensional cameras:

~

o b
yXxiepp3® = Op  (15)

ivlok mb
ylexzeiannsjbpskcqqa P — Onpq (16)
VXXX, EiamE ibp€ pcd 0 17
1X0X3€iamn€jbpEkeg€ldr Q = Omnpgr (17)

where, indices, a, mandn take 1 through 4, and all
the other indices take 1 through 3 in (15), (16) and
(17). The tensog;j takes 1if{i, j,k,I} is even per-
mutation, and it takes 1 if {i, j,k,1 } is odd permuta-
tion.

The 4x 3 tensorsP, 4 x 4 x 3 x 3 tensorr ame
and 4x 3 x 3 x 3 tensorQ @ are the bifocal tensor,
trifocal tensor and quadrifocal tensor of the mixed di-
mensional cameras.

By substitutingn = [0,N —1,1]" andk = 3 into
(4) we find that theN view geometry has I — 11
DOF. Thus,3{ has 11 DOFg @™ has 22 DOF and
Q< has 33 DOF respectively. Also, we find from
(6) that the following condition must hold for com-
puting 8P, 73 and 3

11

M2 — (18)

This means that the minimum number of correspond-

ing points required for computing the multifocal ten-

sors is 6 and is irrespective of the number of cameras.

world
coordinates

range sensor
coordinates

2
1

\C(Ill)

Figure 3:N view geometry of a moving 3D range sen&dt
andN — 1 moving 2D camera€? (i = 1,--- ,N—1).

We next consider the linear estimation of these
multifocal tensors. The bifocal tensep is 4 x 3 and
has 11 unknowns except a scale. Since we have 2
linearly independent constraints f(zs;b from (15), 6
corresponding points are enough for computm‘g
linearly.

6 NVIEW GEOMETRY OF
n=[0,N-1,1,0"

We next extend the case described in section 5 and
consider theN view geometry of a translational 3D
range sensor and translational 2D cameras as shown
in Fig. 3. If the 3D range sensor and the 2D cam-
eras move independently, the multilinear constraints
described by (15), (16) and (17) no longer hold. How-
ever, if we consider the multiple view geometry in the
higher dimensional space, then we can derive the mul-
tilinear constraints which describe the relationship be-
tween a moving 3D range sensor and moving 2D cam-
eras.

Suppose we have a moving pokit=[X,Y,Z]7 in
the 3D space, and suppose the point is projected to an
image poiniX = [x,y] " in a 2D camera. If the camera
moves translationally with a constant speAX, AY
andAZ in X, Y andZ directions, we can describe the
relationship between the image poitand the 3D

pointX as follows:

X —TAX
X Piu Pz Piz Pl |y qay
Y| ~|Pa1 P2 Pz Pasl |5 a7 (19)
1 P31 P32 Pz Py 1

where, T denotes a time. If we consider a 4D space
which consists oK, Y, Z andT, then the projection
described by (19) can be rewritten as follows:
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DOF, and thussij, 7;*, Q3" and £ 3% have 9
DOF, 23 DOF, 37 DOF and 51 DOF respectively.
Also, by substitutingk = 4 and n = [O,N —
(20) 1,1,0]" into (6), we find that the minimum number
of corresponding points required for computiag,
7,6¢, @ @Pbcd and g € js 9, 8, 8 and 8 respectively.

X P11 P2 Piz —PpAX—PpAY —Pi3AZ Py
Y|~ |Pa P Pz —PalX-—PpAY-P3AZ Py

1 P31 Psp Psz  —P3iAX—P3AY —P33AZ Py

4N < X

Since the motion of the camera is unknown but
is constant, the & 5 projection matrix in (20) is un-
known but is fixed. This means a moving camera in 7 EXPERIMENTS
the 3D space can be considered as a static camera in
the 4D space.

Similarly, a translational 3D range sensor can be
considered as a static range sensor in the 4D space a

In this section, we show the results of synthetic image
gxperiments.

follows: .
y 7.1 2D Cameraand 1D Line Cameras
X P11 P2 Piz —PpAX—PpAY —Pi3AZ Py v
| P e Pl TRl e 7] (21) W first show the results from the combination of
z 31 P2 Psz —PsiAX—P3AY —Pss 34 . 1 3
1 Pu P P —PubX_PilY PuAZ  Pu I a single 2D camera and multiple 1D line cameras.

Fig. 4 shows a 2D camera and three 1D line cameras
This means the multiple view constraints between Used in this experiment. Fig. 5 (a) shows the image
a moving range sensor and moving cameras can beviewed from the 2D camera, and (b), (c) and (d) show
defined in the 4D space. Thus, we consider the mul- IMmages viewed from three 1D cameras respectively.
tiple view geometry in the case wheke= 4 and  Theimages o€*, C; andC; are used for computing

n=[0,N-1,1,0]". the trifocal tensorz;*, of these three cameras. Then,
Suppose a 4D point, whose homoge- 7; tensor was used for computing the epipolar lines
neous coordinates are represented by = in C? image from the image points in 1D images of

WL w2 w3 w4 W5JT, is projected to an image CiandC3. The extracted epipolar lines are shown in
point in a translational 2D camera, whose homoge- Fig. 6. As shown in this figure, the extracted epipolar

neous coordinates are representea by[x*, x?, x| . lines go through the corresponding points in the 2D

Suppose the 4D poiW is also measured by a trans- image as we expected.

lating 3D range sensor as= [y*,y?,y%,y*|". Then, We next computed the quadrifocal tensQ?™,

the projection in the moving 3D range sensor and the for a 2D camera and three 1D cameras from images

moving 2D cameras can be described as follows: shown in Fig. 5 (a), (b), (c) and (d). The extracted
y ~ PW (22) Q™ tensor was used for computing a correspond-

" 4 ing point in the 2D image from a set of points in the
Xi ~ PW  (i=1--,N-1) (23)  three 1D images. Fig. 7 shows the points in the 2D
where,P® is a 4x 5 matrix with 19 DOF, and®* are  image, which are computed from®** tensor. As
3 x 5 matrices with 14 DOF. shown in this figure, the set of points in 1D cameras
By defining the matrixv similar to the one in (9)  are transfered into the pointin the 2D camera properly
, and expanding d&1 = 0, we have the bilinear, tri- by using the proposed multiple view geometry.
linear, quadrilinear and quintilinear constraints (i.e. 5

view constraints) for the moving cameras and range .
sensorslas follows: 7.2 Moving 3D Range Sensor and 2D
Cameras

in{QSij =0 (24)

yxpejeesTi™ = O (25) e next show the results from a moving 3D range
Yixi Xg)gssiapqgjbrgkcssl g apped — Ogst  (26) sensor and moving 2D cameras. As we have seen
] abede in section 6, the multiple view geometry of moving
Y X1X5X5X3 Eiapa jbr EkcsElatEmenk = Oparstu (27) range sensors and moving 2D cameras can be de-
where, indices, a, p, q take 1 through 4, and all  scribed by considering the projections from 4D space
the other indices take 1 through 8;;, 7,°¢, @ aPbd to 3D space and 2D space. We translated the 3D range
and @€ gre the bilinear, trilinear quadrilinear and sensor during the 3D measurement, and obtained the
quintilinear tensors respectively. 3D data. C3 andC?¥ in Fig. 8 show the position of
By substitutingk = 4 andn = [0,N—1,1,0] " into the 3D range sensor before and after the translational
(4), we find that theN view geometry has 14— 19 motion. CZ andC3 show 2 fixed cameras. Fig. 9 (a)
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Figure 6: The epipolar lines computed from the trifocal ten-
sor and the points in 1D line cameras. The blue points show
the basis points used for computing the trifocal tensor, and
the red points show some other corresponding points. Since
the epipolar lines go through the corresponding points, we
find that the computed trifocal tensor is accurate.

Figure 4: 3D scene. The black curve shows a locus of a

moving pointX. The moving pointX is observed by a 2D
camera,C2, and three 1D camera§}, C3 andC}. The 400 % 0y \
three lines of each camera show the orientation of the cam- % O
era. 300 ® < :
[ X °
200 : .'. E
.: o.. ..- .:
° % 109 - ) % ' 4
a0 .‘ * k .V.. ..°-.0‘
.. 100 200 300 400 500 600 X
L]
e . y | | ” | I i H _Figure 7: The pointg inthe 1D camera images are trans_,fered
= e P e into the 2D camera image by using the extracted quadrifocal
(a) (b) tensor. The green points show the original loci in the image,

and the red points show the result of the point transfer.

0 NHTT 1 T 1 K T

(c) (d) cal tensor. As shown in this figure, the 3D data was

transfered properly by using the multiple view geom-

Figure 5: The images of a 2D camera and three 1D cameras. : : _
(a) shows the image @2, (b), () and (d) show the image etry in 4D space, even if the range sensor moved dur

of C1, c} andC} respectively. The green points and lines "9 the measurement.

in these images show the projection of a moving point. The ~ We next computed the 3D range data from two
blue points and lines show corresponding basis points for 2D camera images and the extracted trifocal tensor.
computing the multifocal tensors. Fig. 11 shows the points in the 3D image, which are
computed from the trifocal tensor. As shown in this
figure, the set of points in 2D cameraimages are trans-
shows the 3D data measured by the translational 3Dfer_ed into the points in th? 3D range data properly by
range sensor. As we can see in this figure, the mea-">N9 the propgsed rgt;ltlple view gﬁor_“e”y- These
sured 3D data is distorted because of the motion of proEertles can be usel ct))rma_ppmg'F N |magfe textures
the range sensor. The laser light of the range sensortOt e range image only by using point transfer.
reflected at the surface of the object was observed by
2 cameras. The green pointsin Fig. 9 (b) and (c) show
the laser light observed in these 2 cameras. The blue8 CONCLUSIONS

points in these data show basis corresponding points

used for computing the trifocal tensor. The extracted In this paper, we showed that there exist multilinear
trifocal tensor was used for transfering the 3D range constraints on image coordinates, even if the dimen-
data into the image of came@. The green points  sions of camera images are different from each other.
in Fig. 10 show the original image points and the red We first analyzed the multiple view geometry of gen-
points show the 3D data transfered by using the trifo- eral mixed dimensional cameras. We next showed

10
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Figure 10: The range data transfered into the camera image.
The green points show the original laser points observed
in the image, and the red points show the points transfered
Figure 8: 3D scene. A 3D object (vase) is observed by a from the 3D range data by using the trifocal tensor. The

moving 3D range sensag?, and two 2D camera€?, C%. blue points show the basis points used for computing the

. trifocal tensor.
c? shows the position of the range sensor after a transla-
tional motion.

|
600 400 200 o

Figure 11: The image data transfered into the range data.
The green points show the original laser points, and the red
points show the points transfered from the 2D camera im-
ages by using the trifocal tensor. The blue points show the
basis points used for computing the trifocal tensor.

X X
200 400 600 800 200 400 600 800

(b) ©) the new multiple view geometry was shown by using
synthetic images in some mixed sensor systems.

Figure 9: Range data and camera images. The green points
in (a) show the range data obtained from the range sensor,

and the green points in (b) and (c) show the laser points
observed in 2 cameras. The blue points in these imagesREFERENCES
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