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Abstract: In this paper, we analyze the multiple view geometry under the case where various dimensional imaging
sensors are used together. Although the multiple view geometry has been studied extensively and extended
for more general situations, all the existing multiple view geometries assume that the scene is observed by the
same dimensional imaging sensors, such as 2D cameras. In this paper, we show that there exist multilinear
constraints on image coordinates, even if the dimensions of camera images are different each other. The new
multilinear constraints can be used for describing the geometric relationships between 1D line sensors, 2D
cameras, 3D range sensors etc., and for calibrating mixed sensor systems.

1 INTRODUCTION

The multiple view geometry is very important for de-
scribing the relationship between images taken from
multiple cameras and for recovering 3D geometry
from images (Hartley and Zisserman, 2000; Faugeras
and Luong, 2001). The traditional multiple view ge-
ometry assumes the projection from the 3D space
to 2D images (Faugeras and Keriven, 1995; Triggs,
1995; Heyden, 1998; Hartley and Zisserman, 2000).
As a result, the traditional multiple view geometry is
limited for describing the case, where enough num-
ber of corresponding points are visible from a static
configuration of multiple cameras. Recently, some
efforts for extending the multiple view geometry for
more general point-camera configurations have been
made (Hartley and Schaffalitzky, 2004; Shashua and
Wolf, 2000; Sturm, 2005; Wexler and Shashua, 2000;
Wolf and Shashua, 2001). Wolf et al. (Wolf and
Shashua, 2001) studied the multiple view geometry
on the projections fromN dimensional space to 2D
images and showed that it can be used for describing
the relationship of multiple views obtained from mov-
ing cameras and moving points with constant speed.
Hayakawa et al. (Hayakawa and Sato, 2006) showed
that it is possible to define multilinear relationships
for general non-rigid motions.

However, these existing research works assume
that the scene is observed by homogeneous multiple
cameras, that is the dimensions of images of multiple
cameras are the same. Since it is sometimes impor-
tant to combine different type of sensors, such as line
sensors, 3D range sensors and cameras, the assump-
tion of homogeneous cameras is the big disadvantage
of the existing multiple view geometry. On the other
hand, the traditional multiple view geometry has been
extended gradually for non-homogeoneous sensors.
Sturm (Sturm, 2002) analyzed a method for mixing
catadioptric cameras and perspective cameras, and
showed that the multilinear relationship between stan-
dard perspective cameras and catadioptric cameras
can be described by non-square tensors. Thirthala et
al. (Thirthala and Pollefeys, 2005) analyzed the tri-
linear relationship between a perspective camera and
two 1D radial cameras for describing the relationship
between standarad cameras and catadioptric cameras.
Although these results show some posibility of the
use of non-homogeneous sensors, these are limited
for specific camera combinations.

Thus, we in this paper analyze the multiple view
geometry for general mixed dimensional cameras in
various dimensional space, and show the multilin-
ear relationships for various combinations of non-
homogeneous cameras. We also show that these mul-
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tilinear relationships can be used for calibrating mul-
tiple dimensional cameras and for transfering corre-
sponding points to different dimensional cameras.

2 PROJECTION FROM Pk TO Pn

Let us consider a projective cameraP which projects
a pointX in thekD projective space to a pointx in the
nD projective space.

x ∼ PX (1)

where,∼ denotes equality up to a scale. The camera
matrix, P, of this camera is(n +1)× (k +1) and has
((k +1)× (n +1)−1) DOF.

3 MULTIPLE VIEW GEOMETRY
OF MIXED DIMENSIONAL
CAMERAS

We next consider the properties of the multiple view
geometry of mixed dimensional cameras, which rep-
resent geometric relationships of multiple cameras
with various dimensions. Let us considerkD pro-
jective space,Pk, and a set of various dimensional
cameras in the space. Considerk types of cameras
Ci (i = 1, · · · ,k) which induce projections fromPk to
Pi (i = 1, · · · ,k) respectively. For example,C1 type
cameras project a point inPk to a point inP1, andC2

type cameras project a point inPk to a point inP2.
Suppose there areni cameras of typeCi (i = 1, · · · ,k)
in the kD space. Then, we have totallyN = ∑k

i=1 ni
cameras in thekD space. In this paper, a set of these
cameras is represented by ak dimensional vector,n,
as follows:

n = [n1,n2, · · · ,nk]
⊤ (2)

Now, we consider DOF ofN view geometry of
mixed dimensional cameras, and specify the number
of points required for computing theN view geometry
of mixed dimensional cameras. Since camera matri-
ces fromPk to Pi are(k +1)× (i+1), the DOF ofN
cameras isN((k + 1)(i + 1)−1). ThekD homogra-
phy is represented by(k +1)× (k +1) matirx, and so
it has(k +1)2−1 DOF. Since theseN cameras are in
a singlekD projective space, the total DOF of theseN
cameras is as follows:

L =
k

∑
i=1

ni((k +1)(i+1)−1)− (k +1)2 +1 (3)

= (k +1)(n⊤i−k)+kN −k (4)

where,i = [1,2, · · · ,k]⊤. Thus, theN view geometry
of mixed dimensional cameras hasL DOF. The very

Table 1: The minimum number of corresponding points re-
quired for computing the multiple view geometry of mixed
dimensional cameras in the 3D space. Note, the multiple
view geometries ofn⊤ = [3,0,0], [2,0,0] and[1,1,0] do not
exist, since the image information is not enough for defining
the multiple view geometry in these cases.

4 Views 3 Views 2 Views
n⊤ # n⊤ # n⊤ #

[4,0,0] 13 [2,1,0] 10 [0,2,0] 7
[3,1,0] 9 [1,2,0] 7 [1,0,1] 7
[2,2,0] 7 [0,3,0] 6 [0,1,1] 6
[1,3,0] 7 [2,0,1] 7 [0,0,2] 5
[0,4,0] 6 [1,1,1] 6
[3,0,1] 7 [0,2,1] 6
[2,1,1] 7 [1,0,2] 6
[1,2,1] 6 [0,1,2] 6
[0,3,1] 6 [0,0,3] 5
[2,0,2] 6
[1,1,2] 6
[0,2,2] 6
[1,0,3] 6
[0,1,3] 6
[0,0,4] 5

special case of the multiple view geometry of mixed
dimensional cameras is the traditional multiple view
geometry of 2D cameras which induce projections
from P3 to P2. In this case,k = 3 andn = [0,2,0]⊤.

SupposeM points in thekD space are projected
to theseN cameras. Then we have image informa-
tion with Mn⊤i DOF from these cameras. Thus, the
following inequality must hold for fixing all the ge-
ometry ofN cameras andM points in thekD space.

Mn⊤i ≥ L+ kM (5)

By substituting (4) into (5), we find that the following
condition must hold for computing the multiple view
geometry of mixed dimensional cameras.

M ≥ k +1+
kN − k
n⊤i− k

(6)

(6) shows the minimum number of corresponding
points required for computing the multiple view ge-
ometry of mixed dimensional cameras.

The complete table of the minimum number of
corresponding points for mixed dimensional cameras
in the 3D space is as shown in table 1.

In the following part of this paper, we show the
detail of the multiple view geometry of some example
combinations of different dimensional cameras.
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Figure 1: N view geometry of a 2D cameraC2 andN −1
1D camerasC1

i (i = 1, · · · ,N −1).

4 N VIEW GEOMETRY OF
n = [N −1,1,0]⊤

In this section, we consider theN view geometry
of n = [N − 1,1,0]⊤, i.e. a single 2D camera and
(N − 1) 1D cameras and no 3D camera in the 3D
space. Let a 3D pointX = [X1

,X2
,X3

,X4]⊤ be pro-
jected tox = [x1

,x2
,x3]⊤ in a 2D cameraC2, and let

X be projected tovi = [v1
i ,v

2
i ]
⊤ in 1D line camerasC1

i
(i = 1, · · · ,N −1) as shown in Fig. 1. These projec-
tions can be described by using the camera matrices
P2 of C2 andP1

i of C1
i as follows:

x ∼ P2X (7)

vi ∼ P1
i X (i = 1, · · · ,N −1) (8)

where,P2 is a 3×4 matrix andP1
i are 2×4 matrices

respectively. By reformulating (7) and (8), we have
the following equation forX:




P2 x
P1

1 v1
...

. . .
P1

N−1 vN−1







X
λx
λv1
...

λvN−1




=




0
0
...
0


 (9)

where,λ denotes a scalar. Extracting the(N + 4)×
(N + 4) sub-square matrixM of the left most matrix
in (9), and computing the determinant ofM, we have
the following multilinear constraints of mixed dimen-
sional cameras:

detM = 0 (10)

By expanding (10) in 3 views and 4 views, we have
the following trilinear constraints and quadrilinear
constraints respectively:

xiv j
1vk

2ε jbεkcT
bc

i = 0 (11)

xiv j
1vk

2vl
3εiamε jbεkcεldQ

abcd = 0m (12)

where the indicesi, a andm take 1 through 3, and all
the other indices take 1 or 2 in (11) and (12). The
tensorεi jk takes 1 if{i, j,k} is even permutation, and
it takes−1 if {i, j,k} is odd permutation. Similarly,
the tensorεi j takes 1 if{i, j} is even permutation, and
it takes−1 if {i, j} is odd permutation.

The 3×2×2 tensorT bc
i is the trifocal tensor, and

the 3×2×2×2 tensorQ abcd is the quadrifocal ten-
sor of the mixed dimensional cameras. Note there is
no 2 view geometry in this case, since the combina-
tion of a 2D camera and a 1D line camera does not
have enough information for defining the 2 view con-
straints. Also, there is no linear constraint for more
than 4 views.

By substitutingn = [N −1,1,0]⊤ andk = 3 into
(4), we find that theN view geometry has 7N − 11
DOF in this case, and therefore the trifocal tensor
T has 10 DOF, and the quadrifocal tensorQ has 17
DOF.

From (6), we find that the minimum number of
corresponding points required for computing the tri-
focal tensorT is 10, while the minimum number of
corresponding points for the quadrifocal tensorQ is
9.

We next consider linear estimation ofT tensor
andQ tensor. SinceT tensor is 3× 2× 2, it has 11
unknowns except a scale. On the other hand, a set
of corresponding points in three views provides us a
single constraint forT tensor from (11). Thus, we re-
quire 11 corresponding points for computingT tensor
linearly.

Similarly, Q tensor is 3× 2× 2× 2 and has 23
unknowns except a scale. Since (12) provides us
2 linearly independent constraints forQ tensor, we
can computeQ tensor linearly from 12 correspond-
ing points.

Once the trifocal tensorT is obtained, the epipolar
line li = v j

1vk
2ε jbεkcT

bc
i in the 2D image can be com-

puted fromv1 andv2 in 1D images. Similarly, once
the quadrifocal tensor is obtained, the corresponding
point x in the 2D image can be computed from the
pointsv1, v2 andv3 in 1D images by using (12).

5 N VIEW GEOMETRY OF
n = [0,N −1,1]⊤

We next consider theN view geometry in the case
where a 3D range sensor and multiple 2D cameras
exist in the 3D space, i.e.k = 3 andn = [0,N−1,1]⊤.

Let a 3D pointX = [X1
,X2

,X3
,X4]⊤ be measured

by a 3D range sensorC3, and lety = [y1
,y2

,y3
,y4]⊤

be the data measured by this sensor as shown in Fig. 2.
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Figure 2: N view geometry of a 3D range sensorC3 and
N −1 2D camerasC2

i (i = 1, · · · ,N −1).

Suppose the pointX is also observed by(N −1) 2D
camerasC2

i asxi = [x1
i ,x

2
i ,x

3
i ]
⊤ (i = 1, · · · ,N −1).

Then, the projection in the 3D range sensor and
the 2D cameras can be described as follows:

y ∼ P3X (13)

xi ∼ P2
i X (i = 1, · · · ,N −1) (14)

where,P3 is a 4×4 matrix with 15 DOF, andP2
i is

3×4 projection matrices with 11 DOF.
From the similar analysis with section 4, we can

derive the following bilinear, trilinear and quadrilin-
ear constraints for the mixed dimensional cameras:

yix j
1ε jbpB

b
i = 0p (15)

yix j
1xk

2εiamnε jbpεkcqT
ambc = 0npq (16)

yix j
1xk

2xl
3εiamnε jbpεkcqεldrQ

abcd = 0mnpqr (17)

where, indicesi, a, m andn take 1 through 4, and all
the other indices take 1 through 3 in (15), (16) and
(17). The tensorεi jkl takes 1 if{i, j,k, l} is even per-
mutation, and it takes−1 if {i, j,k, l} is odd permuta-
tion.

The 4×3 tensorB b
i , 4× 4× 3× 3 tensorT ambc

and 4×3×3×3 tensorQ abcd are the bifocal tensor,
trifocal tensor and quadrifocal tensor of the mixed di-
mensional cameras.

By substitutingn = [0,N −1,1]⊤ andk = 3 into
(4) we find that theN view geometry has 11N − 11
DOF. Thus,B b

i has 11 DOF,T ambc has 22 DOF and
Q abcd has 33 DOF respectively. Also, we find from
(6) that the following condition must hold for com-
putingB b

i , T ambc andQ abcd:

M ≥
11
2

(18)

This means that the minimum number of correspond-
ing points required for computing the multifocal ten-
sors is 6 and is irrespective of the number of cameras.

2 (t)x
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Figure 3:N view geometry of a moving 3D range sensorC3

andN −1 moving 2D camerasC2
i (i = 1, · · · ,N −1).

We next consider the linear estimation of these
multifocal tensors. The bifocal tensorB b

i is 4×3 and
has 11 unknowns except a scale. Since we have 2
linearly independent constraints forB b

i from (15), 6
corresponding points are enough for computingB b

i
linearly.

6 N VIEW GEOMETRY OF
n = [0,N −1,1,0]⊤

We next extend the case described in section 5 and
consider theN view geometry of a translational 3D
range sensor and translational 2D cameras as shown
in Fig. 3. If the 3D range sensor and the 2D cam-
eras move independently, the multilinear constraints
described by (15), (16) and (17) no longer hold. How-
ever, if we consider the multiple view geometry in the
higher dimensional space, then we can derive the mul-
tilinear constraints which describe the relationship be-
tween a moving 3D range sensor and moving 2D cam-
eras.

Suppose we have a moving pointX̃ = [X ,Y,Z]⊤ in
the 3D space, and suppose the point is projected to an
image point̃x = [x,y]⊤ in a 2D camera. If the camera
moves translationally with a constant speed,∆X , ∆Y
and∆Z in X , Y andZ directions, we can describe the
relationship between the image pointx̃ and the 3D
point X̃ as follows:




x
y
1


 ∼




P11 P12 P13 P14
P21 P22 P23 P24
P31 P32 P33 P34







X −T ∆X
Y −T ∆Y
Z −T ∆Z

1


 (19)

where,T denotes a time. If we consider a 4D space
which consists ofX , Y , Z andT , then the projection
described by (19) can be rewritten as follows:
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[
x

y

1

]
∼

[
P11 P12 P13 −P11∆X−P12∆Y−P13∆Z P14

P21 P22 P23 −P21∆X−P22∆Y−P23∆Z P24

P31 P32 P33 −P31∆X−P32∆Y−P33∆Z P34

]



X

Y

Z

T

1


 (20)

Since the motion of the camera is unknown but
is constant, the 3×5 projection matrix in (20) is un-
known but is fixed. This means a moving camera in
the 3D space can be considered as a static camera in
the 4D space.

Similarly, a translational 3D range sensor can be
considered as a static range sensor in the 4D space as
follows:



x

y

z

1


∼




P11 P12 P13 −P11∆X−P12∆Y−P13∆Z P14

P21 P22 P23 −P21∆X−P22∆Y−P23∆Z P24

P31 P32 P33 −P31∆X−P32∆Y−P33∆Z P34

P41 P42 P43 −P41∆X−P42∆Y−P43∆Z P44







X

Y

Z

T

1


 (21)

This means the multiple view constraints between
a moving range sensor and moving cameras can be
defined in the 4D space. Thus, we consider the mul-
tiple view geometry in the case wherek = 4 and
n = [0,N −1,1,0]⊤.

Suppose a 4D point, whose homoge-
neous coordinates are represented byW =
[W 1

,W 2
,W 3

,W 4
,W 5]⊤, is projected to an image

point in a translational 2D camera, whose homoge-
neous coordinates are represented byx = [x1

,x2
,x3]⊤.

Suppose the 4D pointW is also measured by a trans-
lating 3D range sensor asy = [y1

,y2
,y3

,y4]⊤. Then,
the projection in the moving 3D range sensor and the
moving 2D cameras can be described as follows:

y ∼ P5W (22)

xi ∼ P4
i W (i = 1, · · · ,N −1) (23)

where,P5 is a 4×5 matrix with 19 DOF, andP4
i are

3×5 matrices with 14 DOF.
By defining the matrixM similar to the one in (9)

, and expanding detM = 0, we have the bilinear, tri-
linear, quadrilinear and quintilinear constraints (i.e. 5
view constraints) for the moving cameras and range
sensors as follows:

yix j
1B i j = 0 (24)

yix j
1xk

2ε jbrεkcsT
bc

i = 0rs (25)

yix j
1xk

2xl
3εiapqε jbrεkcsεldtQ

apbcd = 0qrst (26)

yix j
1xk

2xl
3xm

4 εiapqε jbrεkcsεldtεmeuR
abcde = 0pqrstu (27)

where, indicesi, a, p, q take 1 through 4, and all
the other indices take 1 through 3.B i j, T bc

i , Q apbcd

andR abcde are the bilinear, trilinear quadrilinear and
quintilinear tensors respectively.

By substitutingk = 4 andn = [0,N−1,1,0]⊤ into
(4), we find that theN view geometry has 14N − 19

DOF, and thusB i j, T bc
i , Q apbcd andR abcde have 9

DOF, 23 DOF, 37 DOF and 51 DOF respectively.
Also, by substitutingk = 4 and n = [0,N −

1,1,0]⊤ into (6), we find that the minimum number
of corresponding points required for computingB i j,
T bc

i , Q apbcd andR abcde is 9, 8, 8 and 8 respectively.

7 EXPERIMENTS

In this section, we show the results of synthetic image
experiments.

7.1 2D Camera and 1D Line Cameras

We first show the results from the combination of
a single 2D camera and multiple 1D line cameras.
Fig. 4 shows a 2D camera and three 1D line cameras
used in this experiment. Fig. 5 (a) shows the image
viewed from the 2D camera, and (b), (c) and (d) show
images viewed from three 1D cameras respectively.
The images ofC2, C1

1 andC1
2 are used for computing

the trifocal tensor,T bc
i , of these three cameras. Then,

T bc
i tensor was used for computing the epipolar lines

in C2 image from the image points in 1D images of
C1

1 andC1
2. The extracted epipolar lines are shown in

Fig. 6. As shown in this figure, the extracted epipolar
lines go through the corresponding points in the 2D
image as we expected.

We next computed the quadrifocal tensor,Q abcd ,
for a 2D camera and three 1D cameras from images
shown in Fig. 5 (a), (b), (c) and (d). The extracted
Q abcd tensor was used for computing a correspond-
ing point in the 2D image from a set of points in the
three 1D images. Fig. 7 shows the points in the 2D
image, which are computed fromQ abcd tensor. As
shown in this figure, the set of points in 1D cameras
are transfered into the point in the 2D camera properly
by using the proposed multiple view geometry.

7.2 Moving 3D Range Sensor and 2D
Cameras

We next show the results from a moving 3D range
sensor and moving 2D cameras. As we have seen
in section 6, the multiple view geometry of moving
range sensors and moving 2D cameras can be de-
scribed by considering the projections from 4D space
to 3D space and 2D space. We translated the 3D range
sensor during the 3D measurement, and obtained the
3D data. C3 andC3′ in Fig. 8 show the position of
the 3D range sensor before and after the translational
motion. C2

1 andC2
2 show 2 fixed cameras. Fig. 9 (a)
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Figure 4: 3D scene. The black curve shows a locus of a
moving pointX. The moving pointX is observed by a 2D
camera,C2, and three 1D cameras,C1

1, C1
2 and C1

3. The
three lines of each camera show the orientation of the cam-
era.
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Figure 5: The images of a 2D camera and three 1D cameras.
(a) shows the image ofC2. (b), (c) and (d) show the image
of C1

1, C1
2 andC1

3 respectively. The green points and lines
in these images show the projection of a moving point. The
blue points and lines show corresponding basis points for
computing the multifocal tensors.

shows the 3D data measured by the translational 3D
range sensor. As we can see in this figure, the mea-
sured 3D data is distorted because of the motion of
the range sensor. The laser light of the range sensor
reflected at the surface of the object was observed by
2 cameras. The green points in Fig. 9 (b) and (c) show
the laser light observed in these 2 cameras. The blue
points in these data show basis corresponding points
used for computing the trifocal tensor. The extracted
trifocal tensor was used for transfering the 3D range
data into the image of cameraC2

1. The green points
in Fig. 10 show the original image points and the red
points show the 3D data transfered by using the trifo-
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Y

Figure 6: The epipolar lines computed from the trifocal ten-
sor and the points in 1D line cameras. The blue points show
the basis points used for computing the trifocal tensor, and
the red points show some other corresponding points. Since
the epipolar lines go through the corresponding points, we
find that the computed trifocal tensor is accurate.
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Figure 7: The points in the 1D camera images are transfered
into the 2D camera image by using the extracted quadrifocal
tensor. The green points show the original loci in the image,
and the red points show the result of the point transfer.

cal tensor. As shown in this figure, the 3D data was
transfered properly by using the multiple view geom-
etry in 4D space, even if the range sensor moved dur-
ing the measurement.

We next computed the 3D range data from two
2D camera images and the extracted trifocal tensor.
Fig. 11 shows the points in the 3D image, which are
computed from the trifocal tensor. As shown in this
figure, the set of points in 2D camera images are trans-
fered into the points in the 3D range data properly by
using the proposed multiple view geometry. These
properties can be used for mapping the image textures
to the range image only by using point transfer.

8 CONCLUSIONS

In this paper, we showed that there exist multilinear
constraints on image coordinates, even if the dimen-
sions of camera images are different from each other.
We first analyzed the multiple view geometry of gen-
eral mixed dimensional cameras. We next showed
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Figure 8: 3D scene. A 3D object (vase) is observed by a
moving 3D range sensor,C3, and two 2D cameras,C2

1, C2
2.

C3′ shows the position of the range sensor after a transla-
tional motion.
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Figure 9: Range data and camera images. The green points
in (a) show the range data obtained from the range sensor,
and the green points in (b) and (c) show the laser points
observed in 2 cameras. The blue points in these images
show basis points used for computing the trifocal tensor.

the multilinear constraints of some example cases of
mixed dimensional cameras. The new multilinear
constraints can be used for describing the geometric
relationships between 1D line sensors, 2D cameras,
3D range sensors, etc. and thus they are useful for
calibrating sensor systems in which different types of
cameras and sensors are used together. The power of
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Figure 10: The range data transfered into the camera image.
The green points show the original laser points observed
in the image, and the red points show the points transfered
from the 3D range data by using the trifocal tensor. The
blue points show the basis points used for computing the
trifocal tensor.
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Figure 11: The image data transfered into the range data.
The green points show the original laser points, and the red
points show the points transfered from the 2D camera im-
ages by using the trifocal tensor. The blue points show the
basis points used for computing the trifocal tensor.

the new multiple view geometry was shown by using
synthetic images in some mixed sensor systems.
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