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Abstract: In this paper we propose a building technique of a correct model of continuous skeleton for discrete binary 
image. Our approach is based on approximation of each connected object in an image by a polygonal figure. 
Figure boundary consists of closed paths of minimal perimeter which separate points of foreground and 
background. Figure skeleton is constructed as a locus of centers of maximal inscribed circles. In order to 
build a so-called skeletal base from figure skeleton, we cut unnecessary noise from it.  It is shown, that the 
constructed continuous skeleton exists and is unique for each binary image. This continuous skeleton has 
the following advantages: it has a strict mathematical description, it is stable to noise, and it also has broad 
capabilities of form transformations and shape comparison of objects. The proposed approach gives a  
substantial advantage in the speed of skeleton construction in comparison with various discrete methods, 
including those in which parallel calculations are used. This advantage is demonstrated on real images of 
big size. 

1 INTRODUCTION 

Mathematical concept of a skeleton has been 
formulated initially only for continuous objects 
(Blum, 1967). A skeleton of a closed region on 
Euclidean plane is defined as a set of centers of 
maximal empty disks. A disk is empty if each 
internal point of it is also internal point of the region. 
In order to use the concept of a skeleton as a 
research tool of image shape in digital images, one 
needs to extend this concept to discrete space. 
However, in spite of seeming simplicity, it is not 
possible to extend this definition to discrete images 
immediately (Smith, 1987; Ogniewicz and Kubler, 
1995; Bai et al., 2007). Efficient algorithms of 
continuous skeleton construction are known only for 
polygonal regions (Lee, 1982; Fortune, 1987; Yap, 
1987; Klein and Lingas, 1995). However, for exact 
polygonal approximation of discrete form 
boundaries, one needs to use many small rectilinear 
segments. This leads to an increase in the number of 
vertices of approximating polygons. But the more 
vertices there are in polygons, the more noisy 

branches of skeleton are generated. And these 
branches are not important for an analysis of image 
shape. 

Since it is impossible to use continuous 
skeleton for image analysis, «discrete skeleton», an 
analogue of continuous skeleton, is constructed for 
these purposes. A discrete skeleton is usually 
defined as a binary image derived by a certain 
transformation of the initial image. The skeleton 
consists of pixel-wide lines and all of these lines are 
approximately equidistance from the boundary of 
the initial object. There exist several approaches of 
construction of such transformation: topological 
thinning, morphological erosion and allocation from 
a distance map (Costa and Cesar, 2001). However, 
discrete skeletons obtained by these methods have 
essential disadvantages in comparison with their 
continuous analogues. In methods of topological 
thinning and morphological erosion the Euclidian 
metric is lost. Skeletonization methods by distance 
map cause loss of skeleton connection. In addition 
presentation of skeletons as binary images 
complicates their comparison. It is also impossible  
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to transform image shape on the basis of a discrete 
skeleton. 

Another approach, proposed in (Ogniewicz and 
Kubler, 1995), uses a subgraph of the Voronoi 
diagram of object boundary points as a skeleton of  a 
discrete object (Fig.1(a-d)). This subgraph is 
extracted from the Voronoi diagram on basis of 
regularization procedure. Therefore, the resulting 
continuous skeleton is a planar linear graph. Since it 
is continuous and not discrete,  it suits much better 
for image shape transformation and comparison. The 
disadvantage of the resulting skeleton is that its 
branches are often zigzag.  This disadvantage 
becomes especially pronounced for images of low 
resolution (Fig.1(d)). In addition, when this method 
is applied to a complex image of high resolution, 
which also has regular elements (for example, to a 
drawing with rectilinear fragments), a big number of 
"redundant" boundary pixels becomes involved in 
processing, which leads to an unnecessary increase 
in the dimension of Voronoi diagram and the total 
amount of calculations. 

Figure 1: (a) – the binary image, (b) – the boundary points, 
(c) – the Voronoi diagram of boundary points (only finite 
edges), (d) – regularization of the Voronoi diagram, (e) – 
the approximating polygonal figure,  (f) – the figure 
skeleton, (g) – the skeleton regularization, (h) – the radius 
function of skeleton. 

Not only the quality of a skeleton constructed 
by a specific algorithm is important.  The speed with 
which this algorithm works is very important in 
computer vision systems. Currently speed 
enhancement is usually achieved by the 
development algorithms of parallel discrete 
skeletonization (Manzanera et al., 1999; Deng et al., 
2000; Strzodka and Telea, 2004). However this 
acceleration has its limits since there remain 
sequential steps in discrete skeleton construction 
algorithms and the number of these steps increases 
with the growth of image size. Image size, in turn, 
increases steadily as resolution of cameras and 
scanners increases. 

In reality, the time necessary for skeletonization 
of big images even on modern computers is still too 
big for many applications. 

Therefore, the issue of extension of the concept 
of continuous skeletons on discrete images seems far 
from being resolved. The purpose of this paper is to 
describe a continuous approach to skeletonization of 
binary images (Fig.1(e-h)) developed by the authors 
and its application to real-world problems 
(Mestetskiy, 1998, 2000, 2006). The advantages of 
the proposed method are also demonstrted in the 
paper.   The main advantages include superiority in 
computer efficiency. 

2 DISCRETE FIGURE AND ITS 
SKELETON 

We will define a skeleton of a discrete image on the 
basis of the following concepts: 

- а discrete figure; 
- аn approximating minimal perimeter polygonal 

figure; 
- а continuous skeleton of a polygonal figure; 
- а skeletal base of a polygonal figure. 

2.1 Discrete Figures in Binary Image 

A binary image is a two-colored picture where one 
or several objects of one color are located on a 
background, which has another color. Without loss 
of generality, we will consider a binary image as a 
black-and-white image: object is black, and 
background is white. Such image is represented in a 
computer as a matrix of black and white pixels. 

Let us define an adjacency structure on a set of 
pixels as follows. For a black pair of pixels we will 
define neighborhood as 8-adjacency, and for a white 
pair and a  two-colored pair – as 4-adjacency.  

 (a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 
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A set of one-colored pixels is called connected 
if for each pair of pixels in it there is a path from one 
pixel to another, consisting of sequentially 
neighboring pixels of the same color. Maximal 
connected set of pixels of one color is called a 
connected component. If all pixels of a component 
lie on the same straight line, such a component is 
called degenerated. Let us define discrete figures as 
connected black-colored components. There are 5 
connected components in the image in Fig.2(a), two 
of them are discrete figures. 

2.2 The Continuous Approximation of 
Discrete Figure 

Let us regard pixels as points with integer co-
ordinates on Euclidean plane. 

We will call a pair of 4-adjacent two-colored 
points a boundary pair, a segment connecting these 
points – a boundary segment. Two components to 
which points of a boundary pair belong are called 
adjacent, and the boundary pair is called dividing for 
these components. The set of all dividing boundary 
pairs for two adjacent components we will name a 
boundary corridor (Fig.2(b)). Each discrete figure 
defines one or more boundary corridors. 

Let us say, that a closed path lies in a boundary 
corridor if it crosses all boundary segments of this 
corridor. We will consider that a path crosses a 
segment if it has a common point with it and lies on 
different sides from this segment in some 
neighborhood of the intersection point. There will 
exist a minimal length path in the set of paths lying 
in a boundary corridor. This path will be a closed  
polyline and we will call it a  separating minimal 
perimeter polygon (MPP). If a discrete figure and all 
its holes are not degenerated then all its MPP are 
simple polygons (Fig.2(c)). For a degenerated figure 
or a degenerated hole MPP degenerates in a line 
segment. The set of all MPP of a discrete figure 
defines a polygonal figure – «a polygon with 
polygonal holes». 

Thus, we have defined minimal perimeter 
polygonal figures that approximate discrete figures 
of binary image. It is important to note that the set of 
approximating polygonal figures always exists and 
is unique for a given binary image. 

2.3 Polygonal Figure Skeleton 

Degenerated disks of zero radiuses centered in the 
convex vertices of a polygonal figure are empty as 
they have no internal points and, therefore, don’t 
contain boundary points of a figure. Besides, they 

are the maximal empty disks since they don’t 
contain other empty disks. Therefore points, which 
coincide with convex vertices of a polygonal figure, 
belong to a polygonal figure skeleton. 

 
(a) 

 
(b) 

 
(c) 

Figure 2: (a) – the binary image with 5 components and 2 
discrete regions, (b) – boundary corridors, (c) – minimal 
perimeter polygons. 

A polygonal figure skeleton is a planar graph 
with edges consisting of line segments and parabolas  
(Lee, 1982). The vertices of this skeleton are 
comprised from the convex vertices of a polygonal 
figure (one degree vertices) and from the points, 
which are centres of the inscribed circles, tangent to 
figure boundary in three or more points (three and 
more degree vertices). The radial function  is defined 
in each skeleton point as the radius of an inscribed 
circle centered in this point. 

It is important to underline that a polygonal 
figure skeleton always exists and is unique.  

2.4 Polygonal Figure Skeletal Base  

The problem of “noise” branches exists for both 
continuous and discrete skeletons. Small 
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irregularities in figure boundary lead to occurrence 
of skeleton branches, unessential for analysis of 
image form. The task of skeleton regularization is to 
remove these branches and leave only fundamental 
part of the skeleton which at the same time 
characterizes properties of the shape. This 
fundamental part looks like a skeleton subgraph. We 
will name it a skeletal base. Since the transformation 
of a skeleton into a skeletal base is achieved by the 
removal of unessential vertices and edges, this 
process is called pruning. 

Let C be a polygonal figure. Let us call its 
boundary ∂C, its skeleton – S and its skeleton radial 
function – ρ (s), s∈S. The skeleton will be a planar 
graph ),( EPS =  with the set of vertices P and 
edges E. We will call a skeleton vertex with one 
incident edge terminal, and with two or more edges 
– internal. An edge incident to a terminal vertex is 
also called terminal; an edge incident to two internal 
vertices is called linking. Linking edges can enter in 
one or more cycles and in this case they are called 
cyclic. 

Pruning is a consecutive removal of some 
terminal vertices and skeleton edges incidental to 
them. In the process of pruning, degree of some 
vertices changes. In particular, internal vertex can 
become terminal or its degree can become 2. 

Pruning guarantees preservation of skeleton 
connectivity and also preservation of all cycles in a 
skeleton as it doesn’t touch cyclic edges. 

Let us consider an assessment criterion of 
“essentiality” of a terminal edge. Essential edges 
remain in a skeletel base, and unessential edges are 
cut.  

Let ),( EPS ′′=′   be some adjacent subgraph 
of a skeleton ),( EPS = , such that PP ⊆′ , 

EE ⊆′  and also such that in the set EE ′\  there 
are no cyclic edges of skeleton. This means, that 
graph S ′  can be obtained from skeleton S  by the 
removal (“pruning”) of some vertices and edges of 
skeleton, and such removal doesn’t destroy cycles 
and doesn’t break connectivity of the graph. This 
graph S ′  we will call truncated subgraph of S . We 
will consider the set of points formed by union of all 
inscribed circles, centered in points of the truncated 
subgraph S ′ , whose radiuses are equal ρ (s), s∈ S ′ . 
This set of points forms a closed region which we 
will call a silhouette of subgraph S ′ . The important 
property of a truncated subgraph silhouette is its 
topological equivalence to figure C. In particular, a 
silhouette is a connected set. 

 Let a skeletal base of figure C be the minimal 
truncated subgraph S ′  of its skeleton S with 
silhouette SV ′  satisfying a condition 

ε≤′),( SVCH , where 0>ε  is a regularizing 

parameter, and ),( SVCH ′  – Hausdorff distance 

between figure C and silhouette SV ′ . 

It is necessary to note, that for each value of 
parameter ε the skeletal base always exists and is 
unique. 

We will call the derived skeletal base a 
continuous skeleton of a discrete figure. 

3 ALGORITHMS  

3.1 Boundary Corridor 

The construction of a boundary corridor consists of 
two stages: the corridor search and its tracing. 
Corridor search is understood as a problem of 
finding one boundary pair of points (Fig.3(a)). 
Search of such pair can be executed by row scanning 
of the binary image. After finding the boundary pair, 
the boundary tracing algorithm will work. This 
algorithm reveals all other boundary pairs of a 
corridor. After corridor tracing is finished, the 
algorithm starts the search of next corridor from that 
location where the first boundary pair of the 
previous corridor has been found. The process ends, 
when the single line scanning ends. 

Figure 3: Corridor tracing: (a) the initial position of tracer 
pair, (b) the consecutive positions of tracer pair, (c) the 
sequence of test points (tracing track). 

The algorithm starts contour tracing from the 
first boundary pair and finds sequentially other 
boundary pairs of a corridor. A boundary pair of 
points currently found by the algorithm we will call 
a tracer pair. Tracing process corresponds to the 
consecutive movement of the white end of the tracer 
pair in a positive direction relative to the black end 
(Fig.4). The derived point is called a test point. All 
possible variants of test point choice at different 
positions of the tracer pair are presented on Fig.4. 

(a) (b) (c) 
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Current position of the tracer pair is shown by a 
solid line, and new possible positions depending on 
color of a test point – by a dotted line. 

A new position of a tracer pair is determined 
from the color of a test point by the following rule. 
The test point replaces in the tracer pair a point of 
the same color as it is. 

Consecutive moving of a tracer pair allows to 
single out all boundary points corresponding to one 
boundary contour (Fig.3). Tracing process ends 
when tracer pair will return to its initial position. 

3.2 Minimal Perimeter Polygon 

The sequence of test points forms an ordered list 
called a tracing track (Fig.3(c)). We will attain 
"walls" of a boundary corridor by sequentially 
connecting all black points of this list among 
themselves and all white points. The left wall 
consists of black points, and the right one – of white 
points. The minimal perimeter polygon lies between 
the corridor walls. All vertices of MPP are points of 
a tracing track. We will call such points a corner. 
The task of MPP construction is to choose corner 
points from a tracing track.  

The first corner point is defined from the initial 
position of the tracer pair (Fig.3(a)). It is obvious, 
that the right point of this pair is always corner. Let 
us note, that the two consecutive vertices in MPP 
should be connected by line segment lying between 
corridor walls completely. It means, that if another 
(in particular, the first) corner point is found, it is 
necessary to search for the next corner point as for a 
point lying from it «in the line of sight» inside a 
corridor. 

Let us define a concept of a «coverage sector» 
for a corner point. At the initial moment (for the 
current found corner point) it equals 360 ° and isn’t 
limited by anything. As the algorithm proceeds, the 
points of the track after this corner point are 

sequentially considered and the coverage sector is 
modified by following rules (Fig.5): 

1. If the test point is located inside the coverage 
sector, the sector changes (Fig.5(a,b)). If the test 
point is black (Fig.5(a)), it is declared as the left side 
of the sector, if it is white (Fig.5(b)) – as the right 
one. 

2. If the white point is located outside the 
coverage sector to the left of its left side (Fig.5(c)), 
the left black point of the sector is declared the new 
corner point. Similarly, if the black point is located 
outside the sector to the right of its right side 
(Fig.5(d)), the right white point is declared the new 
corner point. 

3. In all other cases (Fig.5(e,f)) the coverage 
sector doesn’t change. 

As these rules are followed, all corner points 
are sequentially found. In the process, the corridor 
track is regarded as a circular list of points. The 
process ends when the initial corner point is chosen 
as a new corner point (but not as a test point!) once 
again. 

3.3 The Construction of Skeletons 

Fast algorithms for skeleton construction of simple 
polygons with n vertices have computational 
complexity O (n log n) (Lee, 1982) and O (n) (Klein 
and Lingas, 1995). Known generalizations to the 
case of a polygonal figure with holes (Srinivasan et 
al., 1992, Lagno and Sobolev, 2001) have 
computational complexity O (kn + n log n), where k 
is the number of polygonal holes and n is the general 
number of vertices. For some problems such 
computational complexity takes too much. For 
example, in the task of construction of an external 
skeleton for segmentation of the text document 

(c) (d) 

(a) (b) 

(e) (f) 

Figure 4: Choice of the next test point (labeled as square) 
for different positions of tracer pair (solid line) during 
tracing process of boundary corridor. 

Figure 5: (a,b) correction of coverage sector, (c,d) new 
angular point forming, (e,f) coverage sector doesn’t 
change. 

BINARY IMAGE SKELETON - Continuous Approach

255



image (Mestetskiy, 2006) values k and n have an 
order 103 and 105 accordingly. At the same time, 
efficient algorithms for Voronoi diagram 
construction of linear segment set (Fortune, 1987; 
Yap, 1987) don’t use specific features of segment set 
of polygonal figure boundary because of their 
universality. In particular, these algorithms build 
Voronoi partitioning not only inside, but also outside 
of a polygonal figure and this is superfluous work.  

Our solution is based on the concept of 
adjacency of polygonal figure boundary contours 
and on the construction of so-called adjacency tree 
of these contours. 

Figure 6: Figure boundary adjacency tree construction: (a) 
the polygonal figure and intercontour circles, (b) the 
boundary adjacency graph, (c) the boundary adjacency 
tree, (d) transforming of the figure to the polygon. 

Two boundary polygons are adjacent if the 
circle inscribed into a figure, which contacts both of 
these polygons exist. The given relation of contour 
adjacency defines a graph of contour adjacency. It is 
obvious, that this graph is connected. Each spanning 
set of it (the minimal connected spanning subgraph) 
is a tree. Such tree we will call a polygonal figure 
boundary adjacency tree. In figure 6a the image with 
12 boundary contours is presented. Inscribed circles, 
contacting pairs of contours, show the adjacency 
relation. In Fig.6(b) the polygonal figure boundary 
adjacency is shown, and in Fig.6(c) one of the 
boundary adjacency trees is presented.  

The boundary adjacency tree gives the chance 
to reduce a problem of a polygonal figure 
skeletonization to a problem of a simple polygon 

skeletonization. For this purpose let us transform 
chains of polygon sides into one chain by «cutting-
in» them into one another. As a result the polygonal 
figure conditionally transforms to "polygon" 
(Fig.6(d)). An O (n log n) sweepline algorithm for 
boundary adjacency tree finding and  figure skeleton 
construction is described in (Mestetskiy, 2006). 

3.4 Skeletal Base 

It is possible to present the process of a skeletal base 
construction as a construction of a sequence of 
truncated subgraphs of skeleton { }mS′ . Here 

SS =′0 , mm SS ′⊂′ +1 , m=0,…,M, and for all mS′  
the following condition is satisfied: 

ε≤′ ),(
mSVCH . The last element of this sequence 

MS′  is the required skeletal base. According to our 
definition of a skeletal base, for each truncated 
subgraph MSS ′⊂′  condition ε>′),( SVCH  

takes place or there are no terminal edges in MS′ . 
The described process is illustrated by an example in 
Fig.7. Here 2=ε . 

Figure 7: Skeletal base construction: (a) the initial image, 
(b) the polygonal figure and its skeleton, (c,d,e) the 
skeleton subgraphs and their silhouettes. 

Computational complexity of this algorithm 
depends on the number of skeleton vertices linearly, 
i.e. it is at worst O(n), where n is the number of 
polygonal figure vertices. 

4 EXPERIMENTS 

The described method of continuous skeleton 
construction of a binary image has been 
implemented and has passed multiple checks in 
different applications. 
Theoretical estimates of computational complexity 
of algorithms, with all their importance, don’t give 
full conception about the possible application of 
algorithms in computer vision systems. Therefore 
there is a necessity to perform 
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Figure 8: Test examples: (a) Billygoat, (b) leaf1, (c) room, 
(d) neuron, (e)  roots. 

experimental estimates based on real working 
algorithms and on practical examples. There is not 
many publications describing such experiments. 
Usually there is no information about software 
implementation and algorithm running time at all 
(Manzanera et al., 1999) or there are only results of 
computing experiments with "toy" examples of very 
simple images (Deng et al., 2000). 

The most difficult examples (Fig.8) of images 
and real time expenses for their skeletonization are 
presented in works (Ogniewicz and Kubler, 1995; 
Strzodka and Telea, 2004).  

Table 1: Comparison of our algorithm CS and algorithm 
OK (Ogniewicz and Kubler, 1995). 

 OK CS OK/CS 
sites 11104 1874 5.92 
edges 31381 3721 8.43 
vertices 20303 3730 5.44 
time  9.82 0.05 196.4 

 

Results of comparison of our algorithm with the 
algorithms described in these works, are given in 
tables 1 and 2. Quality of the derived continuous 
skeletons is shown on examples in Fig. 9, 10.  

The running time of our algorithm was 
estimated using Intel processor 1.6 GHertz with 512 
Mb of memory. Time in tables is specified in 
seconds. 

Comparison with algorithm (Ogniewicz, 
Kubler, 1995) shows, that using MPP for image 
boundary approximation allows to reduce dimension 
of the problem substantially: number of elements in 
a polygonal figure skeleton is about 6-8 times less 
than in a corresponding Voronoi diagram of image 
boundary points. The reduction in computation time 
(in 196 times) is partially due to this dimension 
reduction, and partially due to processors capacity 
increase as compared with  SPARCstation-2.  

Table 2: Comparison of our algorithm CS and algorithm 
ST (Strzodka and Telea, 2004). 

 Size ST CS ST/CS
Leaf1 410×440=182040 0.14 0.02 70 
Room 413×506=208978 0.64 0.03 21 
Neuron 839×731=613309 2.5 0.1 25 
Roots 1800×1810= 

3258000 
3.79 0.41 9.22 

A new parallel discrete skeletonization algorithm 
is described in Strzodka and Telea (2004). Authors 
show that the running time of this algorithm is a 
record for discrete algorithms so far. The table 
shows the results attained by the authors on GPU 
GeForce FX 5800 Ultra chip, containing tens 
independent computers working in a parallel mode. 
However, it is apparent from table 2, the running 
time of our algorithm is less than of that algorithm 
by 1-2 orders. It is necessary to note, that our 
algorithm can be parallelized too and its operation 
speed on multicore processors will grow. 

5 CONCLUSIONS 

The continuous approach to image skeleton 
construction exceeds in many criteria traditionally 
applied discrete methods. 

1. The continuous skeleton is described by the 
strict mathematical model. The discrete skeleton 
doesn’t have such strict description; it is validated 
only as an analogue of a continuous skeleton.  

2. Regularization of continuous skeletons, 
directed on noise overcoming, can be performed by 
strict mathematical methods; and as for discrete 
skeletons, it is done on the basis of heuristic devises.  

3. The continuous skeleton with the radius 
function gives more ample opportunities on shape 
transformations of an object. Comparison of 
continuous skeletons is reduced to a problem of 
planar graphs comparison by topological and metric 
criteria. 

 

(a) 

(e) 

(b) 

(c)

(d) 
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Figure 9: Continuous skeletons: (a) leaf1, (b) room, 
(c) Billygoat (external), (d)  Billygoat (internal). 

 

Figure 10: The fragment of the skeleton for “neuron”. 

4. Running time of continuous skeletonization 
algorithm is less by at least an order than that of the 
best samples of discrete skeletonization algorithms. 

The downside of application of continuous 
skeleton construction algorithm is the complexity of 
its software implementation which demands rather 
refined programming technique. 
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