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Abstract: This paper presents two algorithms needed to perform a dense 3D-reconstruction from video streams recorded
with uncalibrated cameras. Our algorithm for camera self-calibration makes extensive use of the constant focal
length. Furthermore, a fast dense reconstruction can be performed by fusion of tessellations obtained from
different sub-sequences (LIFT). Moreover, we will present our system for performing the reconstruction in a
projective coordinate system. Since critical motions are common in the majority of practical situations, care
has been taken to recognize and deal with them.

1 INTRODUCTION gorithms — consider the area of robotics, navigation
or military applications — constantly requires dealing
Considerable progress was made in the recentwith critical motions. Our videos, recorded mostly
years in the areas o€omputer Vision and 3D- for military applications, are usually taken from mini-
Reconstructionfrom video sequences recorded with planes or mini-drones, carrying some small cameras
a single uncalibrated camera. There are two princi- (see Fig. 1), so in general, the resolution is poor, the
pal approaches for reconstruction: the first uses meth-effects of the interlacing, lens distortion and blurring
ods of projective geometry; the task is to determine are strong, and since the motion of these unmanned
projective matrices and 3D-points in some projective vehicles is influenced by wind and other similar ef-
frame and then to use the additional knowledge (suchfects, the trajectory of the camera is usually not suit-
as known principal point or zero skew of the cameras) able for the reconstruction. Therefore it turned out to
to transform the cameras and points into a Euclid- be quite important to recognize and to deal with criti-
ean frame. In the second approach, these constraintsal motions.
are imposed at the beginning, in order to avoid any  In many cases, we will use methods from projec-
spurious results. If necessary, some additional infor- tive geometry, see for example (HarzZis2000). These
mation is roughly estimated (such as unknown focal methods allow working extensively with linear equa-
length), and by the end of reconstruction, all irreg- tions and contribute to numerical stability and robust-
ularities are supposed to be corrected by means ofness of the majority of the problems. In our imple-
bundle adjustment. Examples of successfully dealing mentation, the cameras and points in space are ob-
with projective geometry (the first strategy) are shown tained in some projective frame from interest points
in (Nister2001) and (Pollefeys2002). On the other detected in the images. "Projective” means here
hand, (Mar2006) shows excellent results of dealing that the cameras and points are projectively distorted:
with the second strategy. Nevertheless, many of thesefor example, the ratios between line segments will
algorithms are developed for "favorable videos” and not be the same as in the world coordinate frame.
"favorable geometry”, such as slow, smooth, almost Although it is not possible to recover the absolute
circular motion around a non-planar object: these al- position, orientation and scaling of the scene just
gorithms work well after being applied to these fa- from the video stream, our task will be to deter-
vorable scenes, but often turn out to be not success-mine a 3Drectification homography which trans-
ful for almost anycritical motion such as forward  forms the projectively distorted model to a Euclidean
motion, pure translation etc. But in reality, every (i.e.ratio- and angle-preserving) coordinate frame.
practical application of "structure from motion” al- Detecting the rectification homography is the key-
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Q

c d
Figure 1: a) mini-plane, b) mini-drone M3D (product of
EADS LFK) carrying small cameras c) used for recording

cityscapes as shown in d). Note the effects of interlacing,
blurring and lens distortion.

point of our method: if it works well, the object will
be clearly recognizable and all additional (rather time-
consuming) steps, such bandle adjustmentin or-
der to refine the results ¢essellationfor better visu-
alization can optionally follow.

Notation: we denote 2D-/3D- points in the pro-
jective coordinates by column vectoss= (xyw)" €
P2, X = (XY ZW)T € P? respectively. Points in
Euclidean coordinates will be denotedbandX re-
spectively. _

By x'] respectivel)o‘dj, we will refer to the point
numbeii in view numberj. Camera matrices (to what

contruction. Section 4 shows experimental results of
the algorithm for different kinds of video sequences.
Conclusions and outlook are given in Sect. 5.

2 PROJECTIVE
RECONSTRUCTION

Given a video sequencmterest points are found in

the first frame using Harris Corner Detector, see (Har-
ris1998) for details. Moreover, new features will be
found in periodic lags (refreshing). These features are
tracked from frame to frame by the Lucas-Kanade al-
gorithm ((KLT1981)). It is quite important to have
correspondence points over many images in order to
obtain a wide baseline. For the reconstruction, the
sequence will be automatically partitioned into sub-
sequences. The first frame of every sub-sequence
will be called firstkey-frame of this sub-sequence.
We find the second key-frame such as the pair of
key-frames has a favorable geometry for reconstruc-
tion: we calculate two penalty term&RIC(F) and
GRIC(H), using formulae (2) and (3) as proposed in
(Pollefeys2003) GRIC is the abbreviation foGeo-
metric Robust Information Criterion , introduced

by Pollefeys). Since we work with fundamental ma-
trices, the error termse for the fundamental matrix
respectivelyey for the homography are:

T T
XoFX1 X, FXq
2 2 "2 and

€F (X1,X2) = max(
’ etime]

SH(Xl,Xz) = ||)’22—)’22||, X; = HXxj.

we shall simply refer as "cameras”) are denoted by The reconstruction begins as soon GRIC(F) <

P in the projective, and® in the Euclidean frame.
We denote byK the calibration matrix, byR rota-
tion matrices and by camera centers in the world
coordinate system. Then, the well-known relation
P =KR]lz| —t] holds. Herdy is thek x k identity
matrix.

For a matrixA, the symbolgA);, (A)' denote the
I-th row/column ofA, and (A)g;, (A)"} denote the
matrix after itsl-th row/column has been extracted.
As usual AT denotes the transpose Af The opera-

GRIC(H). Note that if eitheiGRIC(F) > GRIC(H)

for a rather large number of frames or the number
of points seen in the first and in the current image
of the sub-sequence reduces dramatically, reconstruc-
tion has to be performed even though the geometry
is apparently not favorable. Once two key-frames
are determined, the fundamental matFixbetween
them is calculated via RANSAC and the relative ori-
entation of two cameras is obtained as pointed out in
(Harzis2000):P; = [I3 | 03], P, = [[&2] < F | 2] where

tor [x]x denotes,as usually, the cross product with the e, is the epipole (projection of the first camera center

vectorx.

By O, we will refer to the image contained in a
frame number of the sequence. All other notation
will be introduced later.

Organization: in Sect. 2, we will give a brief in-

into the second image).

The task now is to determine the points in space
(resulting from the inliers of the fundamental matrix)
and the parameters of the intermediate cameras. We
triangulate the points seen in both key-frames linearly

troduction of our system whose main part takes place ((HarZis2000), chapter 12) and obtain the camera ma-
in the projective coordinate frame. Section 3 de- trices by means oRANSAC with Ty g4-test as de-

scribes our calibration algorithm for Euclidean rec- scribed in (Mat2004). Generating models (fundamen-
tification as well as the method to perform a dense re- tal matrices, camera matrices, homographies) from
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parameter sets contaminated with outliers is an indis- resection-inliers is small, marks the end of the sub-
pensable part of our algorithms, so in the majority of sequence. If the number of the unfeasible frame is
cases, robust methods must be applied and every poshn, then the frame number— 1 is the last frame of
sibility of speeding up the processing must be consid- the first sub-sequence and the first key-frame of the
ered. Therefore, manipulating simple RANSAC by next sub-sequencelis- 2. This is because we cannot
means ofTq 4 test (withd = 1 or 2) has turned outto  trust the camera numbaerof the first sub-sequence,
be quite useful in our implementation. Also, we must and, as we will see below, we need at least a dou-
take care of critical motions since the results obtained ble camera overlap. Of course, the second recon-
during this stage of reconstruction of a sub-sequencestruction will be obtained in a different coordinate
will be used to obtain camera parameters in the fol- system, therefore both reconstructions are "fused” by
lowing frames. The following observations have been means of the common came@24,, P9 PPV prew
made: and pointsX"®, X4 seen both in old and new views.

e If for a large number of frameSRIG(F) > Thetaskis to find a 3D-homograpHiywhich satisfies
GRIG(H), then either the scene contains some P%¢=P"™"H andX*? =H~'X"" (such a homogra-
dominant plane(s) or the baseline made up by Phy exists by Theorem 9.10 in (HarZis2000)). The
the cameras between two key-frames is not wide Method we propose works as follows:
enough_ In the first case, the linear solution for First of a.”, the linear solution is calculated: if
camera resection will not work ((Harzis2000), We consider camera matricd®?,P"™H as row
pp.178-180). In certain cases, one can use Vectors with 12 elements, the vector representing
homography-based reconstruction methods asthe algebraic error from a single camera pair is
the method of camera resection ijane-by-  (PPk(P™H)1— (P¢)1(P™"H)y for k=2,...,12.

parallax, as proposed in (Harzis2000), chapter Clearly, each pair of projection matrices contributes
18, see also (Mat2005). 11 equations, therefore a double camera overlap is

enough to determine 16 entries of the homogeneous
quantityH. In order to refine the initial value fdd,
the squared geometric error

overlap

e If the epipole lies inside of the image domain, the
points close to the epipole should be discarded
from triangulation, because their position in at

least one direction will be unstable. Another pos- . 2

sibility is to take only the points which satisfy & 2 (P?GNHXOM _ani> @)

some severe cost function such as: )=
2 is calculated for each 3D-poin¥9 obtained in the
Zl(f(i* —%i)’<s exp(—@> X' =PRX, first reconstruction and visible in the relevant views.
1= 1

Similar error is obtained for 3D-points in the new co-
where P;,P, are the camera matrices extracted ordinate frame. Now, if the error obtained by repro-
from the key-framesy, X is a 2D (respectively:  jecting an old 3D-point with the new cameras (as in
corresponding 3D) point); is the distance from (1) ) or vice versa is low, this point is considered to

%i to the epipoley ands,b are some positive con-  be an inlier. In the case where there are only a few
stants. inliers, the initial estimate oH is poor. In this sit-
uation (which, for example, can happen if the cen-
ters of both cameras coincide), we consider just a
single camera overlap[®, P%%, and the correspon-
dences of reprojected poink x, as pointed out in
(Nister2001), pp. 64—65. Four such correspondences
are enough to generate a RANSAC-hypothesis from
the points close to the epipole but also reduce the Wh!Ch H can be computed. At egch case, after_ an
initial estimate ofH has been obtained, the iterative
thresholds by the factor 2. R ; :
minimization of the error given by (1) is performed
The reconstruction of a sub-sequence continues byover all inliers. GiverH, the new cameras and points
extrapolation of the previous results to the frames af- can be mapped into the old coordinate frame.
ter the second key frame. We obtain new camera ma-
trices by resection with the already known 3D-points
(via RANSAC followed by a non-linear error mini-
mization) and we obtain new 3D-points by triangu-
lation from the known cameras (usually 3-5). The
frame, where the number of either triangulation- or

e The forward and backward motion usually has
both of the negative effects described above. Ac-
tually, the homography will be the suitable model
to describe the position of points in the direction
of the epipole and the epipole will be found inside
of the image. In this case, we not only discard
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3 AUTO-CALIBRATION AND w = (PX)3 is the third element oPX . For all points
EUCLIDEAN X visible by the pair of camerd%_1, P, we calculate
RECONSTRUCTION & = sgn[(PXj)3(P-1Xj)s]. Then, by multiplying

R,i €{2,..,n} by sgn(0.5+ Vi 21)7 we ensure that
) ) the majority ofX; are either in front or behind both
3.1 Auto-Calibration of the cameras (with respect m,, which in (Nis-
ter2000s) is denoted by "untwisted pair” ). With this
The starting point of any rectification algorithm is a normalization, alp - C(P,) must have the same sign,
projective reconstruction given by a set mfcam-  so recalling (3) and settingy - C(Py) > 0, the task is
erasP, and points in spaceX!. The task is to find  to find pg which satisfiegpo- C(P) > 0 for alli. The
a so called rectifying spatial homograpHysuch as problem formulated as:

the transformed camerdy = RH and pointsXj = o find a maximal scalad subject to:
H‘lxj represent a ratio- and angle-preserving re- Po |
construction of the scene. If the first camera is [Ci  —[Ci] { 5 } >0 and’p()’ 5 LS, 4t

given in the formP; = [I3 | O], then, according to

(Harzis2000), pg. 46@ can be chosen as follows: can be solved, for example, by t&mplex Algo-

rithm . Note that the last condition allows obtaining
H_ { K (0] } @ a unique solution for the homogeneous quantity

| -pIk 1 | This pg is an acceptable initial estimate fpt, be-
cause in the optimization round, we can move along a
continuous path not crossing the camera centers. We
refine the initial estimate using the knowledge about
(nearly) square pixels and the principal point. Since
PH = P = KR]l3| —t], we have(PH){*} = KR. For
a matrix A, we define the operatag (A) = K/Kz 3
whereK is the upper triangular matrix resulting from
the RQ-decomposition @&, in other words
-1

whereK is the constant but unknovaalibration ma-

trix andp. is theplane at infinity. We store the un-
known entries oK in the column vectok = k(K) =

[f asuV|T, they correspond respectively to the fo-
cal length, aspect ratio, skew and two coordinates of
the principal point. There are 8 degrees of freedom
(5 for k and 3 forpw), so the minimization of some
geometrically meaningful cost function is to be per-
formed over the 8-tuple&” p,,]. Before this can K = (chol [(AAT)1])

be done, initial values of the parameters must be ob- for a non-singu|ar matriXA. Then we know that the

tained. At the beginning of the optimization, we set matrix AK 1 is a rotation matrix and our cost function
a=s=u=v=0. For the focal lengtti, the formula  results in comparingt (PH){*! with the "ideal” cal-
obtained in (Bougnoux1998), ibration matrix diagf f 1] which corresponds to the

b'T[e]T2FbbT FTh/ poioko =100

f2=— — k(K)j —k%)?
b'Te]«IoFIoFTh e B K = PH (k.p. )4 4
- [€1:1zFIFTL" 1;5<(r”k1) . K=®(RH(kP)) @
with |, = diag(1 1 0),b,b’ principal points of some  i<i<n
pair of cameraskF the fundamental matrix resulting HereH (k,p.,) is the term foH as in (2) k1 is the

from these cameras amlthe epipole, can be taken new focal obtained as the result of an iteration and
into consideration. Also, the image diagonal is an ac- 1; are the weights representing the reliability of the
ceptable initial estimate of. The parameters qf. constraints. For example, we can chodse= yiy;,

(the homogeneous representationpef) can be es-  wherey; is the average reprojection error of all points
timated with cheirality inequalities as Nistér pointed obpserved in the camera numbieand yj say how
outin (Nister2000s). The main theorem proved in his reliable the knowledge about camera parameters is
paper says that if there is some plamgevhich for all (we takey, = y3 = y4 = y5 = 1,y2 = 1000 which

| =2,...,nsatisfies the relation: means that the focal length is unknown but constant).
_ After several iterations, the improved estimates of
sgn((po- C(R-1))(po-C(R))] = AHONS, 2 ;
3
SN (Peo - C(P_1)) (e - C(P))] (3)  skew, aspect ratio, principal point and focal length

are obtained, we updatk® by k(K) in (4) and
then there is a continuous path frgto p suchthat  we sety; = 1. We optimize (4) by means of the
no camera center is met on this path. Here we denotel evenberg-Marquardt iterative algorithm .
by C(P) = [c1 C2 c3 ¢4]T the camera center, normal-
ized as followsg = (—1)' detP{"}) I € {1,...,4}. Remark 1. The optimization stage of auto-calibration
If all 3D-points have the last homogeneous coor- is fast, because all derivatives needed for the Ja-
dinate 1, then sguepth(X,P)) = sgn'w- c4) where cobian can be written analytically since the terms
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for the inverse of a % 3 matrix and itsCholesky-
Decompositioncan be performed manually. More-
over, this method usually converges after only 6-8
iterations. Other advantages of this algorithm com-
pared to other algorithms are: the fact of constant fo-
cal length is used extensively, the quality of every sin-
gle camera is taken into account and the initial value
of the plane at infinity is determined in a robust way
(such as nodéll scene points have to lie in front afl
cameras, as for example in the case of forward mo-
tion).

3.2 Dense Reconstruction

In this subsection, we describe our method used to
generate textured maps. The points visible in the first
key-framell of a sub-sequence are partitioned into tri-
angles (for example, by means of thelaunay Tri-
angulation). If we assume that a triangla! in the
image plane corresponds to a feasible (covered with
the object texture) triangle in space, we can calculate
the support plane fof\! which we callg!. If x € AJ,
then the corresponding 3D-poiKtcan be calculated

in the projective frame either from the relation:

{ PX =x

£iX =0, ®)

or, to speed up the processing, by means of 2D-
homographies. Using operatofsi, () gy, ()", ()1
defined above, we have:

Result. Any of three homographies

H= (P - @)@ /©) .

sucha€' #0,1 € {1,2 3}, maps the triangle in image
O into the corresponding triangle in space. The point
X corresponding ta is obtained as follows:

(X) gy = Hix, (X = =€) (X) /(€)'

To prove the formula above, we consider (5), and
we extract(X); from its second equation. Now we
insert(X); = — (&)1 (X),/(€)" into the first equa-
tion and obtairx = H,*l(X)U}. We only allowl €
{1,2,3}, because we suppose that the Euclidean re-
construction is given on this stage, Xohas the last
coordinate 1.

For better numerical conditioning, we chodse
argmax|(€)|),k € {1,2,3}. Now we can store the
numbers!, planes€! and the corresponding homo-
graphiesHlJ for every triangleAl. Also, we sta-
bilize the calculations by selecting dominant planes
(via RANSAC), correcting the positions of 3D-points
and preferring the triangles lying completely in these
planes. Now, obtaining an initial hypothesis of every
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pixel X inside of the convex hull of all detected points
can be performed rather quickly, as pointed out in the
scheme below:

R — A1 H L E - X (6)
Then, the unfeasible triangles can be detected by the
back-projection of the hypothesized poidisnto the
images close tal. If the scene is not too homoge-
neous, then the intensity differences between the out-
liers must be large. Leh the number of images to
compare it = 3-5 in our experiments}]; our refer-
ence image andl, ..., 00, images used to determine
the feasibility ofA! C 0;. Let Al be the total number
of local overlaps (how many times a point frafw
was projected inside the imaggs, ..., [,). The cost
function we use to determine the feasibility&f is:

e(j)=(2-&)logA) 2 § &, (7

. %enl

whered! (%,i) = 01(U (%)) — 0i(U (P.X)) is the inten-

sity difference inside of a small window around a
relevant pixel and’ is zero if A does not lie inside
one of the dominant planes and 1 if it does. All tri-
angles, for which the cost function does not exceed a
given threshold, are declared as feasible. Contrary to
(MorKan2000) who proposes optimizing the results
of the triangulation over all possible triangulations,
we prefer use the 3D-points generated from other sub-
sequences in order to fill the holes caused by unfea-
sible triangles. This seems to be a logical approach
because partitioning the video sequences into sub-
sequences (and stitching these sub-sequences as de-
scribed in Sect. 2) is a consequence of the fact that the
objectis seen from different positions. In order to pro-
vide the texture of every of these views, a reference
image from a sub-sequence must be taken. We call
this methodLocal Incremental Fusion of Tessella-
tions”, LIFT . Suppose we are givensub-sequences
(i.e. reference imagés;,, ..., Oy, for which we have
triangulations, support planes and homographies. The
task is to compute the feasibilities for the triangles
of the last sub-sequence. The computation algorithm
works as follows §1,,,s3 are constant thresholds):

for every pixel X = X, in Oy,
determine j such as X € A
extract €I and HI, then calculate X using (6)
increase area Al and set status = 0;
fori=1,..m—1
reproject X with camera Isri to obtain X;
if f(,i lies inside of a feasible triangle in [y;
compare the support plane € of this triangle with €1
if||€- €l <1
(it is approximately the same point)
increase overlapj, set status = 1 and break
if status == 0
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(an occludgd point or isnot inside of all previous images) 5 CONCLUS'ONS AND FUTURE
reproject X into the neigboring images Uy +1,..., Orp4n

calculate intensity differences proceedingl from X with (7) WO R K

add the squared sum of these errors to d/.

for every | Conclusions. We have presented a system which is
if overlapl /Al > s or €l > 53 (as in (7)) able to perform the Euclidean reconstruction from
the triangle j is declared unfeasible video sequences recorded with a single camera. The

Finally, feasible triangles from all sub-sequences system can recognize some important critical motions
will be given their texture, as shown in the images (such as forward and backward motion) and deal with
below. them, such that even in the case of not favorable

geometry, the results of reconstruction are acceptable.

Another advantage is that the system is robust: for ex-
4 RESULTS ample, outliers caused by small moving objects in the

images will be detected by robust algorithms and ex-
ded from consideration.
The structure of the system allows detecting and
tracking points, performing and stitching projective
reconstructions from frame to frame. In other words,
there is no need of exhaustive matching of pairs or
triples of frames (as in (Mar2006) or (Nister2000)) to
find a pair or a triple with a favorable geometry. The
reconstruction can be stopped anytime, if necessary,
s:given that the reconstruction between the first pair
of key-frames was performed. Then, the calibration
process is quite fast and as result, a sparse cloud of
3D-points and the camera trajectory will be obtained.
The computation times of the first draft of our algo-
rithm lie between 10 and 15 frames/sec., therefore the
hope to achieve a real-time reconstruction exists. Ex-
tracting and fusing dense models obtained from sev-
eral sub-sequences as described above is also a fast
process (because the optimization is performed over
triangles rather than over points), but before this can
be done, the error minimization over all points and
all cameras must be performed to optimize the results
of the sparse reconstruction which is a rather time-
consuming process.

We will present results from three movies taken with clu
three different cameras. The first movigiouse”,

400 frames, 105 camera positions — because every 4
th frame was taken) was recorded with a handheld
camera around a toy-house, so its resolution as well
as the trajectory of the camera is good. The only
difficulties the system has to deal with are the large
number of outliers and the configuration of inliers: in
many frames they are nearly coplanar which make
the camera resection quite difficult. The result of the
calibration algorithm is illustrated in two Fig. 2, with
the texturation obtained with our method of local in-
cremental fusion LIFT.

The second sequencélrnfrared” , some 150
frames) was recorded by an infrared camera and
shows a sky-scraper in Frankfurt-upon-Oder. As in
most infrared sequences, the percentage of tracking
outliers is large, due to dead pixels. Moreover, al-
most all of the 3D-points are situated either far away
from the object or in some dominant planes, which
makes the usual determinationmf quite hard. Nev-
ertheless, the result of our calibration algorithm was
refined by bundle adjustment, and the results of our
method are shown in Fig. 3. Future Work. Our next step towards the dense re-

The sequence”Cityscape”, 20 frames) is ob-  construction will be the search of a global algorithm
tained from our mini-plane and shows a typical view which considers the triangulation from the reference
of a cityscape as in Fig. 1. Also here, the results of frames of all sub-sequences at the same time and deals
reconstruction are good (Fig. 4) compared with the with occlusions. The task is to refine the initial result
quality of the input video. obtained by LIFT. Thus, the local cost function given

In all sequences, the calibration matrix was very by (7) has to be modified. Still, our biggest prob-
close to what we have estimated by using a calibra- lem remains the quality of our videos. We deinter-
tion plane, therefore we can assume that the small de-ace the images, if necessary, but the blurring effects
viations were caused by lens distortion effects. The are in many cases very strong. Lens distortion is also
small effects of projective distortion in the sequence a serious problem: without distortion correction, the
"Infrared” were eliminated by means of bundle ad- assumption of linear transformations between images
justment. does not hold, so the complete reconstruction algo-

rithm is likely to collapse. At the moment, we esti-
mate the distortion coefficients before the flight and
undistort the images, but future work includes auto-
matic recognition and correction of lens distortion.
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Figure 2: Results of reconstruction of sequettdeuse”: three views from the original sequence, result of sparsensruc-
tion given in points and straight lines and camera trajgct8elow are two snap-shots from the textured model. Note the
small number of undetected unfeasible triangles.
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Figure 4:
"Cityscape”.
dense point cloud inside of the convex hull of Harris-Points
detected only in the first view. Points outside the convex
hull are marked by red.

Results of reconstruction of sequence
We show cameras trajectory and a
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