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Abstract: Based on results of fitting linearly shaded blobs to rectangular image regions a new corner detector has been 
developed. A plane with least sum of errors squared is fit to the intensity distribution within a mask having 
four mask elements of same rectangular shape and size. Averaged intensity values in these mask elements 
allow very efficient simultaneous computation of pyramid levels and a new corner criterion at the center of 
the mask on these levels. The method is intended for real-time application and has thus been designed for 
minimal computing effort. It nicely fits into the ‘Unified Blob-edge-corner Method’ (UBM) developed 
recently. Results are given for road scenes. 

1 INTRODUCTION 

(Moravec, 1979) developed the first ‘interest 
operator’ for application in the field of autonomous 
vehicles when computing power of microprocessors 
was still very low. (Harris and Stephens, 1988) 
improved the approach by looking at local intensity 
gradients around the test points and by checking a 
local (2 x 2) ‘structural matrix’ N defined by 
products of gradient components. From the two 
eigenvalues λ of this matrix, a simple criterion for 
corners has been derived using 1 2traceN = λ + λ  in 
combination with the determinant detN. This 
approach has been the ancestor of many derivatives 
(Tomasi and Kanade,  1991; Shi and Tomasi, 1994; 
Birchfield, 1994; Haralick and Shapiro, 1993) not 
discussed here. Methods avoiding gradient 
computation are favored lately (Smith and Brady, 
1997; Drummond and Cipolla, 2002; Lowe 2004; 
Rosten and Drummond, 2004). Surveys on corner 
detection may be found in the bibliography (USC 
IRIS, Vision Bib.com, Section 6.4.4.7) and 
(http://users.fmrib.ox.ac.uk). 

The approach presented here heavily relies on 
gradients for its derivation, but ends up using only 
four add/subtract, one division and one compare 
operation for stating local nonplanarity of the 
intensity function above a threshold ErrMax; the link 
of this threshold to the frequently used trace of the 
eigenvalues in other corner detection methods is 

derived. This result is achieved by looking at a 
correlation function between four local planar 
approximations and one more global one (covering 
the same region) as a least squares fit. 

2 ROOTS OF THE NEW 
APPROACH 

(Hofmann, 2004) has used a set of four identically 
sized rectangular mask elements (mel) for 
computing edges and linearly shaded intensity 
patches in an efficient way. This approach has been 
expanded in (Dickmanns, 2007) by a prior non-
planarity check to separate out regions with strongly 
nonplanar two-dimensional distributions of intensity. 
Due to the basic regular mask structure (see bottom 
of perspective projection in Figure 1) very simple 
and efficiently computable results have been 
obtained.  

The magnitude of the errors (residues) is directly 
proportional to the difference between the sums of 
the intensity values on the diagonal and the counter-
diagonal, the sum of which yields the pixel intensity 
on the next pyramid level: (i, j = 1 or 2) 

ij 11 22 12 21| ε |  | ( ) ( ) | / 4I I I I= + − + .  (1) 

The average intensity IM0 in the mask region is 
one quarter of the sum of these two diagonal sums 
(= sum of all four mask elements) 
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Specifying a threshold level ‘ErrMax’ for this 
error value for separating almost planar from 
nonplanar intensity regions in the image allows 
identifying potential regions for corners in the 
relatively small ‘nonplanar set’. As shown in 
(Dickmanns, 2007,  Figures 5.23 and 5.26), for 
typical road traffic scenes this reduces the areas of 
interest for corner detection to only a few percent of 
the entire image; with 256 intensity levels in 
standard video images and with a gray value 
resolution of the human eye of around 60 levels 
(Darian-Smith, 1984) a threshold value around 
256/60 ≈ 4 seems reasonable. Values ranging from ~ 
2 to 8% (4 to 20 steps in gray value) have shown 
acceptable results (depending on the task).  

For filtering corner candidates out of the 
nonplanar set, an approach similar to (Haralick, 
1993) has been used, however, with a small window 
(size of the mask, see perspective projection in 
Figure 1); the (2 by 2 mel) very narrow 
neighborhood has its drawbacks. As a direct 
consequence, results obtained are susceptible to 
digitization noise when mask elements are chosen as 
original pixels. Through its principle of checking the 
corner conditions by diagonal sums, the method also 
responds to edges in the image, the orientation of 
which is close to diagonal. To separate real corners 
from (noise-corrupted) digitized edges, the method 
is applied again with modified parameters (see 
below). TraceN has to be above a level traceNmin to 
guarantee the presence of a corner; traceN turns out 

to be proportional to the square of the error ε 
(Eq.(1)) in the present approach. 

In most approaches derived from (Harris and 
Stephens, 1988), the center of the region tested for 
corners is a central pixel. In the approach taken in 
(Dickmanns, 2007), the center of the region is the 
point where all four mel meet; there is no direct 
measurement value of image intensity available at 
that point. Instead, the average value of mel-
intensities and their gradients are adopted for this 
center point. Then, the question can been asked: 
‘How do the local intensities and their gradients at 
the centers of each mel correlate to the average value 
at the center of the mask’. This can be investigated 
with a correlation function. However, since with the 
averaged planar model for the entire mask also 
averaged local variations as function of y and z are 
available, the correlation may be refined, asking for 
deviations between the global and the local planar 
models. Since the methods applied for corner 
detection correspond to curvature determination via 
the Hessian matrix, i.e. the second derivative of the 
two-dimensional intensity function, the idea is 
enhanced, whether deviations from planar relations 
are not a better way to go for testing curvature. This 
leads to a slightly modified correlation function as 
compared to (Harris and Stephens, 1988); now the 
subtracted reference is not just the average intensity 
value but the averaged planar intensity model. 

3 NEW APPROACH WITH A 
PLANAR REFERENCE MODEL 

Figure 1 shows the four intensity values at the mel 
centers (heavy black vertical arrows) and the 
averaged intensity of the mask (gray) at the point 
where all mels meet. As local intensity gradients 
(Euler approximation) the differences between the 
intensities of mels in row- (frj) and column direction 
(fci) are chosen (solid lines). From Figure 1, the 
relations for the neighborhood of the mel centers are 
obtained: 
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Figure 1: Basic rectangular mask structure for fitting the
plane with least sum of errors squared (dashed gray lines)
to the four discrete intensity values Iij shown as vertical
vectors. All four errors εij are equal in magnitude and sum
up to zero. 
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The global model for the neighborhood of the 
mask center can be written (Dickmanns, 2007) 

M M0 r c( , )I u v I f u f v= + ⋅ + ⋅  (4) 
with  ( ) ( )r r1 r2 c c1 c22;     2.f f f f f f= + = +  

The new correlation function now is 
2

i jL M,
( , ) [ ( , ) ( , )]

i j
E u v I u v I u v= −∑  (5) 

Other than in the reference mentioned, here, absolute 
intensity values are used to have the same absolute 
intensities as thresholds for corner detection; 
normalizing by average intensity and using a 
percentage threshold favors corners in darker 
regions. 

The term in square brackets in Eq.(5) is written 
for one mel-center with Eq.(3) and with the 
abbreviation ij i j M0ΔI I I= −  

{ }
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Eq.(6) can be expanded to 
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The sum S4 of the mixed u·v-terms in the center 
of the last row of Eq.(7) of all four intensity 
components (only one shown above) can be written  

r1 r2 c1 c2 r1 r2 c2 c1
4

r2 r1 c1 c2 r2 r1 c2 c1
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Summing the terms on top of each other in this 
equation yields zero so that the terms with the mixed 
factor u·v vanish in the sum of Eq.(5). This leads to a 
correlation function, the quadratic part of which has 
no cross-products. With the help of the structural 
matrix N this is written 
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The trace is 
2 2

r1 r2 c1 c2( ) ( )t raceN f f f f= − + − . (9) 

From Figure 1 it can be seen that gradient fr1 (resp. 
fc2) times distance m (n) between the corresponding 
mel-centers yields the intensity difference (I12 – I11), 
resp. (I22 – I12). Therefore, the following relation 
holds, relating the differences between the row 
gradients to those of the column gradients 

r1 c2 c1 r2

c1 c2 r1 r2

            
or      ( ) / ( ) .

f m f n f n f m
f f m n f f
⋅ + ⋅ = ⋅ + ⋅

− = ⋅ −
 (10) 

For a square mask this means that the differences of 
gradients in row and column direction are equal. 
Introducing this into Eq.(9), there follows 

2 2
r1 r2( ) [ ( / ) 1]t raceN f f m n= − ⋅ + . (11) 

This threshold criterion has thus been reduced to a 
simple function of the difference between local row- 
or column gradients, which makes sense in 
connection with the interpretation of the eigenvalues 
as measures of curvature of the intensity function. 
For m = n (square grid) there follows a factor of 2 in 
Eq.(11); circularity according to (Haralick, 1993) 
then is always q = 1 here.  

This has been achieved by referring curvature 
to the special planar fit to the intensity function in 
the mask region with least sum of errors squared. 
The planarity error ε (magnitude of all residues) has 
already been given by Eq.(1). Introducing this and 
Eq.(10) into Eq.(11) finally yields traceN as a 
function of the residue value ε of the planar fit to the 
intensity function 

2 2
2

2 2
( )16 ε .n mtraceN

m n
+

= ⋅ ⋅
⋅

 (12) 

This is the only threshold value left for adjusting the 
number of corner candidates delivered by the 
method; for m = n = 1 (mel = pixel), the factor to the 
squared residue for obtaining traceN is 32 (Eq.(12)). 
To avoid the multiplications for the comparison, of 
course, the threshold value can be adjusted directly 
to ε (ErrMax). The following result is thus obtained: 
 

All quantities necessary for corner evaluation 
are directly obtainable from the residue of the least 
squares planar fit, which in turn is nothing but the 
difference of two diagonal intensity sums in the mask 
of the method UBM. 
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4 EXPANSION TO MULTIPLE 
SCALES 

Since the base for corner detection is rather small on 
the pixel grid, an extension to several pyramid levels 
is desirable. This can be achieved with little 
additional effort since the evaluation of the least 
squares planar error according to Eq. (1) already 
requires computation of the sums of the diagonal 
elements. A quarter of the sum of these diagonal 
sums yields the pixel intensity on the next (2 x 2) 
pyramid level (1 add- and 1 shift operation). 

When multiple scales are used, the center of 
each pixel on the next scale is shifted relative to the 
center of the previous one (see Figure 2a). The right-
hand part of the figure shows that on each pyramid 
level two next-higher levels have to be computed if 
pixel centers are to be placed on top of the previous 
one; fortunately, this increased computational load 
also saves some information from the lower level to 

the next higher one if regions with sharp edges in 
row- or column direction are compared. 

Figure 3 shows a standard video field with its 
two first pyramid levels scaled back to original size 
(left). The second pyramid level already looks rather 
blurred. The three images with the nonplanar regions 
found by the simple method (difference of diagonal 
sums larger than a threshold value) are shown on the 

right-hand side. They allow the conclusion that 
pyramid level one (center) may be the best scale for 
detecting corners and for starting efficient 
recognition of objects in real-time. On level two, 
horizontal and vertical edges may be severely 
blurred, depending on the position of these edges 
relative to the boundaries of the pixels. Aliasing 
occurs at oblique edges, leading to ‘artificial 
corners’ on a local scale. 

Another peculiarity to be seen from figure 3 is 
the fact that edges close to diagonal satisfy the 
simple ‘diagonal test’; in order to eliminate those 
cases, a second test of the simple type will be 
applied, however, with the sensitive direction rotated 
by 45°. This second check needs only be applied to 
corner candidates from the first test (a few %). 

5 A SECOND TEST WITH AXES 
ROTATED BY 45° 

This means that now the primary gradients of 
intensities are chosen as diagonals in the pixel grid 
(see Figure 4); the diagonals are now horizontal and 
vertical. A measurement base of rectangular shape is 
used again to take advantage of the theoretical 
results in plane fitting. However, the gradients are 
now considered in diagonal direction. 

With the planar model fit in rotated coordinates 
this leads to ‘diagonal checks’ which now use one or 
several pixels in the same columns or rows only. 
Several arrangements are shown. On the left, single 
pixels on the lowest level may be used (dark, solid 
arrows) or the average of two pixels in row- or 
column direction (dash-dotted gray arrows). For 
these arrangements, the origin does not coincide 
with the origin on the first pyramid level; the 
advantage is that test values are further off the 
original image diagonals, for which cases the simple 
diagonal test is not able to discriminate between 
edges and corners. 
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Figure 3: Computation of two images (one shifted) on next
higher pyramid level is required, if centers of masks are to
be positioned exactly on top of each other. 

Figure 2: Original video field (top left) and two 2 x 2
pyramid images scaled to same size (left); right: candidate
regions for corners found by nonplanarity tests in image
intensity. 

100 times residue values in percent (10 000 x |residue|)
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Original video field, 768 x 287 pixels;             nonplanar regions

1st pyramid level, 383 x 143 pixels    (scaled up 2 x 2)

2nd pyramid level, 191 x 71 pixels       (scaled up 4 x 4)
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Figure 4: Rotated base (by 45°) for a second corner check 
using the model-based criterion from fitting a local plane 
to the intensity function. 
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The case shown on the right in Figure 4 has a 
pixel on pyramid level 1 as center; the average of the 
two adjacent pixels on level 0 may be taken for the 
second diagonal test; however, with less effort better 
results are obtained by using pixels on the next 
higher pyramid level. 

6 COMPARISON OF EFFORT 
NEEDED AND EXPERIMENTAL 
RESULTS 

Beside the quality of results delivered (consistency, 
completeness, localization accuracy), the effort to 
obtain them is a criterion for general acceptance of a 
method. The new method has been investigated 
extensively with special test images and with single 
real-world images from video (-fields and full 
images). Qualitative results look promising so that a 
real-time implementation for video-rate is underway. 

With respect to computing effort needed, Table 
1 shows a comparison with other proven methods; 
the corner evaluation is done for every second pixel 
(mr in total) in every second row (nc in total), 
yielding mr·nc·0.25 locations. This is considered a 
fair comparison to the pyramid concept in the new 
method. The pyramid stages are a byproduct needing 
just storage and only little additional computation 
(see Eq.(2) with a single pixel as mask element). 
With the size reduction by one quarter for each 
stage, three stages need (1 + 0.25 + 0.0625) = 1.3125 
times the operations per pixel. Assuming 15% 
additional effort for removing corner candidates 
stemming from nearly diagonal edges from the first 
test (~ 5% of image locations and 3 times the basic 
effort) requires another factor of 1.15 for the total 
operations needed (~ 1.51 times the operations per 
pixel, see square brackets in last column). 
 

Table 1: Comparison of mathematical operations needed 
with several corner extraction methods. 

Since reusing intermediate results has been 
taken into account computing the effort needed, 
applying the known methods to every pixel location 
requires only about doubling the numbers given. For 
achieving the same localization accuracy, the new 
method would have to start from twice the image 
resolution, and the numbers in the last column have 
to be multiplied by four. This would cut the ratio 
between former and the last column in half, leaving 
still some advantage to be expected for the new 
method. However, since real-time visual perception 
runs at 25 (33⅓) Hz with smoothing by recursive 
estimation, this increased effort may not be 
necessary. 

Of course, these numbers can only yield a 
rough estimate of computing times required by full 
algorithms, since hardware capabilities and 
programming proficiency also play an important role 
for the results finally achieved. Future has to show 
actual results. 

Figure 5 shows results with two diagonal tests 
but without consistent pixel centering on the 
different pyramid levels. From the figure and many 
other examples investigated it has been concluded 
that the effort for precise superposition of mask 
centers may be desirable for smooth tracking in real 
time; an approach with two images on each higher 
pyramid level, one shifted by (1, 1) relative to the 
other (see Fig. 2), is under study and looks 
promising. 

Note that the approach requires no computation 
of gradients at all. Just the sums of two pixels on the 
diagonal have to be computed in the framework of 
the fit of an intensity plane with least sum of errors 
squared. The difference not only yields the residues 
ε of the planar fit, but its square is also directly 
proportional to the trace of the structural matrix, i.e. 
the sum of the eigenvalues (Eq.(12)). 

The use of two rotated planar fits allows 
lowering the threshold traceN for achieving 
detection of fainter real corners. If the threshold is 
set too high, candidates resulting from real corners 
but with low differences in intensity are lost. The 
second rotated planar fit eliminates, or at least 
strongly reduces, the number of candidates 
stemming from noise-corrupted edges. 

For real-time applications it is not so important 
to detect all corners (also unreliable ones) but to 
obtain sufficiently many consistent candidates for 
tracking at high image rates. Edges are picked up by 
separate operators anyway. Figure 5 shows that 
some corner candidates are obtained on single 
pyramid levels only, while others are detected on 
two or even three levels; of course, these latter ones 
are those best suited for tracking. 
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7 CONCLUSIONS 

The results achieved seem to support M. Planck’s 
claimed aphorism: “There is nothing more practical 
than a good theory”. A least squares plane fit to the 
averaged intensity surface in the area of four 
identically sized elements of a rectangular mask 
yields four residues of equal magnitude and opposite 
signs on the diagonals. By looking at the correlation 
between the averaged planar intensity function and 
the local ones at the four ‘measurement points’ (Iij), 
theoretical results allow easy judgment of curvature 
effects based on the eigenvalues of the structural 
matrix with minimal computational efforts. Figure 6 
visualizes the results obtained for saddle-point-like 
corners including the curvature effects 
(qualitatively), represented by the eigenvalues of the 
structural matrix. (Sharp intensity spikes, of course, 
tend to be lost by averaging; they are picked only 
with sufficiently high spatial resolution in the 
original image.) 

Optimal scales (or combinations of scales) still 
have to be determined from image sequences with 
the real-time computing power actually available; 
the results given look promising. Through the simple 
nonplanarity test upfront, further corner tests may be 
more involved since they have to be applied to a 
small fraction of the image data only that passed the 
first test. In standard road scenes, a reduction of one 
to two orders of magnitude is usual. 
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Figure 6: Corner candidates from two rotated ‘diagonal
tests’ on three pyramid levels (centers not adjusted): ‘o’ =
level 0, ‘+’ = level 1, triangles = level 2. The number of
corner candidates is down to about 1/3 by the 2nd  test. 

Figure 5: Visualization of the curvature components of the
intensity function relative to the interpolating plane
determined by the new corner detector (dotted curves).  
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