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Abstract: In this paper we present a rule optimizing technique motivated by the psychological studies of human 
concept learning. The technique allows for reasoning to happen at both higher levels of abstraction and 
lower level of detail in order to optimize the rule set. Information stored at the higher level allows for 
optimizing processes such as rule splitting, merging and deleting, while the information stored at the lower 
level allows for determining the attribute relevance for a particular rule.  

1 INTRODUCTION 

During the rule optimization process a trade-off 
usually needs to be made between the 
misclassification rate (MR), and coverage rate (CR) 
and generalization power (GP). MR corresponds to 
the number of incorrectly classified instances and it 
should be minimized. CR is the number of instances 
that are captured by the rule set and this should be 
maximized. Good GP is achieved by simplifying the 
rules. The trade-off occurs especially when the data 
set is characterized by continuous attributes where a 
valid constraint on the attribute range needs to be 
determined for a particular rule. Increasing the 
attribute range usually leads to the increase in CR 
but at the cost of an increase in MR. Similarly if the 
rules are too general they may lack the specificity to 
distinguish some domain characteristics and hence 
the MR would increase.  

In this paper we extend the rule optimizing 
method presented in (Hadzic & Dillon, 2005; Hadzic 
& Dillon, 2007). The method was used to optimize 
the rules learned by a neural network and in this 
work it is extended to be applicable to rules obtained 
using any knowledge learning methods. The 
extension allows reasoning to happen at both higher 
level of abstraction and lower level of detail. The 
information about the relationships between the 
class attribute and the input attributes will be 
available for determining the relevance of rule 
attributes at any stage of the rule optimizing (RO) 
process. The attributes irrelevant for a particular rule 
can then be deleted. Furthermore, attributes 
previously found as irrelevant can be re-introduced 

if found relevant at a later stage in the process. The 
proposed method is evaluated on the rules learned 
from publicly available real world datasets and the 
results indicate the effectiveness of the method.  

2 MOTIVATION  

Concept or category formation has been studied 
extensively in the psychology area. Generally it 
refers to the process by which a person learns to sort 
specific observations into general rules or classes. It 
allows one to respond to events in terms of their 
class membership rather than uniqueness (Bruner et 
al., 1956). This process is the elementary form by 
which humans adjust to their environment. Relevant 
attributes need to be identified and a rule has to be 
learned, developed or applied for formulating a 
concept (Sestito & Dillon, 1994). Human subjects 
consistently seek confirming information by actively 
searching they environment for appropriate 
examples which can confirm or modify the newly 
discovered concepts (Kristal 1981; Pollio 1974, 
sestito & Dillon 1994). Hence, there exists one level 
at which the concepts or categories have been 
formed and there is another level where the 
observations are used for confirming or adjusting the 
learned concepts and their relationships (Rosch 
1977). When a formed belief appears to be 
contradictory for some observations one may go into 
thinking at the lower level of detail to investigate the 
constituents of that belief and what example 
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observations formed it. An update of the belief can 
then occur whereby some pre-conditions are added 
or removed from the constituents of that particular 
belief. Re-introducing new features previously found 
as irrelevant or removing the irrelevant one, can 
occur quite frequently while learning occurs and 
until some reliable belief is formed.  

Being able to perform this type of task is 
desirable for the rule optimizing process. The higher 
level of abstraction would correspond to the rules 
with the attribute constraints and the predicting class 
values, while at the lower level the relationships 
between attribute values and the occurring class 
values are stored. This information can be used to 
determine the relevance of attributes in predicting of 
the class value that a particular rule implies. 
Integrating the feature selection criterion with the 
rule optimizing stage is advantageous since initial 
bad choices made about the attribute relevance could 
be corrected as learning proceeds. 

3 METHOD DESCRIPTION 

The method takes as input a file describing the rules 
detected by a particular classifier and the domain 
dataset from which the rules were learned. The rules 
are represented in a graph structure (GS) where each 
rule has a set of attribute constraints and points to 
one or more target values. The GS contains the high 
level information about the domain at hand in form 
of rules and is used for reasoning at the higher level 
of abstraction.  

3.1 Graph Structure Formation 

In order for the GS to be formed two files are read, 
one describing the rules detected by a classifier and 
the other containing the total set of instances from 
which the rules were learned. The rules are in form 
of attribute constraints while the implying class of 
each rule is ignored. The reason is that during the 
whole process of RO, the implying class values can 
change as some clusters will be merged or split. 
Rather the domain dataset is read according to which 
the weighted links between the rules and class 
values are set. The implying class value of a rule 
becomes the highest weighted link to a particular 
class value node. This class value has most 
frequently occurred in the instances which were 
captured by the rule. An example of the GS after a 
dataset is read in is shown in Figure 1. The implying 
class of Rule1 and Rule 3 would be class value 1 
while for Rule2 it is class value 2. Even though it is 

not shown in the figure, each rule has a set of 
attribute constraints associated with it, which we 
refer to as the weight vector (WV) of that rule. The 
set of attribute values occurring in the instance being 
processed are referred to as the input vector (IV). 
Hence, to classify an instance we match the IV 
against the WVs of the available rules. A constraint 
for a continuous attribute is given in terms of a 
lower range (lr) and an upper range (ur) indicating 
the set of allowed attribute values.  
 

 Rule1

Rule2

Rule3

Class

Value2

Value1

 
Figure 1: Example graph structure from high level. 

3.2 Storing Lower Level Information  

Previous sub-section has explained the GS formation 
at the top level which is used mainly for determining 
the implying class values of the rules.  In this section 
we discuss how lower level instance information is 
stored for each rule. This low level information is 
necessary for the reasoning at the lower level.  

As previously mentioned each rule has a set of 
attribute constraints associated with it, which are 
stored in its WV. For each of the attributes in the WV 
we collect the occurring attribute values in the 
instances that were captured by that particular rule. 
Hence each attribute has a value list (VL) associated 
with it which stores all the occurring attribute 
values. Furthermore, each of the value objects in the 
list has a set of weighted links to the occurring class 
values in the instance where that particular value 
occurred. This is necessary for the feature selection 
process which will be explained later.  For a 
continuous attributes there could be many occurring 
values and values close to one another are merged 
into one value object when the difference between 
the values is less than a chosen merge value 
threshold. Hence the numerical values stored in a list 
of a continuous attribute will be ordered so that a 
new value is always stored in an appropriate place 
and the merging can occur if necessary.  Figure 2 
illustrates how this low level information is stored 
for a rule that consists of two continuous attributes A 
and B. The attribute A has the lower range (lr) and 
the upper range (ur) in between which the values v1, 
v2 and v3 occur. The ‘lr’ of A is equal to the value 
of v1 or the ‘lr; of v1 if v1 is a merged value object, 

BIOSIGNALS 2008 - International Conference on Bio-inspired Systems and Signal Processing

32



 

while the ‘ur’ of A is equal to the value of v3 or the 
‘ur’ of v3 if v3 is a merged value object.  
 

 
A B

l r u r

v 1 v 2 v 3 v 1 v 2

C l a s s

V a l u e 2V a l u e 1

l r u r

 
Figure 2: Storing low level instance information. 

3.3 Reasoning at the Higher Level 

Once the implying classes are set for each of the 
rules the dataset is read in again in order to check for 
any misclassifications and update the rule set 
accordingly. When a rule captures an instance that 
has a different class value than the implication of the 
rule, a child rule will be created in order to isolate 
the characteristic of the rule causing the 
misclassification. The attribute constraints of the 
parent and child rule are updated so that they are 
exclusive from one another. The child attribute 
constraint ranges from the attribute value of the 
instance to the range limit of the parent rule to which 
the input attribute value was closest to. The parent 
rule adopts the remaining range as the constraint for 
the attribute at hand.   

After the whole dataset is read in there could be 
many child rules created from a parent rule. Some 
child rules may be merged together first but 
explanation of this is to come later once we discuss 
the process of rule similarity comparison and 
merging. If a child rule points to other target values 
with high confidence it become a new rule and this 
corresponds to the process of rule splitting, since the 
parent rule has been modified to exclude the child 
rule which is now a rule on its own. On the other 
hand if the child rule still mainly points to the 
implying class value of the parent rule it is merged 
back into the parent rule (if they are still similar 
enough). An example of a rule which has been 
modified to contain a few children due to the 
misclassifications is displayed in Figure 3.  The 
reasoning explained would merge ‘Child3’ back into 
the parent rule since it points to the implying class of 
the parent rule with high weight. This is assuming 
that they are still similar enough. On the other hand 
Child1 and Child2 would become new rules since 
they more frequently capture the instances where the 
class value is different to the implying class of the 

parent rule. Furthermore if they are similar enough 
they would be merged into one rule. 
 

 

Rule

Child1

Child2

Child3

Class
Value2

Value1

 
Figure 3: Example of rule splitting. 

In order to measure the similarity among the 
rules we make use of a modified Euclidean distance 
(ED) measure. This measure is also used to 
determine which rule captures a presented instance. 
An instance is always assigned to the rule with the 
smallest ED to the IV. Even though one would 
expect the ED to be equal to 0 when classifying 
instances this may not always be the case throughout 
the RO process.  The ED calculation is calculated 
according to the difference in the allowed range 
values of a particular attribute. The way that ED is 
calculated is what determines the similarity among 
rules, and therefore we first overview the ED 
calculation and then proceed onto explaining the 
merging of rules that may occur in the whole RO 
process. 

3.3.1 ED Calculation  

For a continuous attribute ai occurring at the position 
i of WV of rule R, let ‘ailr’ denote the lower range, 
‘aiur’ the upper range, and ‘aiv’ the initial value if 
the ranges of ai are not set.  The value from the i-th 
attribute of IV will be denotes as ivai. The i-th term 
of the ED calculation between IV and WV of R for 
continuous attributes is: 
 
- case 1: ai ranges are not set 

• 0 iff ivai = aiv 
• ivai - aiv if ivai > aiv 
• aiv - ivai if  ivai < aiv 

 - case 2: ai ranges are set  
• 0 iff ivai ≥ ailr and ivai ≤ aiur 
• ailr - ivai if ivai < ailr   
• ivai - aiur if ivai > aiur 
 

The input merge threshold used for continuous 
attribute (MT) also needs to be set with respect to the 
number of continuous attributes in the set. It 
corresponds to the maximum allowed sum of the 
range differences among the WV and IV so that the 
rule would capture the instance at hand.   
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When calculating the ED for the purpose of 
merging similar rules there are four possibilities that 
need to be accounted with respect to the ranges 
being set in the rule attributes, and the ED 
calculation is adjusted. For rule R1 let r1ai denote the 
attribute occurring at the position i of WV of rule R1, 
let ‘r1ailr’ denote the lower range, ‘r1aiur’ the upper 
range, and ‘r1aiv’ the initial value if the ranges of r1ai 
are not set.  Similarly for rule R2 let r2ai denote the 
attribute occurring at the position i of WV of rule R2, 
let ‘r2ailr’ denote the lower range, ‘r2aiur’ the upper 
range, and ‘r2aiv’ the initial value if the ranges of r2ai 
are not set. The i-th term of the ED calculation 
between the WV of R1 and WV of R2 for continuous 
attributes is: 

 
- case 1: both r1ai and r2ai ranges are not set 

• 0 iff r1aiv = r2aiv 
• r1aiv - r2aiv if r1aiv > r2aiv  
• r2aiv - r1aiv if  r1aiv < r2aiv  

 - case 2: r1ai ranges are set and r2ai ranges are not set   
• 0 iff r2aiv ≥ r1ailr and r2aiv ≤ r1aiur 
• r1ailr - r2aiv if r2aiv < r1ailr  
• r2aiv – r1aiur if r2aiv > r1aiur 

- case 3:  r1ai ranges are not set and r2ai ranges are set 
• 0 iff r1aiv ≥ r2ailr and r1aiv ≤ r2aiur 
• r2ailr – r1aiv if r1aiv < r1ailr  
• r1aiv – r2aiur if r1aiv > r2aiur 

- case 4: both r1ai and r2ai ranges are set 
• 0 iff r1ailr ≥ r2ailr and r1aiur ≤ r2aiur 
• 0 iff r2ailr  ≥ r1ailr and r2aiur ≤ r1aiur 
• min(r1ailr - r2ailr, r1aiur - r2aiur)   iff r1ailr > 

r2ailr and r1aiur > r2aiur  
• min(r2ailr - r1ailr, r2aiur -r1aiur  iff r2ailr > 

r1ailr and r2aiur > r1aiur  
• (r1ailr – r2aiur) iff r1ailr > r2aiur 
• (r2ailr – r1aiur) iff r2ailr > r1aiur 

 
For a rule to capture an instance or for it to be 

considered sufficiently similar to another rule the 
ED would need to be smaller than the MT threshold.   

3.3.2 Rule Merging  

As mentioned at the start of Section 3.3 the child 
rules may be created when a particular rule captures 
an instance that has a different class value than the 
implying class value of that rule (i.e. 
misclassification occurs). After the whole file is read 
in the child rules that have the same implying class 
values are merged together if the ED between them 
is below the MT. Thereafter the child rules either 
become a new rule or are merged back into the 
parent rule, as discussed earlier. Once all the child 

rules have been validated the merging can occur 
among the new rule set. Hence if any of the rules 
have the same implying class value and the ED 
between them is below the MT the rules will be 
merged together and the attribute constraints 
updated. After this process the file is read in again 
and any of the rules that do not capture any instances 
are deleted form the rule set.   

3.4 Reasoning at the Lower Level 

Once the rules have undergone the process of 
splitting and merging, the relevance of rule attributes 
should be calculated as some attributes may have 
lost their relevance through merging of two or more 
rules. Other attributes may have become relevant as 
a more specific distinguishing factor of a new rule 
which resulted from splitting of an original rule. For 
this purpose we make use of the symmetrical tau 
(Zhou & Dillon, 1991) feature selection criterion 
whose calculation is made possible by the 
information stored at the lower level of the graph 
structure. We start this section by discussing the 
properties of the symmetrical tau and then proceed 
onto explaining how the relevance cut-off is 
determined and the issue of choosing the merge 
value threshold for the value objects in a value list.  

3.4.1 Feature Selection Criterion 

Symmetrical Tau (τ) (Zhou & Dillon, 1991) is a 
statistical measure for the capability of an attribute 
in predicting the class of another attribute. The τ 
measure is calculated using a contingency table 
which is used in statistical area to record and analyze 
the relationship between two or more variables. If 
there are I rows and J columns in the table, the 
probability that an individual belongs to row 
category i and column category j is represented as 
P(ij), and P(i+) and P(+j) are the marginal 
probabilities in row category i and column category j 
respectively, the Symmetrical Tau measure is 
defined as (Zhou & Dillon, 1991): 
   

 
For the purpose of feature selection problem one 

criteria in the contingency table could be viewed as 
an attribute and the other as the target class that 
needs to be predicted. In our case the information 
contained in a contingency table between the rule 
attributes and the class attributes is stored at the 
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lower level of the graph structure as explained in 
Section 3.2. The τ measure was used as a filter 
approach for the feature subset selection problem in 
(Hadzic & Dillon, 2006).  In the current work its 
capability of measuring the sequential variation of 
an attribute’s predictive capability is exploited. 

3.4.2 Determining Relevance Cut-off 

For each of the rules that are triggered for multiple 
class values we calculate the τ criterion and rank the 
rule attributes according to the decreasing τ value. 
The relevance cut-off point is determined as the 
point in the ranking where the τ value of an attribute 
is less than half of the previous attribute’s τ value. 
All the attributes below the cut-off point are 
considered irrelevant for that particular rule and are 
removed from the rule’s WV. On the other hand, if 
some of the attributes above the relevance cut-off 
point were previously excluded from the WV of the 
rule, they are now re-introduced since their τ value 
indicates their relevance for the rule at hand.  

As mentioned in Section 3.2 when the occurring 
values stored in the value list of an attribute are 
close together they are merged and the new value 
object represents a range of values. The merge value 
threshold chosen determines when the difference 
among the value objects is sufficiently small for 
merging to occur. This is important for appropriate τ 
calculation. Ideally a good merge value threshold 
will be picked with respect to the value distribution 
of that particular attribute. However, this 
information is not always available and in our 
approach we pick a general merge threshold of 
around 0.02. This has some implications for the 
calculated τ value since when the categories of an 
attribute A are increased more is known about 
attribute A and the error in predicting attribute B 
may decrease. Hence, if the merge value threshold is 
too large many attributes will be considered as 
irrelevant since all the occurring values could be 
merged into one value object which points to many 
target objects and this aspect would indicate no 
distinguishing property of the attribute. On the other 
hand, if it is too small many value objects may exist 
which may wrongly indicate that the attribute has 
high relevance in predicting the class attribute. 

4 METHOD EVALUATION 

The proposed method was evaluated on two rule sets 
learned from publicly available real world datasets 

(Blake et al., 1998). The rule optimizing process was 
run for 10 iterations for each of the tested domains.  

The first set of rules we consider has been 
learned from the ‘Iris’ dataset using the continuous 
self-organizing map (Hadzic & Dillon, 2005) so that 
we can compare the improvement of the extension to 
the rule optimizing method. The merge cluster 
threshold MT was set to 0.1 and the merge value 
threshold MVT for attribute values was set to 0.02. 
The rules obtained using the CSOM technique 
(Hadzic & Dillon, 2005) are displayed in Figure 4. 
When the rules obtained after retraining were taken 
as input by our proposed rule optimization method 
the resulting rule set was different in only one rule. 
The rule 4 was further simplified to exclude the 
attribute constraint from sepal-width and the new 
attribute constraint was only that petal-width has to 
be between the values of 0.667 and 1.0 for the class 
value of Iris-virginica. Hence the process was able to 
detect another attribute that has become irrelevant 
during the RO process. The predictive accuracy 
remained the same.   

 

 
Figure 4: Iris rule set as obtained by using the traditional 
rule optimizing technique. 

With respect to using CSOM to extract rules 
from the ‘Iris’ domain we have performed another 
experiment. The initial rules extracted by CSOM 
without the network pruning and retraining of the 
network were optimized. When network pruning 
occurs the network should be re-trained for new 
abstractions to be properly formed. In this 
experiment we wanted to see how the RO technique 
performs by itself without any network pruning or 
retraining. 
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Rules Implying class 
0.33 < PL < 0.678 
0.375 < PW < 0.792 

Iris-versicolor 

0.208 < SW < 0.542 
0.627 < PL < 0.847 
0.54 < PW < 1.0 

Iris-virginica 

0.778 < SL < 1.0 
0.25 < SW < 0.75 
0.814 < PL < 1.0 
0.625 < PW < 0.917 

Iris-virginica 

0.0 < SL < 0.417 
0.41 < SW < 0.917 
0.0 < PL < 0.153 
0.0 < PW < 0.208 

Iris-setosa 

Figure 5: Optimized initial rules extracted by CSOM 
Notation: SL – sepal_length, SW – sepal_width, PL – 
petal _length, PW – petal_width. 

By applying the RO technique the rule set was 
reduced to four rules as displayed in Figure 5. 
However, not as many attributes were removed from 
each of the rules and two instances were 
misclassified. Hence, performing network pruning 
and retraining prior to RO may achieve a more 
optimal rule set. However, in the cases where 
retraining the network may be too expensive the RO 
technique can be applied by itself. In fact compared 
to the initial set of rules detected by CSOM, which 
consisted of nine rules with three misclassified 
instances this is still a significant improvement.  

The second set of experiments was performed on 
the complex ‘Sonar’ dataset which consists of sixty 
continuous attributes. The examples are classified 
into two groups one identified as rocks (R) and the 
second identified as metal cylinders (M). The 
learned decision tree by the C4 algorithm (Quinlan, 
1990) consisted of 18 rules with the predictive 
accuracy equal to 65.1%. These rules were taken as 
input in our RO technique and the MT was set to 0.2 
while the MVT was set to 0.0005. The optimized rule 
set consisted of only two rules i.e 0.0 < a11 <= 0.197 

 R and 0.197 < a11 <= 1.0  M. When tested on 
an unseen dataset the predictive accuracy was 82.2 
% i.e. 11 instances were misclassified from the 
available 62. Hence the RO process has again proved 
useful in simplifying the rules set without the cost of 
increasing the number of misclassified instances. 

5 CONCLUSIONS 

This paper has presented a rule optimizing technique 
motivated by the psychological studies of human 
concept information. The capability to swap from 
the higher level reasoning to the reasoning at the 
lower instance level has indeed proven useful for 

determining the relevance of attributes throughout 
the rule optimizing process. The method is 
applicable to the optimization of rules obtained from 
any data mining techniques. The evaluation of the 
method on the rules learned from real world data by 
different classifier methods has shown its 
effectiveness in optimizing the rule set. As a future 
work method needs to be extended so that 
categorical attributes can be handled as well. 
Furthermore, it would be interesting to explore the 
possibilities of the rule optimizing method in 
becoming a stand-alone machine learning method 
itself. 

REFERENCES 

Blake, C., Keogh, E.  and Merz, C.J., 1998. UCI 
Repository of Machine Learning Databases, Irvine, 
CA: University of California, Department of 
Information and Computer Science., 1998. 
[http://www.ics.uci.edu/~mlearn/MLRepository.html]. 

Bruner, J.S., Goodnow, J.J., and Austin, G.A., 2001. A 
study of thinking, John Wiley & Sons, Inc., New York, 
1956. 

Hadzic, F. & Dillon, T.S., 2005. “CSOM: Self Organizing 
Map for Continuous Data”, 3rd Int’l IEEE Conf. on 
Industrial Informatics, 10-12 August, Perth. 

Hadzic, F. and Dillon, T.S., 2006 “Using the Symmetrical 
Tau (τ ) Criterion for Feature Selection in Decision 
Tree and Neural Network Learning”,  2nd Workshop on 
Feature Selection for Data Mining: Interfacing 
Machine Learning and Statistics,  in conj. with SIAM 
Int’l Conf. on Data Mining, Bethesda, 2006.  

Hadzic, F. & Dillon, T.S., 2007. “CSOM for Mixed Data 
Types”, 4th Int’l Symposium on Neural Networks, June 
3-7, Nanjing, China. 

Kristal, L., ed. 1981, ABC of Psychology, Michael Joseph, 
London, pp. 56-57. 

Pollio, H.R., 1974, The psychology of Symbolic Activity, 
Addison-Wesley, Reading, Massachusetts. 

Quinlan, J.R., 1990. “Probabilistic Decision Trees”, 
Machine Learning: An Artificial Intelligence 
Approach Volume 4, Kadratoff, Y & Michalski, R., 
Morgan Kaufmann Publishers, Inc., San Mateo, 
California. 

Roch, E. 1977, “Classification of real-world objects: 
Origins and representations in cognition”, in Thinking: 
Readings in Cognitive Science, eds P.N. Johnson-
Laird & P.C. Wason, Cambridge University Press, 
Cambridge, pp. 212-222. 

Sestito, S. and Dillon, S.T., 1994. Automated Knowledge 
Acquisition. Prentice Hall of Australia Pty Ltd, 
Sydney. 

Zhou, X., and Dillon, T.S., 1991. “A statistical-heuristic 
feature selection criterion for decision tree induction”, 
IEEE Transactions on Pattern Analysis and Machine 
Intelligence, vol. 13, no.8, August, pp 834-841. 

BIOSIGNALS 2008 - International Conference on Bio-inspired Systems and Signal Processing

36


