
SHORT-TERM CEPSTRAL ANALYSIS APPLIED TO VOCAL 
FOLD EDEMA DETECTION  

Silvana Cunha Costa 
Federal Center of Techological Education of Paraíba-CEFET-PB, Federal University of  Campina Grande-UFCG  

Av.1º de Maio, 720, João Pessoa, Paraíba, Brazil  

Benedito G. Aguiar Neto 
Federal University of Campina Grande-UFCG, Intitute of Technology of Washington 

University of Washington 
Tacoma, USA 

Joseana Macêdo Fechine 
Federal University of Campina Grande-UFCG, Campina Grande,Paraíba, Brazil  

Menaka Muppa 
Intitute of Technology of Washington -University of Washington Tacoma, USA 

Keywords: Acoustic voice analysis, speech processing, acoustic features, cepstral parameters, disordered voices, 
speech pathology. 

Abstract: Digital signal processing techniques have been used to perform an acoustic analysis for vocal quality 
assessment due to the simplicity and the non-invasive nature of the measurement procedures. Their 
employment is of special interest, as they can provide an objective diagnosis of pathological voices, and 
may be used as complementary tool in laryngoscope exams. The acoustic modeling of pathological voices is 
very important to discriminate normal and pathological voices. The degree of reliability and effectiveness of 
the discriminating process depends on the appropriate acoustic feature extraction. This paper aims at 
specifying and evaluating the acoustic features for vocal fold edema through a parametric modeling 
approach based on the resonant structure of the human speech production mechanism, and a nonparametric 
approach related to human auditory perception system. For this purpose, LPC and LPC-based cepstral 
coefficients, and mel-frequency cepstral coefficients are used. A vector-quantizing-trained distance 
classifier is used in the discrimination process.  

1 INTRODUCTION 

A great range of diseases causes modifications in the 
voice. These are related to the vocal tract 
pathologies, as well as many others which are 
provoked by neuro-degenerative diseases (Davis, 
1979; Quek et al, 2002).  

Voice quality of patients have been evaluated by 
several techniques, most of which are based on 
listening to the patient's voice and on the inspection 

of the vocal folds through laryngoscopy. The first 
method is subjective, which could provide different 
results, depending of the professional experience.  
The second one has the advantage of being more 
accurate, but it requires high cost tools such as 
special light sources and specialized video-camera 
equipments. In addition, it is considered an invasive 
technique, which may cause discomfort to the 
patients 

Non-invasive techniques based on acoustic 
analysis of the speech signal can be used to 
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diagnosis and evaluation of medical treatments of 
diseases which provoke vocal disorders. Moreover, 
acoustic analysis can be employed to the precocious 
detection of pathologies in the vocal folds or the 
evaluation of the vocal quality of patients subject to 
surgical processes in the vocal folds.  

Some researchers have dedicated their efforts for 
obtaining efficient methods to discriminate normal 
and pathological voices using acoustic analysis 
(Godino-Llorente et al, 2006; Shama et al, 2007; 
Murphy and Akande, 2007; Dibazar et al, 2006; 
Umapathy et al, 2005). Those methods have 
employed techniques based on the estimation of 
glottal noise, feature extraction from decomposed 
time-frequency parameters, linear prediction 
modeling-based measures and measures based on 
auditory modeling. However, there is limited 
agreement on which parameters are more suitable 
for acoustic modeling of particular pathology. An 
efficient and reliable acoustic modeling of the 
pathology is necessary, when pattern classification 
of vocal disorders is being used. Thus, the vector of 
acoustic characteristics of the pathological voice 
should be carefully chosen to be quite 
representative. 

In this research, techniques of digital signal 
processing are used to carry out an acoustic analysis 
of pathological voice. The study is focused on the 
case of voice disorders provoked by edemas in the 
vocal folds, using the evaluation of following 
features: LPC coefficients, LPC-based cepstral 
coefficients and mel-frequency cepstral coefficients. 
The irregularities in the features of the normal voice 
in comparison with the pathological voice are 
observed and analyzed. A vector quantization 
technique (VQ) was used associated with a 
distortion measurement to classify the speech signal. 
The VQ was trained with voices affected by the 
considered pathology. 

The results can be used in order to build an 
effective method basis for detecting pathological 
voices. The outline of the paper is as follows: basis 
for an acoustic modeling of disordered voices, 
database and methods, results and conclusions.  

2 ACOUSTIC MODELING BASIS 

Feature extraction of speech signals is frequently 
employed to acoustic evaluation of pathological 
voices. Specific statistical parameters based on the 
linear model of speech production can be used as 
significant acoustic features. It is known that the 
voice signal is produced as a result of glottal pulses 

or a signal varying randomly, like noise excitation 
filtered by the vocal tract (Rabiner and Schafer, 
1978). 

Vocal fold pathology such as vocal fold edema 
affects the vocal fold or other components of the 
vibratory system, producing an irregular vibration. 
In fact, it is widely known that pathological vocal 
folds can present variation in the cycle of the 
vibratory movement because of changes in the vocal 
folds elasticity. This occurs due to incomplete 
closure of the vocal folds in all glottal cycles. The 
changes in the vocal folds morphology can provoke 
significant modifications to the acoustic signal. 
Although the pathology is located in the vibratory 
system it can affect the regular articulatory 
movement during the speech production. 
Furthermore, components of the resonating system 
can be affected, resulting in changes of the vocal 
shape, producing irregularities on the spectral 
properties. A modification in the fundamental 
frequency and on the spectral shape can be observed 
as a result of the vocal disorders (Godino-Llorente et 
al, 2006).  

The understanding of changes in the acoustic 
features involving excitation and resonance effects is 
the key to an efficient disordered voices modeling. 
The speech signal contains information about both 
vocal tract and excitation source. 

The handle of the variability present in the 
speech signal is one of the main challenges of 
acoustic modeling. The variability arises from the 
dynamic nature of the vocal tract. Thus, speech is 
dynamic or time-varying and the modeling needs to 
consider two aspects: 1) the explicit temporal 
dependencies of the pathological voice, and 2) the 
estimation of the features have to be based on 
statistical short-time analysis. The model has to 
represent the irregularities behaviour introduced by 
the pathology itself.  

 Two parametric methods based on the linear 
model for the human speech production mechanism 
approaches have been considered on the literature so 
far: 1) linear predictive coding (LPC) analysis; 2) 
LPC-based cepstral analysis  (Godino-Llorente et al, 
2006, Marinaki et al, 2004, Parsa and Jamieson, 
2001; Gavidia-Ceballos, 1996). 

The LPC estimates each speech sample based on 
a linear combination of the p previous samples; a 
larger p enables a more accurate model. It provides a 
set of speech parameters that represent the vocal 
tract (Rabiner and Schafer, 1978). It is expected that 
any change in the anatomical structure of the vocal 
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tract, because of pathology, affects the LPC 
coefficients.  A linear predictor with p prediction 
coefficients, αk is defined as a system whose output 
is 
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  In the LPC-based cepstral analysis is considered 
that speech signal is the result of convolving 
excitation with vocal tract sample response by 
cepstral analysis, and it is possible to separate the 
two components. One step in cepstral deconvolution 
transforms a product of two spectra into a sum of 
two signals. In practice, the complex cepstrum is not 
needed. The real cepstrum suffices, obtained with 
digital algorithm as follows (Rabiner and Schafer, 
1978; O’Shaugnessy, 2000): 
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Cepstral coefficients can be computed 

recursively from the linear predictor coefficients, αi, 
by means of (Furui, 1981): 
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Other authors have investigated the use of mel-

frequency cepstral (MFC) analysis which is a 
measure based on the human auditory perception 
system (O’Shaughnessy, 2000). A nonparametric 
MFC-based approach can be derived from fast 
Fourier transform (FFT-MFC) (Godino-Llorente et 
al, 2006, Dibazar et al, 2006,  Murphy and Akande, 
2007, Bou-ghazale and Hansen, 2000). 

Cepstrum analysis is based on the human 
auditory perception system, which incorporates 
some aspects of audition. This method provides a 
logarithm relationship between the real and the 
perceived frequency scales (mels). Mel-frequency 
cepstral coefficients c(n) are calculated by means of 
(O’Shaughnessy, 2000): 
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where M is the number of mel bands in the mel scale 
and S(k) is given by 
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where Wk(j) is the triangular weighting windows 
associated with the mel-scales, and X(j) is the NFFT-
point magnitude spectrum (Godino-Llorente et al, 
2006, O’Shaughnessy, 2000). 

A common model for the relationship between 
frequencies in mel and linear scales is as follows 
(O’Shaughnessy, 2000): 
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where Flinear  is the linear frequency (in Hertz), and 
Fmel is the perceived frequency (in Mel). 

3 DATABASE AND METHODS 

The database used in this work was recorded by the 
Massachusetts Eye and Ear Infirmary (MEEI) Voice 
and Speech Lab (Kay Elemetrics, 1994). It includes 
more than 1,400 voice samples (i.e., sustained /a/) 
from approximately 700 subjects. The database 
including samples from patients with a wide variety 
of voice disorders, was collected in a controlled 
environment with the following features: low-noise-
level, constant microphone distance, direct digital 
16-bit sampling and robust signal conditioning. 
Sampling rates of 25 kHz  (pathological voices)  or  
50 kHz (normal voices) were employed. The normal 
voice signals were downsampled to 25 kHz, to 
maintain the same sample frequency to all signals. 

The selected cases of people presenting edemas 
in the vocal folds are: 33 women (17 to 85 years old) 
and 11 men (23 to 63 years old), most of them (32) 
with bilateral edema. The database of normal voices 
is composed of 53 patients - 21 male (26 to 59 years 
old), and 32 female (22 to 52 years old). We also 
used 23 signals, under other pathologies, such as 
cysts, nodules and paralysis (07 male and 16 female 
voices).   

First, a 20 ms Hamming window with an overlap 
of 50% is employed to obtain frames from the 
dataset for the short-term voice analysis.  

A Vector Quantization technique is employed in 
the classification process, associated with a 
distortion measurement to discriminate among 
voices affected by vocal fold edema, normal voices 
and voices presenting other vocal fold pathologies. 
The Vector Quantization is carried out individually 
for each feature using just voices under vocal fold 
edema. Thus, different VQ-trained distance 
classifiers are obtained by the discrimination 
process. The VQ-classifiers are applied to static 
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feature vectors, which are computed for every 10 ms 
frame of the speech samples over a dynamic input 
sustained vowel /a/. 

A codebook is generated, after the feature 
extraction, consisting of N discrete level generation 
that each input vector could assume. An N-level 
vector quantizer can be defined as a mapping Q of a 
K-dimensional Euclidean space RK into a finite 
subset W of RK, such as Q:RK→W.       

The codebook W={wi ; i=1, 2, ….N} is the set of 
codevectors, K is the dimension of the quantizer and 
N is the number of codevectors in W.   

The mapping Q assigns to a K-dimensional real-
valued input vector x a K-dimensional codevector 
wi=Q(x). VQ defines a partitioning of the K-
dimensional Euclidean space into non-intercepting 
cells Si = {x : Q(x) = wi}, i = 1, 2, …, N. 

As the Voronoi cell, Si, collects together all input 
vector mapping to the i-th codevector, the 
codevector wi may be viewed as a pattern-class label 
of the input patterns belonging to Si. 

The mapping of the input vector x to a 
codevector wi occurs if the distortion function is 
such as d(x,wI) <  d(x,wi), ∀i  ≠ I.                     

It follows the nearest neighbour rule is applied to 
find the codevector that presents the greatest 
similarity to x.  In this work, LBG algorithm and the 
least mean square distance were used (Linde et al, 
1980). 

4 RESULTS AND DISCUSSION 

To reduce the dimensionality of feature vectors, a 
Vector Quantizer (VQ) to each parameter was 
employed, using dimension K=12 and N=64 levels. 
The VQ was trained with 20 voice signals under 
vocal fold edema. In the test phase 53 normal voices, 
24 signals under vocal fold edema and 23 speech 
signals of speakers, affected by other vocal fold 
pathologies as nodules, cysts and paralysis, were 
used. The Euclidean distance measure to classify the 
signals was used to analyze the effect of pathologies 
in vocal tract response. For this purpose, LPC, 
cepstral and mel-cepstral coefficients were extracted 
from the database signal. 

A predictor order p=12 was applied the LPC 
analysis. The LPC coefficients were obtained using 
the autocorrelation method by Levinson-Durbin 
algorithm (Rabiner and Schafer, 1978). Figure 1 
shows the distribution of vocal fold edema, normal 
voices and other pathologies. It is clear the excellent 
separation of the two classes analyzed: normal 
voices and voices affected by vocal fold edema. This 
results in a high correct rejection rate. In 
comparison, the edema behaviour and the other 

pathologies have a certain similarity that suggests 
difficulties in recognizing each pathology.  

A threshold value to provide the best separation 
between the classes in the classification process was 
chosen. For cepstral analysis it was used an 
algorithm based on Eq. (3).  A number of 12 
coefficients were obtained and the same process of 
quantization used to LPC method was employed. 
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Figure 1: Distortion behaviour for normal, vocal fold 
edema and other pathologies, obtained by Euclidian 
distortion on LPC method. 

The behaviour of classes, on cepstral 
analysis, is shown in Figure 2. The graphic provides 
a great way to observe the relevance of each 
parameter in classifying a pathological voice. The 
good separation of normal and pathological voices is 
well defined as in LPC method. 
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Figure 2: Distortion behaviour for normal, vocal fold 
edema and other pathologies obtained by Euclidian 
distortion on cepstral method. 

The number of filter bank bands employed to 
MFCC method was 30 (3ln(Fs), where Fs is the 
sampling frequency (Fs = 25kHz)  and a number of 
12 MFC coefficients were obtained as described in 
section 2. An algorithm of Voicebox - Speech 
Processing Toolbox for MATLAB 
(http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox) was 
used.  
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The behaviour of classes in mel-cepstral method is 
presented in Fig. 3. In this method, as in the others, it has a 
good separation of normal and pathological voices. 
However, the differences among the pathologies are not 
evident. LPC and cepstral methods seem to be better in 
representing the pathologies specificities. 
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Figure 3: Distortion behaviour for normal, vocal fold 
edema and other pathologies obtained by Euclidian 
distortion on mel-cepstral method. 

The evaluation of performance was made by the 
use of the following measurements: 1) Correct 
acceptance rate (CA), in which the presence of the 
pathology is detected when that is really present; 2) 
Correct rejection (CR), that gives the rate of the 
detection of the correct absence of the pathology; 3) 
False acceptance rate (FA) that detects the presence 
of the pathology when it is not present; 4) False 
rejection rate (FR), that quantifies the rejection of 
the presence of the pathology when, in fact, it is 
present. 

Related to the rates mentioned it was computed: 
• Specificity - SP: represents the likelihood that 

the pathology is detected when it is present, 
given by SP=CR/(CR+FA)x100. 

• Sensitivity – SE: represents the likelihood that 
the pathology is detected when it is present, 
obtained by  SE(%)=(CA/(CA+FR)x100. 

• Efficiency-E: gives the correct classification of 
a given class when that is present given as 
E(%)=(CR+CA)/(CR+CA+FA+FR)x100. 
 

Figure 4 presents results to the measurements 
above obtained for the three applied methods 
considering other pathologies as a separate class of 
edema. It is seen that LPC gives the best method. 
However, the false rejection rate obtained for this 
method was 27%. It is important to emphasize that 
the classifier was trained to accept vocal fold edema 
signals and reject any other signal as being 
pathological. 

It is also observed that mel-cepstral method was 
not efficient in discriminating each pathology class. 

Mel-cepstral analysis represents the perceptual 
auditory aspect that is similar in some vocal fold 
pathologies as nodule, cyst and edema.   
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Figure 4: Performance evaluation considering vocal fold 
edema and the other pathologies as different classes. 

The hoarseness and severely noisy-speech are 
some of common aspects that occur to speakers 
affected by the mentioned pathologies. The ability of 
MFCC method in representing the irregular 
vibration of vocal folds is common in the 
pathologies in this study and it is reflected on the 
results. The behaviour of the pathological signals is 
similar in mel-cepstral domain. Therefore, to 
discriminate pathologies occurring on vocal folds is 
not an easy task. 

Figure 5 shows a comparison of the LPC, 
cepstral and mel-cepstral methods, when using the 
classifier to all pathologies in the same classes. It is 
clear that mel-cepstral method is better than the 
other methods in representing the behaviour 
differences of the pathological signals relating to 
normal cases.  
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Figure 5: Performance evaluation considering vocal fold 
edema and the other pathologies in the same class. 

The ability of methods employed in rejecting 
correctly the classes out of classifier training class is 
excellent (SP). 

Figure 6 shows results obtained for Specificity, 
Efficiency and Sensitivity comparing pathological 
voices under vocal fold edema and normal voices. 
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The other pathologies are not considered here. The 
ability of FFT-MFCC in modeling the irregular 
vibration of the vocal folds provoked by the 
pathology is shown in the results. Good results are 
also obtained to LPC and cepstral analysis. 
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Figure 6: A comparison of the performance evaluation of 
LPC, cepstral and mel-cepstral analysis to the cases of 
vocal fold edema and normal voices. 

5 CONCLUSIONS 

The changes on LPC, cepstral and mel-cepstral 
coefficients describe the abnormal behaviour of the 
vocal folds movements caused by the pathologies.  
The efficiency in characterizing pathological voices 
using short-time cepstral analysis is well described 
by results.   

It is noted that mel-cepstral coefficients are very 
good to detect the presence of pathology. They 
provide a good separation of normal and 
pathological voices.  However, this method is not 
efficient in discriminating distinct pathologies. The 
differences among pathologies which belong to 
similar class of diseases are not evident. LPC and 
cepstral methods seem to be better in representing 
the pathologies specificities.    

In order to improve the performance of the 
classification process, two aspects are suggested: 2) 
the use of non-linear analysis to improve the 
acoustic modeling of non-linear characteristics 
inherent to speech signal, and 2) the employment of 
other classifiers based on Artifitial Neural Networks 
or Hideen Markov Models, for example.  

REFERENCES 

Bou-Ghazale, S.E., Hansen, J.H.L.,  2000. A Comparative 
Study of Traditional and Newly Proposed Features for 
Recognition of Speech Under Stress. IEEE 
Transactions on Speech & Audio Processing. Vol. 8, 
no. 4, pp. 429-442, July. 

Davis, S. B, 1979. Acoustic Characteristics of Normal and 
Pathological Voices. Speech and Language: Advances 
in Basic Research and Practice. Vol. 1, pp. 271–335.  

Dibazar, A. A., Berger, T.W., and Narayanan, S. S., 2006. 
Pathological Voice Assessment. Proceedings of the 
28th IEEE EMBS Annual International Conference. 
New York, USA, Aug. 30-Sept. 3.  

Furui, S., 1981. Cepstral Analysis Technique for 
Automatic Speaker Verification. IEEE Transactions 
on Acoustics, Speech and Signal Processing. Vol. 29, 
No. 2, pp 254-272, April. 

Gavidia-Ceballos, Liliana and Hansen, John H. L., 1996. 
Direct Speech Feature Estimation Using an Interactive 
EM Algorithm for Vocal Fold Pathology Detection. 
IEEE Trans. on Biomedical Engineering. Vol. 43, No. 
4, April. 

Godino-Llorente, J. I., Gomes-Vilda, P. and Blanco-
Velasco M., 2006. Dimensionality Reduction of a 
Pathological Voice Quality Assessment System Based 
on Gaussian Mixture Models and Short-Term Cepstral 
Parameters. IEEE Transactions on Biomedical 
Engineering. Vol. 53, No. 10, pp. 1943-1953, October,  

Kay Elemetrics Corp. Disordered Voice Database, 1994. 
Model 4337, 03 Ed.  

Linde, Y., Buzo, A., and Gray, R. M., 1980. An Algorithm 
for Vector Quantizer Design, IEEE Transaction on 
Communications. Vol. COM-28, N0.I, pages 84-95, 
January.  

Marinaki, M., Contropoulos, C., Pitas, I., and Maglaveras, 
N., 2004. Automatic Detection of Vocal Fold  
Paralysis and Edema, Proc. of 8th Conf. Spoken 
Language Processing (Interspeech 2004). Jeju, Korea, 
October.  

Murphy, Peter J. and Akande, Olatunji O., 2007. Noise 
Estimation in Voice Signals Using Short-term 
Cepstral, Journal of the Acoustical Society of America. 
pp. 1679-1690, Vol. 121, No. 3, March. 

O’Shaughnessy, Douglas, 2000. Speech Communications: 
Human and Machine. 2nd Edition, NY, IEEE Press. 

Parsa, Vijay and Jamieson, Donald G., 2001. Acoustic 
Discrimination of Pathological Voice: Sustained 
Vowels versus Continuous Speech. Journal of Speech, 
Language, and Hearing Research. Vol. 44, pp 327–
339, April. 

Quek,  F., M. Harper, Haciahmetoglou, Y., Chen,  L. and 
Raming, L. O., 2002. Speech pauses and gestural 
holds in Parkinson´s disease. Proceedings of 
International Conference on Spoken Language 
Processing. pp. 2485-2488. 

Rabiner L. R. and Schafer R. W., 1978. Digital Processing 
of Speech Signals. New Jersey:  Prentice-Hall. 

Shama, K., Krishna, A. and Cholayya, N. U., 2007. Study 
of Harmonics-to-Noise Ratio and Critical-Band 
Energy Spectrum of Speech as Acoustic Indicators of 
Laryngeal and Voice Pathology. EURASIP Journal on 
Advances in Signal Processing. Vol. 2007. 

Umapathy, K., Krishnan, S., Parsa, V., and Jamieson D., 
2005. G. Discrimination of Pathological Voices Using 
a Time-Frequency Approach. IEEE Transactions on 
Biomedical Engineering. Vol. 52, No. 3, March. 

SHORT-TERM CEPSTRAL ANALYSIS APPLIED TO VOCAL FOLD EDEMA DETECTION

115


