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Abstract: Extraction of the mid-sagittal plane (MSP) is an important step for brain image registration and asymmetry
analysis. We present a fast MSP extraction method for 3D MR images, which is based on automatic segmen-
tation of the brain and on heuristic maximization of cerebro-spinal fluid within the MSP. The method is shown
to be robust to severe anatomical asymmetries between the hemispheres, caused by surgical procedures and
lesions. The experiments used 64 MR images (36 pathological, 20 healthy, 8 synthetic) and the method found
an acceptable approximation of the MSP in all images with a mean time of 60.0 seconds per image.

1 INTRODUCTION

The human brain is not perfectly symmetric (David-
son and Hugdahl, 1996; Crow, 1993; Geschwind
and Levitsky, 1968). However, for the purpose
of analysis, it is paramount to define and distin-
guish astandard of asymmetry, considered as normal
for any given measurement, from abnormal asym-
metry, which may be related to neurological dis-
eases, cerebral malformations, surgical procedures
or trauma. Several works sustain this claim. For
example, accentuated asymmetries between left and
right hippocampi have been found in patients with
Schizophrenia (Wang et al., 2001; Csernansky et al.,
1998; Styner and Gerig, 2000; Mackay et al., 2003;
Highley et al., 2003; Barrick et al., 2005), Epilepsy
(Hogan et al., 2000; Wu et al., 2005) and Alzheimer
Disease (Csernansky et al., 2000; Liu et al., 2007).

The brain can be divided in two hemispheres, and
the structures of one side should have their counter-
part in the other side with similar shapes and approxi-
mate locations (Davidson and Hugdahl, 1996). These
hemispheres have their boundaries limited by the lon-
gitudinal (median) fissure, being the corpus callosum
their only interconnection.

The ideal separation surface between the hemis-
feres is not perfectly planar, but the mid-sagittal plane
(MSP) can be used as a reference for asymmetry anal-
ysis, without significant loss in the relative compar-
ison between normal and abnormal subjects. The
MSP location is also important for image registration.
Some works have used this operation as a first step for

intra-subject registration, as it reduces the number of
degrees of freedom (Ardekani et al., 1997; Kapouleas
et al., 1991), and to bring different images into a same
coordinate system (Liu et al., 2001), such as in the Ta-
lairach (Talairach and Tournoux, 1988) model.

However, there is no exact definition of the MSP
and its determination by manual delineation is sen-
sitive to different experts. Given that, a reasonable
approach for evaluation seems to be visual inspection
with error quantification, when we increase the asym-
metry artificially and/or linearly transform the image.

The longitudinal fissure forms a gap between the
hemispheres filled with cerebro-spinal fluid (CSF).
We define the MSP as a large intersection between
a plane and anenvelope of the brain (a binary vol-
ume whose surface approximates the convex hull of
the brain) that maximizes the amount of CSF. This
definition leads to an automatic, robust and fast algo-
rithm for MSP extraction.

The paper is organized as follows. In Section 2,
we review existing works on automatic location of the
mid-sagittal plane. In section 3, we present the pro-
posed method. In section 4, we show experimental
results and validation with simulated and real MR-T1
images. Section 5 states our conclusions.

2 RELATED WORKS

MSP extraction methods can be divided in two
groups: (i) methods that define the MSP as a
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plane that maximizes a symmetry measure, extracted
from both sides of the image (Junck et al., 1990;
Minoshima et al., 1992; Sun and Sherrah, 1997;
Ardekani et al., 1997; Smith and Jenkinson, 1999; Liu
et al., 2001; Prima et al., 2002; Tuzikov et al., 2003;
Teverovskiy and Liu, 2006), and (ii) methods that de-
tect the longitudinal fissure to estimate the location of
the MSP (Brummer, 1991; Guillemaud et al., 1996;
Hu and Nowinski, 2003; Volkau et al., 2006). Table
1 summarizes these works, and extensive reviews can
be found in (Hu and Nowinski, 2003), (Volkau et al.,
2006), (Prima et al., 2002) and (Liu et al., 2001).

Methods in the first group address the problem by
exploiting the hough symmetry of the brain. Basi-
cally, they consist in defining a symmetry measure
and searching for the plane that maximizes this score.
Methods in the second group find the MSP by detect-
ing the longitudinal fissure. Even though the longitu-
dinal fissure is not visible in some modalities, such
as PET and SPECT, it clearly appears in MR im-
ages. Particularly, we prefer these methods because
patients may have very asymmetric brains and we be-
lieve this would affect the symmetry measure and,
consequently, the MSP detection.

The aforementioned approaches based on longitu-
dinal fissure detection present some limitations that
we are circumventing in the proposed method. In
(Guillemaud et al., 1996), the MSP is found by using
snakes and orthogonal regression for a set of points
manually placed on each slice along the longitudi-
nal fissure, thus requiring human intervention. Other
method (Brummer, 1991) uses the Hough Trans-
form to automatically detect straight lines on each
slice (Brummer, 1991), but it does not perform well
on pathological images. The method in (Hu and
Nowinski, 2003) assumes local symmetry near the
plane, which is not verified in many cases (see Fig-
ures 2, 5 and 8). Volkau et al. (Volkau et al., 2006)
propose a method based on the Kullback and Leibler’s
measure for intensity histograms in consecutive can-
didate planes (image slices). The method presents ex-
cellent results under a few limitations related to ro-
tation, search region of the plane, and pathological
images.

3 METHODS

Our method is based on detection of the longitudinal
fissure, which is clearly visible in MR images. Un-
like some previous works, our approach is fully 3D,
automatic, and applicable to images of patients with
severe asymmetries.

We assume that the mid-sagittal plane is a plane

that contains a maximal area of cerebro-spinal fluid
(CSF), excluding ventricles and lesions. In MR T1
images, CSF appears as low intensity pixels, so the
task is reduced to the search of a sagittal plane that
minimizes the mean voxel intensity within a mask that
disregards voxels from large CSF structures and vox-
els outside the brain.

The method is divided in two stages. First, we
automatically segment the brain and morphologically
remove thick CSF structures from it, obtaining a brain
mask. The second stage is the location of the plane it-
self, searching for a plane that minimizes the mean
voxel intensity within its intersection with the brain
mask. Our method uses some morphological opera-
tions whose structuring elements are defined based on
the image resolution. To keep the method description
independent of image resolution, we use the notation
Sr to denote a spherical structuring element of radius
r mm.

3.1 Segmentation Stage

We use the tree pruning approach to segment the
brain. Tree pruning (Falcão et al., 2004a; Miranda
et al., 2006) is a segmentation method based on the
Image Foresting Transform (Falcão et al., 2004b),
which is a general tool for the design of fast im-
age processing operators based on connectivity. In
tree pruning, we interpret the image as a graph, and
compute an optimum path forest from a set of seed
voxels inside the object. A gradient-like image with
high pixel intensities along object borders must be
computed to provide the edge weights of the implicit
graph. A combinatorial property of the forest is ex-
ploited to prune tree paths at the object’s border, lim-
iting the forest to the object being segmented.

To segment the brain (white matter (WM), gray
matter (GM) and ventricles), we compute a suitable
gradient image, a set of seed voxels inside the brain
and apply the tree pruning algorithm. A more detailed
description of this procedure is given in (Bergo et al.,
2007). Note that any other brain segmentation method
could be used for this purpose.

Gradient Computation. MR-T1 images of the
brain contain two large clusters: the first with air,
bone and CSF (lower intensities), and the second,
with higher intensities, consists of GM, WM, skin, fat
and muscles. Otsu’s optimal threshold (Otsu, 1979)
can separate these clusters (Figs. 1a and 1b), such
that the GM/CSF border becomes part of the border
between them. To enhance the GM/CSF border, we
multiply each voxel intensityI(p) by a weightw(p)
as follows:
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Table 1: Summary of existing MSP methods.

Method Based on 2D/3D Application Measure
(Brummer, 1991) fissure 2D MR Edge Hough Transform
(Guillemaud et al., 1996) fissure 2D MR Active contours
(Hu and Nowinski, 2003) fissure 2D MR, CT Local symmetry of fissure
(Volkau et al., 2006) fissure 3D MR, CT Kullback-Leibler’s measure
(Junck et al., 1990) symmetry 2D PET, SPECT Intensity cross correlation
(Minoshima et al., 1992) symmetry 3D PET Stochastic sign change
(Ardekani et al., 1997) symmetry 3D MR, PET Intensity cross correlation
(Sun and Sherrah, 1997) symmetry 3D MR, CT Extended Gaussianimage
(Smith and Jenkinson, 1999) symmetry 3D MR, CT, PET, SPECT Ratio of intensity profiles
(Liu et al., 2001) symmetry 2D MR, CT Edge cross correlation
(Prima et al., 2002) symmetry 3D MR, CT, PET, SPECT Intensitycross correlation
(Tuzikov et al., 2003) symmetry 3D MR, CT, SPECT Intensity cross correlation
(Teverovskiy and Liu, 2006) symmetry 3D MR Edge cross correlation
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)2
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2 I(p) > m2

(1)

whereτ is the Otsu’s threshold, andm1 andm2 are the
mean intensities of each cluster. We compute a 3D
gradient at each voxel as the sum of its projections
along 26 directions around the voxel, and then use its
magnitude for tree pruning (Figure 1c).

Seed Selection. The brighter cluster contains many
voxels outside the brain (Figure 1b). To obtain a set of
seeds inside the brain, we apply a morphological ero-
sion byS5 on the binary image of the brighter clus-
ter. This operation disconnects the brain from adja-
cent structures. We then select the largest connected
component as the seed set (Figure 1d).

Morphological Closing. The brain object obtained
by tree pruning (Figure 1e) might not include the en-
tire longitudinal fissure, especially when the fissure is
too thick. To ensure its inclusion, we apply a mor-
phological closing byS20 to the binary brain image
(Figure 1f).

Thick CSF Structure Removal. The last step of
this phase is the removal of thick CSF structures (such
as the ventricles, lesions and post-surgery cavities)
from the brain object, to avoid the MSP from snap-
ping to a dark structure other than the longitudinal
fissure. We achieve this with a sequence of mor-
phological operations: we start from a binary image
obtained by thresholding at Otsu’s optimal threshold
(Figure 1b). We apply a morphological opening by

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1: Sample slice of the intermediary steps in stage
1: (a) original coronal MR slice; (b) binary cluster mask
obtained by thresholding; (c) gradient-like image used for
tree pruning; (d) seed set used for tree pruning (white); (e)
border of the brain object obtained by tree pruning (white);
(f) border of the brain object after morphological closing;
(g) CSF mask after opening; (h) CSF mask after dilation;
(h) brain mask (intersection of (f) and (h)).

S5 to connect the thick (> 5 mm) CSF structures
(Figure 1g), and then dilate the result byS2 to include
a thin (2mm) wall of the CSF structures (Figure 1h).
This dilation ensures the reinclusion of the longitudi-
nal fissure, in case it is removed by the opening. The
binary intersection of this image with the brain ob-
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ject is then used as brain mask (Figure 1i) by the next
stage of our method. Only voxels within this mask are
considered by stage 2. Figures 2a and 2b show how
the computed brain mask excludes the large cavity in
a post-surgery image, and figures 2c and 2d show how
the mask excludes most of the ventricles in patients
with large ventricles.

3.2 Plane Location Stage

To obtain the CSF score of a plane, we compute the
mean voxel intensity in the intersection between the
plane and the brain mask (Figures 3a and 3b). The
lower the score, the more likely the plane is to contain
more CSF than white matter and gray matter. The
plane with a sufficiently large brain mask intersection
and minimal score is the most likely to be the mid-
sagittal plane.

To find a starting candidate plane, we compute the
score of all sagittal planes in 1mm intervals (which
leads to 140–180 planes in usual MR datasets), and
select the plane with minimum score. Planes with in-
tersection area lower than 10 000mm2 are not consid-
ered to avoid selecting planes tangent to the surface
of the brain. Planes with small intersection areas may
lead to low scores due to alignment with sulci and also
due to partial volume effect between gray matter and
CSF (Figures 3c and 3d).

(a) (b)

(c) (d)

Figure 2: Examples of thick CSF structure removal: (a)
coronal MR slice of a patient with post-surgical cavity; (b)
brain mask of (a); (c) axial MR slice of a patient with large
ventricles; (d) brain mask of (c).

Once the best candidate plane is found, we com-
pute the CSF score for small transformations of the
plane by a set of rotations and translations. If none

of the transformations lead to a plane with lower CSF
score, the current plane is the mid-sagittal plane and
the algorithm stops. Otherwise, the transformed plane
with lower CSF score is considered the current candi-
date, and the algorithm is repeated. The algorithm
is finite, since each iteration reduces the CSF score,
and the CSF score is limited by the voxel intensity
domain.

We use a set of 42 candidate transforms at each
iteration: translations on both directions of the X, Y
and Z axes by 10mm, 5 mm and 1mm (18 transla-
tions) and rotations on both directions around the X,
Y and Z axes by 10o, 5o, 1o and 0.5o (24 rotations).
All rotations are about the central point of the initial
candidate plane. There is no point in attempting ro-
tations by less than 0.5o, as this is close to the limit
where planes fall over the same voxels for typical MR
datasets, as discussed in Section 4.1.

(a) (b)

(c) (d)

Figure 3: Plane intersection: (a–b) sample plane, brain
mask and their intersection (white outline). (c–d) exam-
ple of a plane tangent to the brain’s surface and its small
intersection area with the brain mask (delineated in white),
overlaid on the original MR image.

4 EVALUATION AND
DISCUSSION

4.1 Error Measurement

The discretization ofR3 makes planes that differ by
small angles to fall over the same voxels. Consider
two planesA and B that differ by an angleΘ (Fig-
ure 4). The minimum angle that makesA andB differ
by at least 1 voxel at a distancer from the rotation
center is given by Equation 2.
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Θ = arctan

(

1
r

)

(2)

An MR dataset with 1mm3 voxels has a typi-
cal maximum dimension of 256mm. For rotations
about the center of the volume, the minimum angle
that makes planesA andB differ by at least one voxel
within the volume (pointpi in Figure 4) is approxi-
mately arctan

(

1
128

)

= 0.45o. For most MSP applica-
tions, we are only concerned about plane differences
within the brain. The largest length within the brain is
usually longitudinal, reaching up to 200 mm in adult
brains. The minimum angle that makes planesA and
B differ by at least one voxel within the brain (point
pb in Figure 4) is approximately arctan

(

1
100

)

= 0.57o.

Figure 4: Error measurement in discrete space: points and
angles.

Therefore, we can consider errors around 1o ex-
cellent and equivalent results.

4.2 Experiments

We evaluated the method on 64 MR datasets di-
vided in 3 groups: A control group with 20 datasets
from subjects with no anomalies, a surgery group
with 36 datasets from patients with significant struc-
tural variations due to brain surgery, and a phantom
group with 8 synthetic datasets with varying levels
of noise and inomogeneity, taken from the BrainWeb
project (Collins et al., 1998).

All datasets in the control group and most datasets
in the surgery group were acquired with a voxel size
of 0.98× 0.98× 1.00 mm3. Some images in the
surgery group were acquired with a voxel size of
0.98×0.98×1.50mm3. The images in the phantom
group were generated with an isotropic voxel size of
1.00 mm3. All volumes in the control and surgery
groups were interpolated to an isotropic voxel size of
0.98mm3 before applying the method.

For each of the 64 datasets, we generated 10 vari-
ations (tilted datasets) by applying 10 random trans-
forms composed of translations and rotations of up to
12 mm and 12o in all axes. The method was applied
to the 704 datasets (64 untilted, 640 tilted), and visual
inspection showed that the method correctly found ac-
ceptable approximations of the MSP in all of them.
Figure 5 shows sample slices of some datasets and
the computed MSPs.

For each tilted dataset, we applied the inverse
transform to the computed mid-sagittal plane to
project it on its respective untilted dataset space.
Thus, for each untilted dataset we obtained 11 planes
which should be similar. We measured the angle be-
tween all

(11
2

)

= 55 distinct plane pairs. Table 2 shows
the mean and standard deviation (σ) of these angles
within each group. The low mean angles (column
3) and low standard deviations (column 4) show that
the method is robust with regard to linear transfor-
mations of the input. The similar values obtained
for the 3 groups indicate that the method performs
equally well on healthy, pathological and synthetic
data. The majority (94.9%) of the angles were less
than 3o, as shown in the histogram of Figure 6. Of
64×55= 3520 computed angles, only 5 (0.1%) were
above 6o. The maximum measured angle was 6.9o.
Even in this case (Figure 7), both planes are accept-
able in visual inspection, and the large angle between
different two computations of the MSP can be related
to the non-planarity of the fissure, which allows dif-
ferent planes to match with similar optimal scores.
The lower mean angle in the phantom group (column
3, line 3 of Table 2) can be related to the absence
of curved fissures in the synthetic datasets. Figure 8
shows some examples of non-planar fissures.

Table 2: Angles between computed MSPs.

Group Datasets Angles
Mean σ

Control 20 1.33o 0.85o

Surgery 36 1.32o 1.03o

Phantom 8 0.85o 0.69o

Overall 64 1.26o 0.95o

All experiments were performed on a 2.0 GHz
Athlon64 PC running Linux. The method took from
41 to 78 seconds to compute the MSP on each MR
dataset (mean: 60.0 seconds). Most of the time was
consumed computing the brain mask (stage 1). Stage
1 required from 39 to 69 seconds per dataset (mean:
54.8 seconds), while stage 2 required from 1.4 to 20
seconds (mean: 5.3 seconds). The number of itera-
tions in stage 2 ranged from 0 to 30 (mean: 7.16 iter-
ations).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5: Examples of planes computed by the method: (a–d): sample slices from a control dataset; (e–f) sample slices from
a surgery dataset; (g–h) sample slices from another surgerydataset; (i–j): sample slices from a phantom dataset; (k–l): sample
slices from a tilted dataset obtained from the one in (i–j).

Figure 6: Distribution of the angles between computed mid-
sagittal planes.

5 CONCLUSIONS AND FUTURE
WORK

We presented a fast and robust method for extrac-
tion of the mid-sagittal plane from MR images of the
brain. It is based on automatic segmentation of the
brain and on a heuristic search based on maximization
of CSF within the MSP. We evaluated the method on

(a) (b)

Figure 7: A coronal slice (a) and an axial slice (b) from
the case with maximum angular error (6.9o), with planes
in white: The fissure was thick at the top of the head, and
curved in the longitudinal direction, allowing the MSP to
snap either to the frontal or posterior segments of the fissure,
with some degree of freedom.

64 MR datasets, including images from patients with
large surgical cavities (Figure 2a and Figures 5e–h).
The method succeeded on all datasets and performed
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(a) (b) (c)

(d) (e) (f)

Figure 8: Non-planar fissures: (a) irregular fissure, (b) ex-
pert fissure delineation of (a) and (c) MSP computed by our
method. (d) Curved fissure, (e) expert fissure delineation of
(d) and (f) MSP computed by our method.

equally well on healthy and pathological cases. Ro-
tations and translations of the datasets led to mean
MSP variations around 1o, which is not a significant
error considering the discrete space of MR datasets.
MSP variations over 3o occurred only in cases where
the longitudinal fissure was not planar, and multiple
planes fitted different segments of the fissure with
similar scores. The method required a mean time of
60 seconds to extract the MSP from each MR dataset
on a common PC.

Previous fissure-based works were either evalu-
ated on images of healthy patients, on images with
small lesions (Volkau et al., 2006), or relied on local
symmetry measurements (Hu and Nowinski, 2003).
As future work, we intend to implement some of
the previous works and compare their accuracy and
performance with our method on the same datasets.
Brain mask computation is responsible for most of
the computing time. We also plan to evaluate how the
computation of the brain mask on lower resolutions
affect the accuracy and efficiency of the method.
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