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Abstract: This paper proposes a new framework for the on-line monitoring and adaptive control of 
psychophysiological markers relating to humans under stress. The starting point of this framework relates to 
the assessment of the so-called operator functional state (OFS) using physical as well as psychological 
measures. An adaptive neural-fuzzy model linking Heart-Rate Variability (HRV) and Task Load Index 
(TLI) with the subjects’ optimal performance has been elicited and validated via a series of real-life 
experiments involving process control tasks simulated on an Automation-Enhanced Cabin Air Management 
System (aCAMS). The elicited model has been used as the basis for an on-line control system, whereby the 
model predictions which indicate whether the actual system is in error or not, have been used to modify the 
level of automation which the system may operates under.  

1 INTRODUCTION 

With increasingly complex design of automation in 
safety-critical applications, there is a growing 
concern for the consequences of performance 
breakdown. This is because the human operator’s 
role has become compromised with increasing 
operational demand, stress and fatigue, which all 
threaten safety and reliability (Hockey et al., 2003). 
The approach taken to this problem in this paper is 
based on an ‘Operator Functional State’ (OFS) 
framework in which the performance of the operator 
is constrained by requirements to manage the 
automation tasks and his/her own personal state. 

The OFS model should predict that, for a period 
before manifest breakdown occurs, the operator will 
be in a vulnerable state, because of reduced spare 
capacity to respond to emergencies. The goal of the 
current programme of work is to develop models for 
evaluating psychophysiological markers of this high 
risk strain state. If such states can be reliably 
detected, they can be used to trigger a switch of 

control from human to computer, through an 
adaptive automation (AA) interface, reducing the 
risk of operational breakdown (Kaber et al. 2001). 

A likely marker is the ‘task load index’ (TLI) 
identified by Gevins and his group (Gevins and 
Smith, 1999). TLI is based on the presence of high 
levels of theta activity at frontal midline sites, with 
concomitant attenuation of alpha power in parietal 
sites [theta/alpha]. Observation of reduced frontal-
midline theta power may reflect direct effects of 
fatigue or strategic disengagement from the 
executive requirements of the task management 
(Lorenz and Parasuraman, 2003). 

To investigate this, a task known as automation-
enhanced Cabin Air Management System (aCAMS) 
(Figure 1), developed by Hockey and colleagues 
(Hockey et al., 1998, Lorenz, 2002) to simulate the 
atmospheric environment within a space capsule, is 
used. This semi-automatic system required operators 
to maintain an appropriate quantity and quality of 
breathable air by keeping system parameters 
(temperature, humidity, pressure, O2, CO2) within 
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normal ranges (primary task). The operators 
interacted with a dynamic visual display that 
provides data on system variables and functions via 
a range of controls and automation tools; this is a 
large mental burden to the operator. 
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Figure 1: The aCAMS human-machine system. 

The main objective of the research work presented 
in this paper is to propose a new framework for the 
on-line (real-time) monitoring of the human 
operator’s performance for breakdown, stress or 
fatigure and the adaptive control of the level of 
automation.  In order to achieve this a model that 
describes the input and output relationship between 
the psychophysiological measures (e.g. 
cardiovascular and EEG activities) and functional 
(i.e. cognitive, mental or psychological) states of the 
operator in a simulated process control environment 
is built first. The model can then be implemented in 
an adaptive automation control system to represent a 
kernel in OFS estimation. In the present 
investigation, the OFSs identification is achieved by 
using adaptive fuzzy modelling which requires the 
measured psychophysiological and primary task 
performance data only. The proposed modelling 
approaches are shown by simulation results to be 
capable of effectively exploiting the information 
contained in the measured physiological and 
performance data. By using this model the OFS may 
be identified or predicted by monitoring the changes 
in the psychophysiological and performance data, 
and hence the model output can be used as a bio-
feedback signal in closed-loop automation control.  

This paper is organised as follows: Section 2 will 
outline the chosen technical paradigm behind the 
intelligent systems-based modelling strategy. 
Section 3 will present the final models which were 
adopted and Section 4 shows how such models can 
be included in the real-time framework for 
monitoring and adaptive control. Finally, Section 5 
will draw some conclusions in relation to this overall 
research study. 

2 FUZZY MODELLING OF 
OPERATOR FUNCTIONAL 
STATE (OFS) 

For the purpose of modelling fuzzy logic (Zadeh, 
1965) was chosen as the main paradigm for 
characterising the input/output mappings because of 
its tolerance to uncertainties and also for the fact it 
can model human perception in a transparent way 
without a greater loss in accuracy. As a result, two 
types of fuzzy models were constructed and 
optimised automatically: one using neural networks 
leading to the Artificial Network Fuzzy Inference 
System (ANFIS) architecture (Jang, 1993) which 
utilises and the other using Genetic Algorithms 
(Goldberg, 1989) to estimate the parameters of the 
membership functions and the fuzzy rules of a 
Mamdani-type structure (Mamdani, 1974). In order 
to carry-out this modelling operation successfully it 
is important to first specify the variables associated 
with this input/output mapping and then carry-out 
the real-time experiments (Mahfouf et al., 2006) 
which will enable one to collect the input/output 
data information as will be explained next. 

2.1 Model Inputs and Output 

The candidate inputs of the fuzzy model may 
include Heart Rate Variability (HRV) and EEG 
markers (TLI), which were found to be most 
sensitive to the changes in mental workload 
((Fehrengerg and Wientjes, 2000);Nickel et al., 
2005; Zhang et al., 2006). The optimal number of 
inputs selected from the above candidate inputs was 
determined by linear correlation analysis of the 
relationship between the input and output data. The 
single output of the model is ‘Time in Range’ related 
to the primary task performance.  

2.2 Data Acquisition and Analysis 

The BioSemi® system (Biosemi, the Netherland) 
was used for EEG recording at 32 electrode sites 
defined by the international 10-20 system (Jasper, 
1958). The electrodes were re-referenced to two 
linked mastoids. The EEG signal, sampled at a rate 
of 2048 Hz, was pre-processed with a band-pass 
filter between 1.6 and 25 Hz. The power in the three 
bands (i.e., theta, alpha and beta) for each of the 
selected electrode sites was calculated. The primary-
task performance data (‘Time in Range’) were 
sampled every 1 min. 

The heart rate (HR) signal was recorded every 1 
s as soon as the aCAMS was started up. HRV1 is 
defined as the average of the 0.1 Hz component 
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powers. HRV2 is defined as the HR variation 
coefficient and given by the following expression: 

HR

HRHRV
μ
σ

=2
 (1) 

where σ and μ denote the standard deviation and 
average of a HR segment of 7.5 min. 

The TLI calculated using different EEG band 
powers was proposed in (Gevins et al., 1997). The 
TLI indices, TLI1 and TLI2 used in this paper, are 
given as follows: 
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where θP  and αP  denote the theta- and alpha-band 
power, respectively; the EEG frequency bands  are 
defined in order as: θ, Fz: 6-7 Hz; α, Pz: 10-12 Hz; 
θ, AFz: 5-7 Hz; α, CPz: 8-10.5 Hz; α, POz: 10-13.5 
Hz; and Fz, Pz, AFz, CPz, and POz are the five EEG 
electrode sites on the scalp introduced in the 
standard 10-20 system (Jasper, 1958). 

3 RESULTS AND DISCUSSIONS 

In this simulation the signal data sampling interval 
was taken to be 7.5 min and Gaussian MFs were 
used for both fuzzy models.  The choice of the 
candidate input was mainly driven by the value of 
the input-output correlation factor (the higher the 
better), the training and testing data correlation 
factor (the higher the better) and the MSE values of 
the training and testing data. As a result, the two 
inputs HRV1 and TLI2 were selected for both fuzzy 
models. The training and testing data set was 
obtained from the 1st and 2nd experimental sessions, 
respectively. The ANFIS modelling result for P2 is 
shown in Figure 2.  

Due to the large differences between the MSE 
values of the model output for each subject another 
index was introduced to differentiate between 
models. This index was named "Error Factor" and is 
defined by the ratio between the MSE of the model 
output when using the validating data and the MSE 
between the training and validating data as shown in 
Equ. (3). 

chk-Tr

chk-output modelFactorError 
MSE

MSE
=  (3) 

Using this new index it was found that Subjects 
P2, P4, and P10 led to the highest values, i.e. the 
worst performing models compared to the other 
subjects. So, those subjects' data have been chosen 
for the next study. The optimised rules of Mamdani-
type fuzzy model and their weights are illustrated in 
Table 1. The optimal MFs and degrees of belief 
(rules’ weight) in each rule are identified by using a 
GA approach. It is noted that the 1st, 2nd, 3rd, 11th, 
12th, 13th, 15th and 16th rules (see Table 1 in ‘bold’ 
characters) are less important in terms of the smaller 
weights. The comparison of the model output and 
desired output is shown in Figure 3 for P2. Figure 4 
illustrates the model output when HRV2 and TLI2 
are used as inputs 
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Figure 2: ANFIS modelling results for P2; HRV1 and TLI2 
as inputs. 
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(a) Comparison between model output and training data
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Figure 3: Modelling results via the GA-based Mamdani-
type model for P2; HRV1 and TLI2 as inputs. 
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Table 1: The Mamdani-type fuzzy rules after optimization 
and their corresponding weights for P2 with the inputs 
HRV1 and TLI2. 
 

No Rule 
1 If HRV1 is M and TLI2 is S then TIR is VH (0.197)

2 If HRV1 is M and TLI2 is S then TIR is VH (0.446)

3 If HRV1 is M and TLI2 is M then TIR is H (0.159)

4 If HRV1 is B and TLI2 is S then TIR is VH (0.527)

5 If HRV1 is M and TLI2 is B then TIR is VH (0.798)

6 If HRV1 is B and TLI2 is M then TIR is H (0.983)

7 If HRV1 is M and TLI2 is B then TIR is H (0.778)

8 If HRV1 is B and TLI2 is B then TIR is N (0.470)

9 If HRV1 is S and TLI2 is B then TIR is L (0.904)

10 If HRV1 is M and TLI2 is VB then TIR is L (0.853)

11 If HRV1 is S and TLI2 is B then TIR is N (0.010)

12 If HRV1 is S and TLI2 is B then TIR is N (0.013)

13 If HRV1 is B and TLI2 is M then TIR is N (0.313)

14 If HRV1 is B and TLI2 is VB then TIR is N (0.864)

15 If HRV1 is B and TLI2 is B then TIR is N  (0.331)

16 If HRV1 is VB and TLI2 is M then TIR is N (0.352)

17 If HRV1 is VB and TLI2 is M then TIR is N (0.906)

18 If HRV1 is B and TLI2 is M then TIR is VH (0.819)

 
Tables 2 and 3 show the model MSE’s and the 

correlation factors for the three subjects data which 
only justify the initial choice of the criteria proposed 
for choosing the candidates' inputs and show that the 
model output  is improved by using HRV1 instead of 
HRV2. 
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Figure 4: Model output of the GA Mamdani-type model of 
P2 for TLI2 and HRV2 as inputs. 

Table 2: Training and testing MSEs and correlations of 
Mamdani fuzzy model for P2, P4 and P10 when inputs are 
HRV1and TLI2 

MSE Correlation Error 
Factor No 

Train Check Train Check 2 
inputs 

P2 6.7506 130.340 0.983 0.712 2.931 
P4 1.0860 93.672 0.997 0.8304 1.022 

P10 8.4722 67.533 0.965 0.664 2.578 

Table 3: Training and testing MSE and correlation values 
of the Mamdani fuzzy model for P2, P4 and P10 when the 
inputs are HRV2 andTLI2. 

MSE Correlation Error 
Factor No 

Train Check Train Check 2 
inputs 

P2 7.213 194.930 0.981 0.518 4.383 
P4 2.455 478.763 0.986 0.112 5.227 

P10 2.840 130.624 0.988 0.541 4.987 

4 THE NEW FRAMEWORK FOR 
REAL-TIME ADAPTIVE 
AUTOMATION 

The adaptive fuzzy models developed previously 
allow for the OFSs to be used as bio-feedback 
signals in order to switch operations between human 
and machine. Hence, a conceptual adaptive 
automation control system built around aCAMS for 
the automation tasks is proposed as shown in Figure 
5. The system was implemented using MFC (Visual 
C++ 8.0, Microsoft, USA) on a Window-XP 
computer. Psycho-physiological signals were 
collected using the BioSemi system with the 
recording scheme as described in Section 2.2. The 
two peripherals, aCAMS and BioSemi computers, 
communicate with the host system through Ethernet 
networking that uses the TCP/IP communication 
protocol. 

Figure 6 shows a conceptual automation control 
system with the developed fuzzy OFS model for 
predictive control and primary task performance for 
immediate feedback reaction. The model analyzes 
psychophysiological responses every 128 s to 
provide information of how the system may drift 
into ‘error’. Once a possible system abnormality is 
foreseen, the LOA Reallocator either switches 
system operation from human to machine or changes 
the level of automation (LOA). A “System in Error” 
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reported by aCAMS represents an anticipated 
system catastrophe if the system operation is not 
immediately intervened. The occurrence of such a 
fault elicits the LOA Reallocator for immediate 
automation intervention. This feedback correction is 
synchronized with aCAMS, 1 s in this case. Once an 
error occurs, the control is brought to a hysteresis 
loop which imposes a refractory duration to LOA 
commands to avoid adversary chattering effect.  
This coordinating scheme assures function allocation 
between human and machine for persistent system 
safety and operation performance. 
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Figure 5: Conceptual adaptive automation control for the 
aCAMS human-machine system. 
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Figure 6: The control system of adaptive automation with 
OFS prediction and process feedback.  

Figure 7 demonstrates the screenshot of a 
tentative experiment for which only the feedback 
correction loop of Figure 6 was activated. The 
screenshot shows aCAMS performance, 
psychophysiological responses, LOA allocation 
commands, subjective ratings, and system 
communication status on line. The automation 
controller took over the operation task from the 
operator and re-allocated LOA immediately 
responding to the occurrence of a system 
abnormality. The system operation recovered to a 
normal state subject to the LOA manipulation.  

 

 

Figure 7: Screenshot of a tentative system operation. Top-
left: aCAMS performance; top-right: psychophysiological 
response; bottom-left: LOA allocation; bottom-right: 
subjective ratings; status bar: monitoring of the system 
communication. 

5 CONCLUSIONS 

The first part of this paper related to the elicitation 
of ANFIS and Mamdani-type models for identifying 
OFSs using psychophysiological and performance 
measures. Model analyses revealed that the GA-
based Mamdani-type model generalised better across 
the data used and that HRV 1 and TLI 2 represented 
the best correlating inputs to the performance output 
‘time in range’. The model represents a concise, 
transparent (easily understandable) and robust 
characterization of OFS and can be easily extended 
or modified to accommodate additional input 
variables, membership functions and fuzzy rules. 
The identification of these OFSs paved the way for 
proposing a new framework the real-time 
monitoring and adaptive control of automation in 
complex and safety-critical human-machine systems. 
Preliminary simulation studies using aCAMS, the 
OFSs predictor and the LOA fuzzy decision-maker 
showed that successful switching of system 
automation is possible. It is hoped that real-time 
experiments involving the same group of volunteers 
who partook in earlier experiments whose data were 
used for modelling will be conducted in the near 
future. 
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