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Abstract: Even in significant light intensity fluctuations human beings still can sharply perceive the surrounding 
world under various light conditions: from starlight to sunlight.  This process starts in the retina, a tiny 
tissue of a quarter of a millimeter thick. Based on retinal processing principles, a bio-inspired computational 
model for online contrast adaptation is presented. The proposed method is developed with the help of the 
fuzzy theory and corresponds to the models of the retinal layers, their interconnections and 
intercommunications, which have been described by neurobiologists.  The retinal model has been coupled in 
the successive stage with the Hough transformation in order to create a robust lane marks detection system. 
The performance of the system has been evaluated with the number of test sets and showed good results.  

1 INTRODUCTION 

Human beings get a significant part of information 
through the visual perception system which consists 
of the retina, the visual nerve and the visual cortex in 
the midbrain. The retina in this sequence plays the 
role of a pre-processor and reduces the information 
delivered to the visual cortex. In this paper we like 
to point out how the retina adapts the intensity 
fluctuations that appear in the real-life situations and 
describe a method for the contrast adaptation with 
the help of the fuzzy–like sets.  

According to the work that is presented in 
(Hubel, 1995) and (Masland, 2001), the retina is a 
part of the brain, which has been separated from it 
during the early stages of development, but having 
kept the connections to the brain through the optic 
nerve. Five different types of cells form the retina: 
photoreceptors, horizontal cells, bipolar cells, 
amacrine cells and ganglion cells. They all are 
organized in a layered structure and the visual data 
flows from the upper layer (photoreceptors) to the 
lower layer (ganglion cells) in a parallel manner. 
Their interconnections are well described in (Hubel, 
1995). Among the other important functions of the 
retina, like edge extraction and motion detection 
(Olveczky et al., 2003), the real-time 
implementation of the contrast adaptation seems to 
be important for almost all image processing and 
robotic projects.  

As described in (Smirnakis et al., 1997), the 
contrast adaptation process begins in the lower 
layers of the retina (amacrine and ganglion cells) 
and allows the retinal neurons to use their dynamic 
range more efficiently. The recovery time of the 
visual system after changing the ambient intensity is 
several seconds (Baccus and Meister, 2002) and in 
the (Solomon et al., 2004) were reported that when 
the mean intensity increase, the retina becomes less 
sensitive. These biological principles for the contrast 
adaptation were taken as a basis for the 
development. 

As it pointed out in (Wilson, 1993), the contrast 
adaptation process which takes place in the retina 
can be described with help of differential equations. 
As an alternative, we found a method to describe 
this non-linear process with fuzzy-like sets and 
coupled the system with the Hough transform for 
lane marks detection. 

2 RETINA MODEL FOR 
CONTRAST ADAPTATION 

Five different layers (three vertical and two 
horizontal) build up the retina. Vertical layers are 
presented by photoreceptors (rods and cones), 
bipolar and ganglion cells and form the direct 
pathway of the visual data flow. Horizontal layers of 
the retina are presented by the horizontal and 
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amacrine cells and, together with the vertical layers 
form the indirect pathway. Both paths are needed for 
the sufficient visual information pre-processing and 
for forming the signals to the inner brain. 

2.1 Two Layers, Three Processing 
Tasks 

The cells in the inner retina are organized in a 
parallel manner and build together a highly 
distributed structure. In fig. 1 the digital 
representation of all five retinal cells and their 
interconnections is shown. 

 
Figure 1: Digital representation of the retinal layers. 

All retinal cells can be divided into two 
processing layers by their functionality. The first 
layer is presented by the photoreceptors, horizontal 
and bipolar cells, and performs the edge extraction 
(Hubel, 1995), (Olveczky et al., 2003), while the 
second layer, which is formed by the amacrine and 
ganglion cells, performs among other tasks the local 
motion detection and the direction of movement 
estimation (Masland, 2001), (Berry II et al., 1999). 
Since the contrast adaptation also begins in the 
lower retinal layers (amacrine and ganglion cells), it 
is important to understand the responses from the 
higher processing layers (photoreceptors – bipolars). 

2.2 Modelling of the Bipolar Cells 
Response 

The processing on the first layers starts from 
photoreceptors that sense the incoming light. Some 
of the photoreceptors are activated by the presence 
of light while others are activated when they do not 
detect light. All of them are arranged in a circular 
way so that one type is surrounded by other types 
(center–surround organization). In this paper we use 
the ‘on–center’ surrounding organization scheme 
(Hubel, 1995).  

On the next level, the horizontal cells get their 
input from the photoreceptors. They play a very 
important role in reducing the amount of information 
that is given to the inner brain and represent an 
additional mechanism which helps to adjust the 
retina response to the overall level of illumination. 
Their task is to measure the illumination across a 
broad region of photoreceptors and pass the average 
value further to the next level. Such calculation can 
be represented by Equation 1, where Pk is the output 
of each photoreceptor that is connected to a 
horizontal cell Hi ; n is the number of inputs of a 
certain horizontal cell. 
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On the third level, the bipolar cells get their 

inputs from the center photoreceptors directly and 
from the surrounding photoreceptors indirectly 
through the horizontal cells. These two inputs build 
the receptive field of each bipolar cell.  

The function of the bipolar cell involves a 
subtraction mechanism: it subtracts the value of the 
horizontal cell H from the value which is received 
from the center photoreceptors. Thus, the output of 
each bipolar cell Bi can be represented by the 
Equation 2, where Bi1 is the input from the 
photoreceptors and the Bi2 – is the input from the 
horizontal cell Hi. 

 
Bi = Bi1 – Bi2 (2) 

 
The output of each bipolar cell forms the 

response from the whole receptive field and in this 
stage retina performs the edge extraction function 
(Olveczky et al., 2003). As it is known from the 
classical theory for image processing (Shapiro, 
2001), the edge detection operators highlight the 
boundaries between regions of different intensities. 
This is, naturally, how human beings perceive the 
perimeter of an object, when it differs by its 
intensity from the background. In fig. 2 the stimuli 
with a step-change border and a simplified model of 
the first stages of the retina are presented. Here we 
assume that each photoreceptor corresponds to a 
single pixel in the image and each bipolar cell B is 
driven by the receptive field which is constructed by 
three photoreceptors – one for the center response 
and two for the surrounding. The receptive fields of 
the different bipolar cells overlap each other (Hubel, 
1995) and, thus, each photoreceptor is fed not only 
to the single bipolar cell, but to a number of bipolar 
cells. 
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Figure 2: The model and its edge response. 

In this example the stimuli change their 
intensities between the receptors 5 and 6 from 20 to 
80. The model’s response on the step-change border 
can be presented by the activities of the two peaks 
(negative and positive) exactly at the border between 
the two regions. The absolute values of the peaks are 
equal, but differ by the sign. Such bio-inspired edge 
extraction technique called zero-crossing has been 
confirmed by Marr (Marr, 1982) while investigating 
the neurobiological background of vision. Fig. 3 
shows the response of the bipolar cells at vertical 
edges. 

 

 
Figure 3: The stimuli and the bipolar cell’s response at 
vertical edges. 

The bipolar cells are fed to the amacrine and 
ganglion cells, but first the signal from the bipolar 
cell reaches the Contrast Adaptive Neuron. 

2.3 Contrast Adaptive Neuron and its 
Function 

According to (Smirnakis et al., 1997), when the 
mean intensity of ambient light increases, the retina 
becomes less sensitive. This process is organized 
with the help of the contrast adaptive neuron (CAN), 
which is located just after the bipolar cells and 
serves to adjust the input activity of the ganglion 
cells in order to use their dynamic range more 
efficiently. In fig. 4 the simplified model of the 

receptive field for a single ‘on–center’ ganglion cell 
with a CAN is presented. 

 
Figure 4: The model of the ganglion cells receptive field 
with CAN. 

For fig. 4 we assume that the response generated 
by the bipolar cell lies above the ganglion cells 
dynamic range and the CAN brings the bipolar cell 
response back to the dynamic range of the ganglion 
cell by changing its amplitude value. However, the 
retina adapts the high and low intensities differently.  

When the contrast changes from low to high 
(positive contrast change, e.g., going from normal 
light room conditions to the strong sun light at 
midday), in the first tens of a second the retina 
decreases the sensitivity of CAN dramatically, that 
results in a quick decrease of the ganglion cell’s 
activity. Such first step of the adaptation process is 
called “Fast adaptation” and helps to bring the 
ganglion cell input nearly to its normal input range. 
After that the second “Slow adaptation” phase 
occurs and lasts for about ten-fifteen seconds. Its 
main task is to fine tune the input of the ganglion 
cell and bring it completely to the middle point of 
the ganglion cell’s dynamic range.  

In case, when the contrast changes from high to 
low (negative contrast change, e.g., going from sun 
light to the room with normal light conditions), the 
retina reacts differently. There is no fast adaptation 
process, but the retina increases step-by-step the 
sensitivity of the ganglion cells by scaling up their 
inputs (with help of CAN). It takes up to twenty-
twenty five seconds till the inputs of the ganglion 
cells are in their dynamic range.  

These two statements were confirmed by 
Solomon et al (Solomon et al., 2004) while 
observing the reaction of the isolated retina of a tiger 
salamander during contrast changes. Fig. 5 shows 
the adaptation process for negative and positive 
contrast changes. 
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Figure 5: Contrast adaptation in salamander’s retina from 
(Solomon et al., 2004). 

In fig. 5 C depicts the contrast change values 
while the graphical representation shows the 
adaptation in the Salamanders retina on different 
contrast changes.  

We investigated which functions might 
approximate the curves for “negative” and 
”positive” adaptation and found out that for the 
approximation of the “positive” contrast adaptation 
process (fig. 6a, upper image) a simple rational 
function (fig. 6b, upper image) can be used. 
“Negative” contrast adaptation curve (fig. 6a, lower 
image) can be approximated by the square root 
function, which is shown in fig. 6b (lower image). 

 

 
                     a)                                       b)  

Figure 6: a) Natural adaptation curves (from (Solomon et 
al., 2004)) and b) their approximation functions. 

Here, in both functions the coefficient k is a 
scaling factor, which is responsible for the CAN’s 
selectivity. It controls how strong the adaptation 
should be in order to make the ganglion cells more 
or less sensitive, depending on the current light 
intensity situation. For instance, when the light 
intensity is high (e.g., in sunny midday) than the 
CAN should scale the intensity down by setting a 
rather large k; however, when the light intensity is 
just a bit above the dynamic range, the CAN should 
fine tune the contrast by setting a quite small value 
for the scaling coefficient. In this work we use the 
fuzzy-like sets for the definition of CAN’s selectivity 
coefficient k. 

3 USING FUZZY-LIKE SETS FOR 
CONTRAST ADAPTATION 

In recent decades a number of applications were 
found for fuzzy logic in economics, mathematics 
and engineering. Firstly introduced in (Zadeh, 1965), 
it is very helpful for modelling highly nonlinear 
processes like natural contrast adaptation  

3.1 Definition of a Fuzzy – like Set for 
Normal Contrast 

For the graphical representation of the model’s 
response we should declare, what the Normal 
contrast means and create a corresponding fuzzy – 
like set for its definition.  

Since we are working with bio-inspired edge 
extraction based on zero-crossings, we assume here 
that the absolute zero, as it shown on the 
characteristic curve in fig. 2 will be equal to the 
intensity 128, which represents the middle point of 
the intensity spectrum. When model analyzes the 
border between object and background, on the 
graphical representation the response will drop down 
and then raise up by a certain value (e.g., dark and 
light vertical lines in fig. 3, image 2).  

Then we analyzed which intensity differences 
can represent the Normal Contrast value (see fig.7).  

 

   
 

   
Figure 7: Biological edges with 16, 32, 64 and 128 
intensity difference levels. 

Fig. 7 shows four biological edges with 
intensities 16, 32, 64 and 128. The edges with the 
intensity differences of 16 and 32 do not have 
enough contrast and should be adapted. The edges 
with intensity difference of 64 and 128 do have 
enough contrast and thus there is no need for 
adaptation. However, in the real world situation the 
biological intensity difference of 128 is hardly 
possible, because it causes an intensity change of 
255 levels at the object-background border (e.g., 
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changing from black to white). Normally the 
contrast numbers, which can be detected in real 
images, lie in the range from 120 to 200, which 
caused the biological edge of [± 60 – ±100] to 
appear. That is why we do not have to adapt the high 
intensity values (e.g., from 180 to 255), we should 
only define such a process, which will adapt the 
edge values from the lower part of the intensity 
difference spectrum and bring them in to the middle 
region. Thus, only the “negative” contrast adaptation 
process should be used (fig. 6, lower images). 

Following this, we introduce a Normal Contrast 
fuzzy variable which should adapt all the values that 
lie under the intensity 60. It is presented in fig. 8. 

 

 
Figure 8: Fuzzy variable for Normal Contrast. 

On this image, the X-axis represents the intensity 
change I on the biological edge and Y-axis shows 
the membership μ of a certain intensity value in the 
Normal Contrast variable.  

There are three characteristic adaptation regions 
presented on this graphic. Since the fuzzy logic 
operates with linguistic variables, table 1 shows such 
a linguistic description and action which is needed 
for a certain region. 

Table 1: Linguistic definition of the model. 

Region Intensity  Action needed 
I Low Intensity  Strong adaptation 
II Low–to–Normal 

Intensity 
Adaptation based on the 
μ membership 
coefficient in order to 
control adaptation 
strength  

III Normal Intensity No adaptation needed 
 
When the bipolar cells deliver low intensities 

(values from 1 to 10), strong adaptation is needed; in 
the mid-range (values from 11 and 60), adaptation is 
also needed, but the system should control the 
strength of the adaptation by using the membership 

coefficient μ; and when the intensity is normal 
(values above 61), then no adaptation is needed.  

In order to create the system we should define 
the set of rules for each of the regions 
mathematically. Since we are using the “negative” 
adaptation process, a curve that will represent this 
process should have the shape of the square root 
function. Table 2 shows the mathematical 
representation for each action regions. 

Table 2: Mathematical representation of the model. 

Region Intensity values Representation 
I 1 – 10 K = 2 ·√x 

Inew = Ii · K 
II 11 – 60 μ = (2 · Ii + 20)  / 100 

K = (2 - μ) · √x 
Inew = Ii · K 

III 61 – 127 Inew = Ii 
 
The adaptation process in nature lasted for 

several seconds. Here this process is modelled with 
iteration mechanism and x represents current 
iteration; K is an adaptation coefficient and should 
be calculated differently for regions I, II and III. It 
represents the CAN selectivity and controls the input 
gain to the ganglion cells. Ii represents the input 
intensity of CAN and Inew is a new calculated value 
of the adapted intensity; μ is a membership 
coefficient, which influences the amplification factor 
and is calculated according to the equation of the 
characteristic line in region II (see fig. 8).  

3.2 Adaptation Algorithm 

The algorithm for the contrast adaptation involves 
all the definition for the variables that have been set 
early, like Ii,  Ilow, Inormal,  Inew, μ, K and x which is 
initially set to 0. Firstly, based on the current 
intensity Ii, μ is calculated. 

 
if (Ii>1&&Ii<=Ilow){μ = 0} 
if (Ii>Ilow&&Ii<=Inormal){ 

μ = (2·Ii+20)/100} 
if (Ii>Inormal){μ = 1} 
 
Then the adaptation coefficient K and the 

adapted intensity Inew based on the equations in table 
2 is calculated. 

 
if (μ<1){  
    while (Inew<=Inormal){ 
         K = (2 - μ) · √x 
         Inew = Ii · K 
         x = x + 1; 
     } 
 } 
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 else {Inew=Ii} 
 
The process stops, when the calculated intensity 

Inew reaches the normal intensity Inormal that has been 
set to 60 empirically. 

3.3 Adaptation Results 

During the investigation and development the model 
has been tested on different types of images.  
Experiments were divided into three categories by 
the specific adaptation process:  

 
• adaptation of the low contrast; 
• adaptation of the low-to-normal contrast; 
• adaptation of the real world images; 
 
The first two categories were tested with 

synthetic images. Synthetic images were chosen 
because the results of the processing can be 
predicted in order to make the model’s proof of 
concept under different conditions. To demonstrate 
it a number of images with different intensity 
changes were chosen. Fig. 9 represents two of them. 

 

        
                     a)                                    b) 

Figure 9: Experimental data. 

Fig. 9a shows the intensity change of 10 levels 
(from 255 to 245) and figure 9b corresponds to a 
change of 50 levels (from 255 to 205) of the 
intensity spectrum. The digits on the images 
represent just the absolute intensities and will not 
appear in the modelling results.  

Fig. 10 shows the calculated bipolar cells 
activity for fig. 9a and 9b correspondently. 

 

        
                     a)                                   b)                  

Figure 10: Calculated bipolar cell’s responses to the 
experimental data in fig. 9. 

For the first experiment we took fig. 10a. The 
initial data (fig. 9a) shows minor intensity change at 
the object-background border, which causes a low 
contrast and hardly distinguished border response 
(fig. 10a). The initial intensity change Ii equals 3 
(see equations 1 and 2), which corresponds to the 

low intensity region in fig. 8. Initial data: Ii = 3; μ = 
0, => K = 2 ·√x. 

For the adaptation of such a low intensity 104 
iterations are needed. Table 3 shows some of them. 

Table 3: First experiment data. 

x K Inew Graphical representation 
 

1 2 6 
2 2.82 8 
3 3.46 10 
4 4 12  

… 
101 20.09 60 
102 20.19 60 
103 20.30 60 
104 20.40 61  
 
The second experiment has been performed with 

fig. 10b. The initial intensity change here Ii is 16, 
which corresponds to the low-to-normal intensity 
region in fig. 8. Adaptation is still needed, but the 
strength of the adaptation should be controlled. 
Initial data: Ii = 16; μ = 0.12, => K = (2 - μ) · √x. 

According to the algorithm, the adaptation of 
such intensity will be done in 5 iteration steps. Table 
4 represents this process. 

Table 4: Third experiment data. 

x K Inew Graphical representation 
 

1 1.88 30 
2 2.65 42 
3 3.25 52 
4 3.76 60 
5 4.20 67 

x = 5, Inew = 67: 

  
 
As it can be seen on the results presented above, 

the contrast adaptation model shows the expected 
responses on the different stimuli with different 
adaptation time. The intensity change adaptation 
correlates with its natural representation (fig. 6, 
lower image). To confirm this, fig. 11 shows the 
adaptation curves for each experiment. 

 

       
                    a)                                  b)  

Figure 11: Adaptation curves for all experiments. 
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3.4 Adaptation of the Real World 
Images 

The model has been already tested on the synthetic 
images; the next step is to see how it will respond on 
the real world images. For this purpose we choose a 
number of images with the real road scenes that have 
been taken on a german highway. Some of these test 
images are shown in Fig. 12. 

 

   
 

Figure 12:  Real road scenes. 

Then we processed the images first with the 
classical biological edge operator without the 
contrast adaptation mechanism. On the 2nd phase the 
same images have been processed with the bio-
inspired edge operator and with the contrast 
adaptation module. Fig. 13 shows the results. 
 

   
 

   

   

Figure 13: Calculated biological edge without (left) and 
with (right) contrast adaptation for fig. 12. 

The difference between the adapted and the not 
adapted images can be clearly seen. The edges, that 
are even not fully visible on the left images, are well 
seen on the right ones. Besides, the initial images 
(fig. 12) were taken under slightly different 
illumination conditions: the first image was taken 
under bright sun light while the second one at early 
evening. Nevertheless, the adapted images show 
good results especially in underlining the lane road 
marks. This gives the possibility to use this contrast 
adaptation model for robust lane detection. 

4 LANE DETECTION 
APPLICATION 

Lane keeping assistant systems have been described 
in a number of recent publications, e.g. (Risack et 
al., 2000), (Chang et al., 2003). For such  systems 
detection of the lane marks is a key feature for 
further processing. The lane marks form lines with 
certain slopes and thus, for its detection a good 
shape extraction method is needed.  

The Hough transformation (Leavers, 1992) is a 
pattern recognition technique which is known for its 
performance in locating given shapes in images. 
Some researches have reported that the Hough 
transform correlates with the processes that happen 
in the striate cortex and in fact, reproduces the 
natural mechanism of objects contour extraction 
(Hubel, 1995), (Blasdel, 1992), (Ballard et al., 
1983), (Brueckmann et al., 2004).  

Very interesting state-of-the-art research work is 
presented in (Serre, 2007). The authors describe the 
usage of the midbrain biological mechanisms for the 
real world scene segmentation and objects 
recognition. Furthermore, they also use the Hough 
transformation as a shape localization method. 

That is why we propose to use the Hough 
transform as a lane marks detection method together 
with the retina model with contrast adaptation as a 
preprocessing method. This gives the possibility to 
create a fully bio-inspired system for the lane mark 
detection. The architecture of such a system is 
shown in fig. 14. 

 

Image 
Acquisition
& Biological 

Edge Detection

Hough 
Processing

Contrast 
Adaptation

Results 
Interpretation

Road Image Sequences

 

Figure 14: Architecture of the bio-inspired lane detection 
system. 

The biological edge detection and contrast 
adaptation stages were well described above. In fig. 
14, after contrast adaptation the Hough 
transformation takes place. Hough transformation 
involves a voting scheme for the shape detection. In 
particular, here we extract the lines of the different 
slopes.  Fig. 15 represents the Hough spaces built 
from road edge picture (fig. 13, two right images) 
and then the maximas are marked. 
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Figure 15: Hough spaces with local maximas. 

After the maxima were detected, the 
interpretation of the results should be performed. 
Each maximum on the Hough space corresponds to 
the line with a certain slope in a Cartesian space and 
after processing the detected lane marks will be 
highlighted. Fig. 16 shows the final results. 

 

   
 

Figure 16: Detected lane marks in the adapted images. 

5 CONCLUSIONS AND FUTURE 
WORK 

In this paper a bio-inspired model for contrast 
adaptation has been presented. The model has been 
tested with different test sets and showed good 
results. Furthermore, the proposed contrast 
adaptation algorithm has been coupled with the 
Hough-based lane marks detector. This coupling 
showed good performance and full correspondence 
to the predicted behaviour.  

Future work will concentrate on development of 
the lane keeping assistant system using the bio-
inspired techniques further. In particular, for the 
preprocessing stage the colour perception model will 
be investigated, implemented and will be used for 
the road scenes segmentation and traffic signs 
detection. 

Besides, for the post-processing and trajectory 
prediction stages time-to-lane crossing approach will 
be taken in to the account. It is likely possible that it 
might be modelled with the natural timing delay-
computational maps. This problem will be also 
investigated and the results will be reported.  
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