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Abstract: A two-phase annotation method for semantic labeling based on the edit distance is proposed. This dynamic 
programming approach stresses on a non-exact string matching technique that takes full advantage of the 
underlying grammatical structure of 65,000 parse trees in a Treebank. It is based on the assumption that 
human language understanding is relevant to concrete past language experiences rather than any abstract 
linguistic rules. This shallow technique is inspired by the research in the area of bio-molecular sequences 
analysis which advocates high sequence similarity usually implies significant function or structural 
similarity. Experimental results for recognizing various labels in 10,000 sentences are used to justify its 
significances.  

1 INTRODUCTION 

Automatic information extraction has received a 
great deal of attention in the latest development of 
information retrieval. While a plethora of issues 
relating to questions of accuracy and efficiency have 
been thoroughly discussed, the problem of extracting 
meaning from natural language has scarcely been 
addressed. When the size and quantity of documents 
available on the Internet are considered, the demand 
for a highly efficient system that identifies the 
semantic meaning is clear. Case frame is one of the 
most important structures that are used to represent 
the meaning of sentences (Fillmore, 1968). One 
could consider a case frame to be a special, or 
distinguishing, form of knowledge structure about 
sentences. Although several criteria for recognizing 
case frames in sentences have been considered in the 
past, none of the criteria serves as a completely 
adequate decision procedure. Most of the studies in 
natural language processing (NLP) do not provide 
any hints on how to map input sentences into case 
frames automatically. As a result, both the efficiency 
and robustness of the techniques used in information 
extraction is highly in doubt when they are applied 
to real world applications. 

The objective of this research is twofold. First, 
a shallow but effective sentence chunking process is 
developed. The process is to extract all the phrases 
from the input sentences, without being bogged 
down into deep semantic parsing and understanding. 

Second, a novel semantic labeling technique that is 
based on the syntactic and semantic tags of the latest 
Treebank is being constructed (CKIP, 2004). One of 
our primary goals in this research is to design a 
shallow but robust mechanism which can annotate 
sentences using a set of semantic labels. While the 
classical syntactic and semantic analysis is 
extremely difficult, if not impossible, to systematize 
the current research in NLP, our approach does not 
require any deep linguistic analysis to be formalized. 
The annotation will provide piecemeal the 
underlying semantic labels of the sentence. The 
organization of the paper is as follows. The related 
work in semantic labeling and sentence chunking are 
first described in Section 2. In this research, each 
word in sentences has two attributes, i.e. part-of-
speech (POS) and semantic classes (SC). Any input 
sentence is first transformed into a feature-enhanced 
string. A two-phase feature-enhanced string 
matching algorithm which is based on the edit 
distance is devised. Section 3 shows how the 
algorithm can be applied in the semantic labeling 
using 65,000 parse trees in a Treebank. The system 
has already been implemented using Java language. 
In order to demonstrate the capability of our system, 
an experiment with 10,000 sentences is conducted. 
A detailed evaluation is explained in Section 4 
followed by a conclusion. 
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2 RELATED WORK 

Following the framework of case grammar which is 
originally proposed by Fillmore in 1968, it has been 
accepted that every nominal constituent in every 
language bears a single syntactic–semantic case 
relation (Jackendoff, 1983; Dowty, 1991). In earlier 
systems, Somers describes a prototype computer 
program that attempts to map surface strings of 
English onto a formalism representing one level of a 
deep structure (Somers, 1982). Weischedel et al. 
(1993) predict the intended interpretation of an 
utterance when more than one interpretation satisfies 
all known syntactic and semantic constraints, and 
ascertain its semantic labels. It is on the basis that 
semantic features inherent in the main verb of a 
sentence can be used to infer the potential semantic 
labels of the sentence. Utsuro et al. (1993) describe a 
method for acquiring surface semantic labels of 
Japanese verbs from bilingual corpora. They make 
use of translation examples in two distinct languages 
that have quite different syntactic structures and 
word meanings. Similarly, Kurohashi and Nagao 
(1994) have developed a powerful parser for 
Japanese sentences based on the case frames 
encoded in a verb dictionary. The dictionary 
contains some typical example sentences for each 
case frame. The dictionary then tags the proper case 
frame for an input sentence based on the sentence 
similarities. 

Any high level language understanding process, 
such as semantic labeling, must involve chunking 
sentences into segments. Motivated by the 
psycholinguistic evidence which demonstrates that 
intonation changes or pauses would affect the 
language understanding processes in humans (Gee & 
Grosjean, 1983), Abney (1991) proposes the concept 
of text chunking as a first step in the full parsing. A 
typical chunk of a text is defined as consisting of a 
single content word surrounded by a constellation of 
function words, matching a fixed template. Church 
also uses a simple model for finding base non-
recursive NPs in sequence of POS tags (Church, 
1988). Turning sentence chunking into a bracketing 
problem, Church calculates the probability of 
inserting both the open and close brackets between 
POS tags. Each chunking alternative is ranked and 
the best alternative is selected. Using 
transformation-based learning with rule-template 
referring to neighboring words, POS tags and chunk 
tags, Ramshaw & Marcus (1995) identify essentially 
the initial portions of non-recursive noun phrases up 
to the head, including determiners. These chunks are 
extracted from the Treebank parses, by selecting 
NPs that contain no nested NPs. While the above 

approaches have been proposed to recognize 
common subsequences and to produce some forms 
of chunked representation of an input sentence, the 
recognized structures do not include any recursively 
embedded NPs. As the result, the resultant fragments 
bear little resemblance to the kind of phrase 
structures that normally appear in our languages.  

While it may be too computationally 
demanding to have a full syntactic and semantic 
analysis of every sentence in every text, Sima’an 
(2000) presents a Tree-gram model which integrates 
bilexical dependencies, and conditions its 
substitutions based on the structural relations of the 
trees that are involved. The Tree-gram model is a 
typical example of data-oriented parsing (DOP) 
advocated by Bod et al. (2003). The basic ideas of 
the Tree-gram model are to (i) take a corpus of 
utterances annotated with labeled trees; (ii) 
decompose every corpus tree into the bag of all its 
subtrees; (iii) treat the union of all these subtree bags 
as a stochastic tree substitution grammar, where the 
substitution probability of each subtree is estimated 
as the relative frequency of this subtree among the 
subtrees with the same root label. Inspired by the 
Tree-gram model, in this research, we propose a 
mechanism in shallow semantic labeling as well as 
sentence chunking by matching any input sentence 
with the trees in a Treebank through a two-phase 
feature-enhanced string matching. Different from the 
stochastic tree substitution grammar proposed in the 
Tree-gram model, our approach, characterized by an 
optimization technique, looks for a transformation 
with a minimum cost, or called edit distance. While 
the concept of edit distance is commonly found in 
the conventional pattern matching techniques 
(Gusfield, 1997; Tsay & Tsai, 1989), we take a step 
further in applying the technique in shallow 
semantic labeling. The detailed discussion of the 
algorithm is shown as follows.  

3 TWO-PHASE  
FEATURE-ENHANCED STRING 
MATCHING ALGORITHM 

Our labeling is defined as a two-phase feature-
enhanced string matching using the edit operations. 
For every input sentence, a coarse-grained syntactic 
matching is conducted in our first phase of matching. 
The matching relies on a set of coarse-grained but 
global part-of-speech (POS) tags. The major 
objective of this phase is to shortlist all the potential 
trees among 65,000 parse trees in the CKIP 
Treebank, which are relevant to the input sentence, 
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without getting bogged down into computational 
complexity with other linguistic details. The second 
phase of the matching is followed to compute the 
dissimilarity measure between the input sentence 
and every short-listed candidate that is identified in 
the first phase. Detailed POS and semantic class (SC) 
tags will be employed. As a result, a candidate tree 
which has the minimum dissimilarity with the input 
sentence will be identified. The underlying semantic 
labels and phrases of the candidate tree are used to 
determine the shallow language patterns of the input 
sentence. The details of the two-phase matching are 
explained in the following. 

3.1 Coarse-Grained Syntactic 
Matching 

In the first phase of matching, each word is 
represented by its corresponding POS. Let S be an 
input sentence and the T be a tree in a Treebank, si 
and tj be two tokens in S and T with attribute POSi 
and POSj respectively. We define the cost function 
for the change operation in the traditional edit 
operations (Wagner & Fischer, 1974) si →  tj to be 

( ) ),( jiji POSPOSutsR =→  (1)
where u(POSi, POSj) defines the cost due to the 
difference between the POS of the two tokens. The 
POS tags from the Chinese Knowledge Information 
Processing Group (CKIP) of Academia Sinica are 
employed (Chen et al., 1996). The tags are 
subdivided into 46 major POS classes which are 
further refined into more than 150 subtypes. 
However, in this coarse-grained matching, only the 
major POS classes will be considered. To figure out 
the cost function u(⋅,⋅) in the coarse-grained 
matching, all the major POS tags are organized into 
a hierarchical structure with an associated hard-
coded cost function. Figure 1 shows the structure of 
notional words and describes the relative distances 
between the adjectives (A), verbs (V), status-verbs 
(VH), measure-words (Nf), nouns (N), position-
words (Ng), time-words (Nd) and place-words (Nc). 
All notional words have definite meanings in the 
language. The cost function is based on their 
interchangeability, the degree of flexibility in 
placement in the syntax, and the similarity of their 
acceptable modifiers. For example, Chinese verbs 
and adjectives share a lot of common features 
syntactically, i.e. both can be predicates or modified 
by adverbs and the word, not. All these features fail 
to appear in nouns. The abbreviations in bracket 
indicate the original POS tags marked by the CKIP. 
The corresponding tree structure of the XML is 
shown in Figure 2. 

 
<Head toll="5"> 
  <NodeB toll="2"> 
    <NodeC toll="2"> 
      <Adjective toll="5"/> 
      <Verb toll="5"/> 
    </NodeC> 
    <Status-Verb toll="7"/> 
  </NodeB> 
  <NodeD toll="2"> 
    <Measure-Word toll="7"/> 
    <NodeE toll="2"> 
      <Noun toll="5"/> 
      <NodeF toll="2"> 
        <Position-word toll="3"/> 
        <NodeG toll="1"> 
          <Time-word toll="2"/> 
          <Place-word toll="2"/> 
        ... 
</Head>  

Figure 1: XML illustrating the relative distances between 
8 different types of POS. 
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Figure 2: Corresponding tree structure of the XML shown 
in Figure1. 

The cost function u(⋅,⋅) reflects the difference 
based on the tag toll encoded in the XML as 
shown in Figure 1. The function also indicates the 
degree of alignment between the syntactic structure 
of the input sentence and the trees in the Treebank. 
Although two feature-enhanced strings with the 
same POS sequence do not imply they will share the 
same syntactic structure, this coarse-grained 
syntactic matching shortlists the potential trees by 
imposing a necessary, even not sufficient, constraint 
on its syntactic structure and limits the potential 
search space in the subsequent stage of semantic 
matching. 
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3.2 Computation of Semantic 
Dissimilarity 

What this second phase matching basically does is to 
make a detailed comparison between the input 
sentence and the short-listed trees in its earlier stage. 
In this phase, each Chinese token has two attributes, 
i.e. a detailed part-of-speech (POS) and semantic 
class (SC). Similar to the approach in Section 3.1, 
we define the cost function for the change operation 
si →  tj to be 

( ) ( )),(),,( jijiji SCSCvPOSPOSuftsR =→  (2)

where the function f is the dissimilarity function 
relied on two major components. The first 
component u(POSi, POSj) defines the partial cost 
due to the difference between the detailed POS of 
the words. The detailed POS tags are organized in 
XML format, similar to the approach demonstrated 
in Figure 1. Figure 3 shows the further breakdown of 
the nouns (Na) which is divided into in-collective 
(Nae) and collective (Na1) nouns. The collective 
nouns are then subdivided into in-collective concrete 
uncountable nouns (Naa), in-collective concrete 
countable nouns (Nab), in-collective abstract 
countable nouns (Nac), in-collective abstract 
uncountable nouns (Nad). The figure associated 
with the arcs in the Figure 3 illustrates the cost 
function. 

Na 

Na1 Nae 

  

Naa Nab Nac Nad 

Naea Naeb 
1 1 1 1 

1 1 

2 

1 
1 

2 

 
Figure 3: Tree structure of Nouns (Na) based on the CKIP 
Academia Sinica. 

The second term in Eqn. (2) defines another 
partial cost due to the semantic differences. In our 
approach, the words in the input sentences and the 
trees are identified using a bilingual thesaurus 
similar to the Roget’s Thesaurus. The is-a hierarchy 
in the bilingual thesaurus, shown the underlying 
ontology, can be viewed as a directed acyclic graph 
with a single root. Figure 4 shows one of the is-a 
hierarchies in the thesaurus using our Tree Editor. 
While the upward links correspond to generalization, 
the specialization is represented in the downward 

links. The hierarchies demonstrated in the thesaurus 
are based on the idea that linguists classify lexical 
items in terms of similarities and differences. They 
are used to structure or rank lexical items from more 
general to the more special. 

 
Figure 4:  is-a hierarchy in the bilingual thesaurus. 

Based on the is-a hierarchy in the thesaurus, we 
define the conceptual distance d between two 
notional words by their shortest path lengths. Given 
two words t1 and t2 in an is-a hierarchy of the 
thesaurus, the semantic distance d between the 
tokens is defined as follows: 
d(t1, t2) =     minimal number of is-a 

relationships in the shortest path 
between t1 and t2  

(3)

The shortest path lengths in is-a hierarchies are 
calculated. Initially, a search fans out through the is-
a relationships from the original two nodes to all 
nodes pointed to by the originals, until a point of 
intersection is found. The paths from the original 
two nodes are concatenated to form a continuous 
path, which must be a shortest path between the 
originals. The number of links in the shortest path is 
counted. Since d(t1, t2) is positive and symmetric, 
d(t1, t2) is a metric which means (i) d(t1, t1) = 0; (ii) 
d(t1, t2) = d (t2, t1); (iii) d(t1, t2) + d(t2, t3)  ≥  d(t1, t3). 
At the same time, the semantic similarity measure 
between the items is defined by: 

⎩
⎨
⎧ ≤

=
otherwise

),(if),(
:),(

MaxInt
dttdttd

ttv maxjiji
ji

  (4)

where dmax is proportional to the number of lexical 
items in the system and MaxInt is a maximum 
integer of the system. This semantic similarity 
measure defines the degree of relatedness between 
the words. Obviously, strong degree of relatedness 
exists between the lexical tokens under the same 
nodes. On the other hand, for the cost of the insert 
and delete operations, we make use the concept of 
collocation that measures how likely two words are 
to co-occur in a window of text. To better 
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distinguish statistics based ratios, work in this area is 
often presented in terms of the mutual information 
(MI), which is defined as  

)()(
),(

log),(
1

1
21

jj

jj
jj tPtP

ttP
ttMI

×
=

−

−
−

 (5)

where tj-1 and tj are two adjacent words. While P(x, y) 
is the probability of observing x and y together, P(x) 
and P(y) are the probabilities of observing x and y 
anywhere in the text, whether individually or in 
conjunction. Note that tokens that have no 
association with each other and co-occur together 
according to chance will have a MI value close to 
zero. This leads to the cost function for insertion and 
deletion shown in Eqns. (6) and (7) respectively. 

( )
⎩
⎨
⎧ >>×

=→
−

otherwise
0if

MaxInt
zek

tR
z

j
ε

λ  (6)

where z =min {MI(tj-1 , tj), MI(tj , tj+1)} 
 

( )
⎩
⎨
⎧ >>×

=→ +−
− +−

otherwise
0),(if 11

),( 11

MaxInt
ttMIeltR jj

ttMI

j

jj ελ
(7)

where k, l, ε are three constants relied on the size of 
the active corpus. 

Obviously, the insertion operation will be 
penalized if the co-occurrence between the newly 
inserted word and its neighbors is low. Similarly, the 
deletion operation is most likely to happen if there is 
a high co-occurrence between the adjacent pairs 
after the deletion. Using the above cost functions for 
the three types of edit operations, the tree in the 
Treebank with minimum cost is being chosen to be 
the best approximation of the input sentence and its 
associated semantic labels will be adopted. Shallow 
language patterns are then extracted based on the 
recursive structures and semantic labels appeared in 
the Treebank. The experimental results of the 
semantic labeling are shown in the section below. 

4 EXPERIMENTAL RESULTS 

As mentioned in Eqn. (2), several approaches have 
been used to define the dissimilarity function f by 
combining the semantic differences and the detailed 
POS tags in our second phase feature-enhanced 
string matching. In our evaluations, five different 
types of dissimilarity function f are applied. They are  
(i) f1(u, v)  = u(POSi, POSj) 
(ii) f2(u, v)  = v(SCi, SCj)  
(iii) f3(u, v)  = u(POSi, POSj) + v(SCi, SCj) 
(iv) f4(u, v)  = min (u(POSi, POSj) ,  v(SCi, SCj)) 
(v) f5(u, v)  = max (u(POSi, POSj) , v(SCi, SCj)) 

Dissimilarity function f1(u, v) provides a detailed 
version of our coarse-grained syntactic matching. 
Detailed POS tags are used as the dissimilarity 
measure in the labeling. Similarly, f2(u, v) considers 
only the semantic class of the words. The other three 
combine both syntactic and semantic features in 
defining the dissimilarity measures. We have tested 
our shallow semantic labeling with 10,000 sentences 
with the Treebank. Since this research is concerning 
with shallow semantic labeling, we have no 
incentive to match the trees/subtrees in the Treebank 
with very complicated structures. The average 
sentence length is around 13.7 characters per 
sentence. Table 1 summarizes the results of our 
system evaluation. The third and fourth columns in 
the table are number of sentences in each range of 
edit distance and their average edit distances. The 
edit distance is defined as a minimum cost in 
transforming the input sentence with the closest 
sentence pattern in the Treebank. In other words, the 
smaller the distance, the higher similarity they have. 

Table 1: Sentence analysis in the experiment. Edit distance 
is defined as a minimum cost in transforming the input 
sentence with the closest sentence pattern in the Treebank. 
The smaller the distance, the higher similarity they have.  

Dissimilarity 
function f 

Range of 
Edit distance

% of 
sentences 

Average edit 
distance 

0-25 13.9 19.2 
26-50 16.3 40.5 
51-75 19.7 63.6 

76-100 27.9 89.6 

f1(u, v) 

101-150 22.2 124.9 
0-25 11.3 19.3 
26-50 15.6 41.4 
51-75 17.7 65.2 

76-100 29.3 91.8 

f2(u, v) 

101-150 26.1 125.7 
0-25 24.1 17.9 
26-50 31.6 38.2 
51-75 22.7 62.3 

76-100 12.8 85.5 

f3(u, v) 

101-150 8.8 121.4 
0-25 18.6 19.1 
26-50 19.1 41.3 
51-75 30.2 64.7 

76-100 14.7 88.6 

f4(u, v) 

101-150 17.4 124.2 
0-25 20.5 19.6 
26-50 22.4 40.9 
51-75 26.9 58.2 

76-100 15.3 87.9 

f5(u, v) 

101-150 14.9 128.4 
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If it is considered as a good match where the 
edit distances are equal to or less than 50, then it can 
be observed, in Table 1, that the dissimilarity 
functions f3,  f5 and f 4 all produce higher percentage 
of sentences with lower edit distance. This reflects 
both the information from syntactic tags and 
semantic classes provide useful clues in our shallow 
semantic labeling. Our experiments are not 
conducted with perfect information. It is worthwhile 
to mention that more than 530 sentences have 
incomplete information which mainly comes from 
proper nouns, or out-of-vocabulary (OOV) words. 
Both of them have neither defined POS nor semantic 
class. All these information will be annotated with a 
default value which will certainly induce errors in 
our labeling. While it is inevitable to have OOV 
words in any real corpus, the performance, due to 
the coverage of POS and semantic classes, does not 
deteriorate much in our system. The labeling is still 
feasible over the sentences with OOV words. This 
tolerance ability provides the graceful degradation in 
our shallow semantic labeling. While other systems 
are brittle and working only in all-or-none basis, the 
robustness of our system is guaranteed. At the same 
time, while real text tends to have grammatical 
mistakes and error-prone, these problems can be 
tackled with an acceptable tolerance in our system. 

 In our second evaluation, we have tested our 
algorithm in recognizing several major semantic 
labels that appear in our sentences. The semantic 
labels include theme, goal, property, range, 
agent, predication, location, time. As 
with other text analysis, the effectiveness of the 
system appears to be dictated by recall and precision 
parameters where recall (R) is a percentage of how 
many correct labels can be identified while precision 
(P) is the percentage of labels, tackled by our system, 
which are actually correct. In addition, a common 
parameter F is used as a single-figure measure of 
performance which combines recall (R) and 
precision (P) as in follows, 

RP
RPF

+×
××+

= 2

2 )1(
β

β  (8)

We set β = 1 to give no special preference to either 
recall or precision. The recall, precision and F-score 
for the semantic labels in dissimilarity function f3 are 
shown in Table 2. 

As shown in the last row in Table 2, the 
precision and recall of all semantic labels are 
calculated by considering all the semantic labels that 
appear in the sentences, rather than by averaging the 
measures for individual semantic labels. It is worth 
noting that the greatest differences in performance 
are the recall while the precision remains relatively 
steady in most semantic labels. 

Table 2: Evaluation of different semantic labels in the 
dissimilarity function f3. Brackets show the results 
obtained in the derivation subtrees. 

 Elementary Subtree (Derivation 
b )Semantic Label Recall Precision F-score 

theme 0.79 (0.88) 0.82 (0.85) 0.805 
( )goal 0.80 (0.78) 0.79 (0.76) 0.795 
( )property 0.89 (0.78) 0.91 (0.83) 0.900 
( )range 0.94 (0.93) 0.92 (0.91) 0.930 
( )agent 0.92 (0.92) 0.87 (0.85) 0.894 
( )

predication 0.76 (0.80) 0.81 (0.78) 0.784 
( )location 0.92 (0.92) 0.91 (0.89) 0.915 
( )Time 0.93 (0.93) 0.95 (0.94) 0.940 
( )

experiencer 0.87 (0.89) 0.86 (0.88) 0.865 
( )manner 0.79 (0.85) 0.84 (0.83) 0.814 
( )possessor 0.91 (0.93) 0.88 (0.89) 0.895 
( )condition 0.80 (0.84) 0.82 (0.81) 0.810 
( )all labels 0.88 (0.84) 0.89 (0.88) 0.885 
( )

One possible explanation is that the low recall rates 
in some labels are due to less complete coverage of 
linguistic phenomena. In addition, we define an 
elementary subtree that spans only on a sequence of 
words, as well as a derivation subtree that contains 
at least one branch of elementary subtree. It may be 
expected the F-score of the derivation subtrees will 
be much worse than its counterpart, however, Table 
2 shows surprisingly the differences in the overall 
accuracy in two main types of subtrees are not 
significant. An explanation is that we have 
approached chunking as well as assigning the most 
salient semantic label to the chunks based on the 
POS and semantic tags. Even though there may be 
some misclassification in the terminal nodes, this 
will not hinder the system to tag the semantic labels 
in the longer chunks. In other words, the longer 
chunks are less error prone in our semantic labeling. 
This shallow semantic labeling technique produces 
an output that abstract away the details but retains 
the core semantic structure of the actual sentence. 
Pure linguistic theories may well have solutions to 
the semantic labeling that tends to be highly theory-
specific with less emphasis on real text. Our shallow 
approach does not focus on how well it explains 
various structural and interpretive phenomena in 
linguistics perceptive, but on how well it predicts the 
semantic label of sentences. It aims at theory-neutral 
annotation and derives linguistically-plausible 
semantic labels or short phrase structures using a 
Treebank. We have suggested that semantic labels 
can be detected by grouping sequences of words that 
occur together more often with high mutual 
information. While the approach has been 
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implemented successfully in the Chinese language 
as illustrated in our evaluation, the idea delineated 
certainly does not limit or tailor-made for any 
particular language. Only a minor modification is 
needed to apply the technique to other languages. 

5 CONCLUSIONS 

In this paper, we have illustrated a shallow technique 
in which semantic labels are extracted in forms of 
chunks of phrases or words using a two-phase 
feature-enhanced string matching algorithm. While 
the first phase is to shortlist the potential trees in the 
Treebank, chunks are further tagged with semantic 
labels in the second phase. Based on the linguist’s 
conception of phrase structure, our approach does 
not require a full syntactic parse to pursue semantic 
analysis and the recursively embedded phrases can 
also be identified without pain. This shallow 
technique is inspired by the research in the area of 
bio-molecular sequences analysis which advocates 
high sequence similarity usually implies significant 
function or structural similarity. It is characteristic 
of biological systems that objects have a certain 
form that has arisen by evolution from related 
objects of similar but not identical form. This 
sequence-to-structure mapping is a tractable, though 
partly heuristic, way to search for functional or 
structural universality in biological systems. With 
the support from the results as shown, we conjecture 
this sequence-to-structure phenomenon appears in 
our sentences. The sentence sequence encodes and 
reflects the more complex linguistic structures and 
mechanisms described by linguists. While our 
system does not claim to deal with all aspects of 
language, we suggest an alternate, but plausible, way 
to handle the real corpus. 
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