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Abstract: This paper introduces a new methodology to aid the tracing and measurement of lines in digital images.  
The techniques in this paper have specifically been applied to the labour intensive process of measuring 
roots in digital images.  Current manual methods can be slow and error prone, and so we propose a semi-
automatic way to trace the root image and measure the corresponding length in the image plane.  This is 
achieved using a particle filter tracker, normally applied to object tracking though time, to trace along a root 
in an image.  The samples the particle filter generates are used to build a probabilistic graph across the root 
location in the image, and this is traversed to produce a final estimate of length.  The software is compared 
to real-world and artificial length data.  Extensions of the algorithm are noted, including the automatic 
detection of the end of the root, and the detection of multiple growth modes using a mixed state particle 
filter. 

1 INTRODUCTION 

Within biological science experiments it is common 
for measurements of samples of interest to be made 
from digital images. This paper is concerned in 
particular with the length measurement of roots of 
Arabidopsis thaliana from images of plates of roots 
taken with a digital camera. This process is largely 
carried out manually, by measuring the roots by 
hand in an image processing package such as the 
public domain ImageJ (Abramoff et al., 2004).  For 
each root, the user must manually mark a line along 
its length, and the software then calculates the 
length. Other methods measure mouse travel 
distance as the user traces an image of a root (Pateña 
& Ingram, 2000). Clearly, it would be useful to 
automate as much of this process as possible, 
particularly the laborious and error-prone manual 
tracing step. 

Some tools already exist to aid with root 
measurement, but each has its drawbacks or specific 
mode of operation.  RootLM (Qi et al., 2007), for 
example, is capable of measuring growth rates over 
daily intervals, but requires root growth to be 

marked up on the petri dish in marker pen, and the 
removal of the actual roots, prior to scanning. MR-
RIPL 2.0 (Smucker, 2007) estimates the lengths and 
widths of roots by applying global thresholding and 
thinning processes to identify roots on an opposing 
intenisty background, an approach which can be 
hampered by clutter on the image plane.  Other tools 
similarly use thresholding and thinning to isolate the 
roots (Bauhus & Messier, 1999), and  can also be 
sensitive to noise  and clutter. 

In this paper, a robust probabilistic method of 
root length measurement is presented.  This 
approach uses a particle filter to track along the root 
image, building a probabilistic graph using the 
sample locations and observed likelihoods at those 
locations.  The graph is then pruned, removing low 
probabilty vertices, and a shortest path algorithm is 
applied to describe the line down the centre of the 
root.  This line can then be used to provide a 
measurement of root length. The approach is found 
to work well, handling images with clutter and 
lighting variations obscuring parts of the root. 

Section 2, describes how the shape of the root is 
traced and how from this a measurement of length is 
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calculated. Results are presented in Section 3 which 
compare this new algorithm to manual methods on 
real-life and synthetic images.  The discussion in 
Section 4 then examines the results, and an appraisal 
of the algorithm is presented, including the 
possiblity of wider applications. 

2 METHOD 

2.1  Root Tracing  

Before a quantification of root length can take place, 
an accurate tracing of the root image is required.  
The approach adopted here is based on a particle 
filter tracking technique. Particle filtering, first 
developed as a method of tracking moving objects 
through an image sequence, is a way of representing 
system states that might not be definable with 
closed-form functions. States are represented using 
probability density functions (PDFs), or rather 
discrete estimates of them modelled by particle sets.  
A particle set can represent a function by sampling 
the distribution and weighting particles 
corresponding to these samples.  Contained within a 
particle is all the information about the state of the 
system at that time, for example, for target tracking 
across the image plane a particle might contain (x, y) 
coordinates and velocity information. 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Representing a continuous PDF using a particle 
set of 7 particles. The particles are randomly distributed, 
and the weight of a particle (represented by the size of the 
circle) corresponds to the value of the function at that 
point. 

As shown in Figure 1, a continuous function can be 
approximated by a finite number of particles and 
their weights. The more particles that are used, the 
more accurate the representation. Normally, when 
tracking a moving object, the PDF is a measure of 
the probability of the target actually being at a 
position, and is measured using an observation 
model which reports high probabilities when it is 

over an area of image that matches the target 
appearance model. So, in Figure 1 above, the first, 
lower peak might represent the location of some 
background clutter, and the second, higher peak the 
actual target. 

When tracking a target over time, the predicted 
position of the object depends on both where the 
object was at the last timestep, and on a motion 
element determined by a dynamic model of the 
target. Propagating the continuous PDF estimate of 
position forward in time with this motion model 
tends to shift the curve in the direction of the 
prediction. Adding an additional random diffusion 
term, simulating noise in the tracking, has the effect 
of smoothing the PDF, and after the motion phase, 
the PDF is reinforced with measurements using the 
observation model. 

In the discrete case, where a finite set of particles 
represents the distribution, a set of particles are 
selected and have the motion model applied to their 
state. These particles are selected with a probability  
in proportion to their weight, and are replaced after 
selection, ready for re-selection.  This has the effect 
of generating a new particle set in which the 
particles tend to cluster mainly around the higher 
probability peaks, with fewer particles representing 
the lower probability valleys.  As the peaks are what 
we are interested in (they suggest where our target 
actually is), this importance sampling improves 
tracking performance. 

This process is known as factored sampling. 
Every time we select a particle we process its state 
parameters forward in time using the motion model, 
and then weight this particle based on the 
observation model at this new position. This gives us 
our new set of weighted particles, ready for another 
iteration of the algorithm. One of the attractions of 
particle filtering methods is that the sample set size 
remains constant, so the algorithm runs in a 
predictable time, and the quality of the 
representation of the PDF can be increased by 
increasing N, the number of particles in the set. A 
classic example of a computer vision tracking 
algorithm which uses an algorithm like this is the 
Condensation algorithm (Blake & Isard, 1998). 

We have adapted this tracking model so that 
instead of being used over time, it is used over 
space, to trace along a root in a digital image. It is 
assumed that the root lies approximately parallel to 
one of the major image axes, so we know 
approximately which way to trace the image. We 
shall assume here that the root lies approximately 
parallel to the y-axis. 

The algorithm proceeds as follows: 
 

P(
x)
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1. The user selects, in the image plane, the starting 
point of the root to be traced. Around this an 
initial distribution of N particles is built. This 
distribution is normally a Gaussian distribution 
along the x-axis, centred on the user’s click 
point. The y-locations are fixed to the user’s set 
y-coordinate for reasons which will become 
clear. Initially all these particles are given equal 
probability weights. 

2. Particles are selected with replacement in 
proportion to their probability weighting. As 
each particle is selected, its y-coordinate is 
incremented by exactly 1 pixel, and the x-
coordinate is processed forward using its 
predictive ‘motion’ model plus a small level of 
random Gaussian noise. 

3. The new particles are weighted by comparing 
the image at their current location with the 
observation model of a root cross section.  

4. The probabilities associated with each particle, 
and the locations of the particles are stored as 
nodes in a graph – this will be used later on. All 
the nodes at time t are connected to all the nodes 
at time t-1, therefore each iteration N new nodes 
and N*N new edges are added to the graph. 

5. The algorithm repeats to step 2, until the root is 
fully traced and the user stops the process at 
iteration I. 

 
Fixing the y-coordinate to proceed at an increment 
of 1 pixel per iteration provides an external force to 
the tracing algorithm to move the trace down the 
root by exactly one pixel at a time. This is analogous 
to tracing a line by hand using a pencil, starting at 
one end and moving smoothly to the other. This 
external force along the y axis, combined with the 
motion model to cope with curvature along the root 
in the x axis, replaces the motion model used when 
tracking moving objects, and allows an 
uninterrupted and unrepeated line to trace along the 
root. 

At the completion of the algorithm, there exists a 
graph G with N*I nodes and N*N*I edges. Each 
node represents a weighted sample from the particle 
filter, and has a corresponding weight (probability), 
and coordinate within the image plane. An example 
visualization of how the graph relates to the particles 
and image is presented in Figure 2. 

It should be noted that currently the tracing is 
ended manually by the user when the trace is seen to 
reach the end of the root. Detecting when tracking 
should cease is a hard problem as tracking 
algorithms assume the target to exist at the next 
timestep.  The authors are working on a robust 

method to detect the end of the root automatically, 
which is mentioned further in Section 4.1. 
 

 

Figure 2: Illustration of the relationship between the 
images, observation model output (curves), particle 
weights (circles), and graph connections between two 
steps in the algorithm, t and t-1. Note some of the lines 
connecting the curves to particle weights at t-1 have been 
omitted for clarity. Grey arrows indicate the edges from 
one particle when it is mapped to a node in the graph– in 
fact every node at each layer has edges connecting to all 
nodes generated at the next step of the algorithm. 

2.2  Probabilistic Graph 

Graph G can be thought of as a 3D surface map 
which represents probabilities associated with each 
possible root location. Using this we aim to produce 
an accurate measure of root length. This is done by 
removing low probability nodes from the graph and 
then finding the minimum distance route through the 
remaining graph, from the start position to an end 
node. 

Low probability nodes are removed as they 
represent areas of the image space explored by the 
particles which are not centred over the root. During 
the root tracking procedure, at each iteration 
particles are spread around the root width, to 
increase the chances of finding the root at each step. 
The aim of our graph pruning procedure is to 
remove those nodes from the graph that represent 
locations in the image which are so far from the 
ideal observation model result that they cannot 
represent a root location.  This information is useful 
during the online tracking, but is not needed for the 
offline graph traversal. 

To do this pruning, we simply remove 
probabilities whose measurements fall below a 
certain number of standard deviations from the mean 
measurement across the set, although any heuristic-
based method could be employed here to remove 
low quality nodes from the graph. This has the effect 
of producing a leaner graph which only covers the 
space occupied by the root. 

To actually find the shortest path through the 
graph, Dijkstra’s method for determining shortest 

t-1

t

t

t-1
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paths was implemented. This method involves a 
greedy algorithm which determines the shortest 
distance to each node as it traverses the graph, in our 
case along the length of the root, therefore giving the 
shortest path along the length of the root, through 
the remaining high-quality nodes. 

3 RESULTS 

The proposed method was tested by comparing 
measurements of roots obtained using standard 
manual techniques and using the new software.  The 
particle filter used 25 particles in all the tests. 

3.1  Software versus Non-expert User 

The software was tested with an image of plated 
roots (Figure 3). The aim was to measure the length 
of the roots from the black line to the root tip. The 
image had been taken with an off the shelf digital 
camera, and was stored in a compressed JPEG 
format, at a resolution of 783x576 for the close-up in 
Figure 3. The roots were measured manually, by an 
inexperienced user, using the measure tool in ImageJ 
(Abramoff et al., 2004).  This measurement was 
repeated 5 times. The particle-filter software was 
also run five times. An example output is presented 
in Figure 3, while numerical results are given in 
Table 1. 
 

 
Figure 3: Image of growing roots with the software output 
overlaid. The root numbers refer to the results in Table 1. 

Table 1: Results of a comparison between the new 
software and manual measurements made by a non-expert. 

Root Error between 
means, pixels 

Relative error 
(Mean-mean error as % of 

manual measure) 
1 -0.1 0.18 
2 1.26 1.65 
3 3.16 1.52 
4 1.3 1.02 
5 2.14 1.84 
6 2.12 1.29 
7 3.86 4.1 
8 4.36 2.23 
9 1.58 1.05 

10 1.98 2.96 
11 1.84 1.35 

The mean length for these roots is 126.4 pixels, from 
the ground truth. The average standard deviation for 
the manual measures was 1.97 pixels, and 1.71 
pixels for the proposed software. 

The average time taken to measure manually the 
roots on the plate in Figure 3 once each was 112 
seconds. The new software, including the time for 
user interactions clicking on the image and stopping 
the tracing, took 70 seconds. 

The average relative error from Table 1 is 1.7%. 
Root 7 produces the most ambiguous measures from 
the new software, but on inspection its root tip is 
blurry and ambiguous in the image itself, which may 
explain the error. This situation might produce 
measurements with high variability when different 
subjects are asked to perform the measurement 
manually. 

3.2  Software versus Expert User  

The software was also tested against manual 
measurements made by an expert user. The root 
images used in this section are more complex, with 
the roots showing many lateral roots. There are also 
significant reflections from the rear of the plate, and 
the images are of low resolution (640x480), all of 
which makes this scenario a challenge for the 
software. 

For this experiment, five roots in Figure 4 were 
manually measured in ImageJ by a trained biologist  
familiar with making such measurements. This 
measurement was compared with the average results 
of five runs of the new software approach.  The data 
is presented in millimetres; using the ruler in Figure 
3 a conversion was calculated between pixels and 
millimetres. The results are presented in Table 2. 
The test image is presented in Figure 4. 

 

1      2      3      4    5    6    7      8     9      10   11
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Figure 4: Image of growing roots. Note the large numbers 
of lateral roots and reflections which clutter the image. 
The root numbers refer to the results in Table 2. 

Table 2: Results of a comparison between the new 
software and manual measurements made by an expert 
user. 

Root Error 
between 

means, mm 

Relative error 
(Mean-mean error as % of 

manual measure) 
1 0.78 1.67 
2 -1.95 4.54 
3 1.32 2.89 
4 0.86 1.81 
5 0.02 0.05 

The average root length from the manual measures 
was 46.8mm.  The proposed software measures had 
an average standard deviation of 0.23mm.  The 
average relative error from Table 2 is 2.2%. 

The automatic tracing of roots 1 and 2 suffered 
the most due to interference from the lateral roots. 
Examples of such error cases are presented in Figure 
5. 

 
Figure 5: Example output, with error cases marked. 

Figure 5 illustrates two of the most common error 
cases. For case (a), the lateral root is followed rather 
than the main root about 50% of the time. This is 
because when tracing the line, the tracking algorithm 
reaches a junction, and as the motion model predicts 
the line to continue roughly half way between the 
two actual lines, and both lines produce very similar 
measurement models, half the time the algorithm 
will take one route, and the other half of the time the 
other route will be followed. 

 The particle filtering trackers can cope with this 
kind of ambiguity over short distances, but over 
longer distances the samples tend to all migrate to 
the hypothesis which is producing the slightly better 
observation measures at the time.  This fading of a 
hypothesis is a common practical problem with 
particle filter tracking (King & Forsyth, 2000). 

In error case (b) in Figure 5, the error is caused 
by the lateral root consistently having a better 
measurement model. This error will therefore be 
present on every run of the algorithm. On inspection, 
the better measurement appears to be caused by a 
misrepresentation of the main root in the image. The 
root here appears very thin. This may be an artefact 
introduced by the low resolution of the image. 
However it is caused, the result is that the lateral 
root provides a higher response to the measurement 
model and hence the root is traced along this 
erroneous path.  

3.3  Artificial Scenarios  

The software was also tested against artificial 
images. These images were produced using straight 
lines of a similar colour to the roots. Gaussian noise 
was applied to the image. 

 
Figure 6: An artificial image with lines of length 200, 400 
and 141.4 pixels respectively. Overlaid are example 
measurements produced by the new software. 

a 

b 
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The purpose of this experiment was to test the 
software against a known ground truth measurement. 
Figure 6 shows one result out of 5 repeats which 
aimed to test the measuring software against a 
simple artificial ground truth. The results for the 3 
lines measured are presented in Table 3. 

Table 3: Results of running the algorithm on artificial data. 

Line True 
length 

(pixels) 

Average measured 
by new algorithm 

(pixels) 

Average 
error 

(pixels) 
1 200 199.9 -0.1 
2 400 400.2 0.2 
3 141.4 140.3 -1.1 

4 SYSTEM EXTENSIONS 

The basic system described and tested above has 
been extended in two ways. First, a method is being 
developed to automatically detect when the end of 
the root has been reached. Second, a mixed state 
particle filter (Isard & Blake 1998) has been 
incorporated into the framework to allow the 
labelling of different possible growth modes for the 
root, such as a gravitropic response. These will be 
described below. 

4.1  Automatic Root Tip Detection 

One of the major time consuming and error prone 
aspects of the root measurement system detailed 
above is the manual intervention required to stop the 
line tracing when the end of the root is reached.  
This was necessary because the premise of the line 
tracker is that at each iteration the next point on the 
line definitely does exist somewhere in the image – 
this assumption is broken when the end of the root is 
reached. In the absence of a tip detection capability 
or manual input the tracker will trace whatever 
produces the best measurement from the image, e.g. 
see Figure 7 (left). 

  
 
 
 

The developed method proceeds as follows. During 
the line tracing phase of the software, the user 
allows the system to track beyond the end of the 
root. The graph traversal then proceeds as before, 
and a final path representing the trace of the root is 
produced. Now the new step: the measurement 
probabilities along this path are examined.  Figure 8 
below shows the trace of log probabilities along a 
root: 
 

 
Figure 8: Graph depicting how log of measurement 
observation probabilities varies along the root. The dashed 
line marks the approximate end of the root. 

Summary statistics of the log probabilities are 
calculated along the chosen path, and the end of the 
root is marked as where the current measurement 
falls below a set number of standard deviations from 
the mean. This was seen to work well on 7 of the 11 
roots in Figure 3 – see figure 7 (right) for an 
example output. 

4.2  Labelling of Growth Modes 

It is possible to build into the existing particle 
filtering framework more than one predictive model 
to process the particles forward along the root 
image. This is achieved using a form of mixed state 
particle filter (Isard & Blake, 1998).  Essentially, it 
is possible to define multiple models for the driving 
force behind the tracing of the root, and the most 
appropriate of these will generate higher quality 
particles at each step. For example, to model 
gravitropic growth, one model might aim to trace the 
root left to right across the image, and the second 
model would aim to trace the root top to bottom.  
Whichever model prospered the most is naturally 
selected to label the image – see Figure 9. 

Distance along root 

0               Log (p)                         -8    

Figure 7: Left: A particle filter tracker will always try and hunt a
target even if one does not exist, as the spread of particles past the
root tip (indicated by arrow) shows. Right: An example result of 
the same root image with the new root termination criteria. 
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Figure 9: Example root trace using a mixed state model 
consisting of two states, normal growth (white) and 
gravitropic (black). 

5 CONCLUSIONS 

5.1  Discussion of Results 

The results comparing the software root length 
measures to the manual measurements show the new 
technique to produce results to about 2% of the 
actual measures most of the time.  There was a 
larger error when comparing the new software with 
the expert user (2.2%) compared to the non-expert 
(1.7%), however the images in Section 3.2 are more 
challenging than those in Section 3.1, which may 
account for some of the increased error also. 

Something to be wary of with these kinds of 
comparisons is using manually marked-up ground 
truths to compare with the automated measurements. 
There is an inherent subjectivity in determining the 
length of the roots, dependant on, for example, the 
accuracy with which the curves in the roots are 
traced. The more finely the shape of the root is 
followed, the longer the measurement. There is 
similarity here with the coastline measuring 
problem. Some structures can be thought of as 
fractal in composition, such as a coastline 
(Mandelbrot, 1967) or complete root systems (Eshel, 
1998).  When trying to measure such systems, the 
scale (or accuracy) with which the waves and 
perturbations are traced has a bearing on the overall 
length calculated. This software can be thought of as 
producing the finest scale estimate of length 
available at the image resolution, and so is likely to 
overestimate length compared to a manual 
measurement.  This may be reflected in the results 
reported in Section 3, with most errors indicating an 
overestimate of line length. 

Even if a user and the new software were to use 
the same scales of measurement, there is still human 
error present in the measuring process, which can be 
quantified by the standard deviation of the manually 
measured data. The manual measurements in section 
3.1 give an average standard deviation of ~2 pixels. 
Therefore most (99%) of the manually measured 
lengths can be expected to fall within about 6 pixels 
(three standard deviations) of the true value for roots 
of around the length seen in section 3.1. The new 

software used on these roots has an average relative 
error of 1.7% which translates to a error of 2.1 pixels 
on average for these roots, and therefore this 
software error falls within the expected error bounds 
of manually entered data.  

The time to use the new software was less than 
the time to take the measurements manually. This 
should be improved upon still when implementation 
of the root tip finding algorithm is completed. The 
system should be less fatiguing to the user as less 
high-accuracy input is required. This will help to 
lower the number of mistakes made over the course 
of measuring many roots. 

Labelling of the different growth modes of the 
root as illustrated in Section 4.2 is also ongoing 
work, but early results indicate the system can be 
used for identifying different ways in which a root 
trace line is produced, as long as trace motion 
models exist to sufficiently differentiate the modes 
of production of the line. 

5.2  Improving the Reliability 

As it stands, the software is still in trial stages and 
reliability is still being improved. There are a 
number of possible ways to decrease the number of 
errors that can occur. One problem is as the particle 
filter tracks the root towards the tip, it is liable to 
trace lateral roots if they are long enough and 
provide a high enough quality measurement, as 
shown in Figure 5. A simple way to remove this 
problem is to simply trace the root from the end tip 
upwards. Due to the geometry of the lateral roots the 
tracing algorithm is then not presented with viable 
alternative routes until the lateral roots join and 
terminate. Therefore, the only way they can be 
followed is if they lie parallel to the main root for 
long enough, and are close enough for the particles 
on the tracing algorithm to ‘jump’ across to the other 
track. The difficulty with this approach, however, is 
that the tracker would have to be started on the 
thinnest, least visible section of the root, which may 
be hard to detect, and automatic termination of the 
tracking becomes harder as the delineation at the top 
of the root is less clear. 

Other general improvements include increasing 
the resolution of the images, as during testing at 
least some of the mis-tracing of the roots was due to 
poor representation of the roots in the image.  
Improving the measurement model may lead to less 
problems with the system tracking lateral roots.  
Finally, increasing the number of samples may be 
beneficial, especially in combination with greater 
image resolution.  However, in such a case speed of 
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traversal of the graph, which currently is near 
instantaneous, might become a limiting factor. 

5.3  Future Potential of the System 

The particle filter approach, with or without mixed 
state extensions, provides a general framework for 
matching models of elongated structures to images 
of those structures. By changing the models used it 
may be possible to extract descriptions of and 
measure a wide variety of roots and other plant 
components. In particular, given higher resolution 
(e.g. confocal) images showing the cellular structure 
of the plant, it may be possible to predict (using the 
motion model) and detect (using the appearance 
model) higher level structures such as files of cells 
of similar type. 

The ability to recognise state changes by using a 
mixed state, rather than pure particle filter, also 
raises the possibility of recognising a wide variety of 
events during plant growth, of which the onset of 
gravitropic response may be just the first. 
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