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Abstract: Manual evaluation of long-term EEG recordings is very tedious, time consuming, and subjective process. 
The aims of automated processing are on one side to ease the work of medical doctors and on the other side 
to make the evaluation more objective. This paper addresses the problem of computer-assisted sleep staging. 
It describes ongoing research in this area. The proposed solution comprises several consecutive steps, 
namely EEG signal pre-processing, feature extraction, feature normalization, and application of decision 
trees for classification. The work is focused on the feature extraction step that is regarded as the most 
important one in the classification process. 

1 INTRODUCTION 

The electroencephalogram (EEG), describing the 
electric activity of the brain, contains a lot of 
information about the state of patient health. It has 
the advantage of being non-invasive and applicable 
over longer time span (up to 24 hours if necessary). 
This is an important feature in case we want to 
follow disorders that are not permanently present but 
appear incidentally (e.g. epileptic seizure) or under 
certain conditions (various sleep disorders). 
Although the attempts to support EEG evaluation by 
automatic or semi-automatic processing have been 
made for a long time, there are still many problems 
to be solved. We try to contribute by our research to 
this effort. The main objective of the described work 
is the identification of the most informative features 
from sleep EEG records that could be used for 
automated (or semi-automated) sleep stage 
classification. Our approach to the analysis of 
human sleep uses wavelet transform (WT) and 
statistics for feature extraction and construction. The 
extracted and computed features are used as inputs 
for a decision tree (Quinlan, 1990) that is learned to 
classify individual sleep stages. We use for our 
experiment EEG sleep records rated by an expert, 

freely available and downloadable from the Internet 
(Kemp, 2007). 

The paper is organized as follows. Section 2 
describes sleep EEG signal and approaches to its 
evaluation. Methods used in our research are 
presented in Section 3. Section 4 is devoted to 
description of performed experiments. In Section 5 
the results of experiments are discussed and the 
conclusion is presented in Section 6. 

2 SLEEP AND ITS COMPUTER 
SUPPORTED CLASSIFICATION 

Sleep is a non-uniform biological state that has been 
divided into several stages based on 
polysomnographic (PSG) measurements that include 
EEG, EMG, EOG, ECG, temperature, SpO2 (oxygen 
saturation of the blood, recorded on the finger), 
respiration signals, as well as movement or body 
position. Polysomnography is usually performed 
over the duration of an entire night, or at least 6.5 
hours, in order to investigate normal and disturbed 
sleep or vigilance (Bloch, 1997). Normal healthy 
sleep is organized into sequences of stages that 
typically cycle every 60 – 90 min. The most widely 
used standard for terminology and scoring of sleep 
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stages is the manual by Rechtschaffen and Kales 
(RK) (Rechtschaffen and Kales, 1968). A standard 
summary method is the hypnogram that graphically 
represents sleep stages in 20-30 second epochs. The 
PSG can be generally divided into epochs of 10, 20, 
30, or 60 s, which are then visually classified into 
one of RK stages by a sleep technologist. The 
resulting time evolutionary description of sleep in 
terms of stages, termed hypnogram, is used by 
physicians for diagnosis. The Rechtschaffen and 
Kales manual details a complete process of 
recording and analysing sleep, which is followed by 
the vast majority of sleep laboratories, worldwide. 
On the basis of EEG (plus EOG and EMG), epochs 
can be scored into sleep stages:  
• Stage 1 – shallow/drowsy sleep;  
• Stage 2 – light sleep;  
• Stage 3 – deepening sleep;  
• Stage 4 – deepest sleep;  
• Stage REM – dreaming sleep.  

Stages 1 to 4 are frequently described as non-
REM sleep, and stages 3 and 4 are described as slow 
wave sleep (SWS). Other scores are Wake (W) and 
Movement Time (MT). Since the depth of sleep 
changes continuously, the artificial demarcation of 
sleep stages by the RK classification is a 
simplification. The exact time of change of state is 
highly subjective and leaves room for interpretation 
by the physician who scores transitional epochs 
(e.g., Stage 1 and Stage 3) differently on different 
occasions (Schaltenbrand, 1996). 

Studies have shown agreement between 
physicians performing scoring that ranges from 67% 
to 91% (Gaillard and Tissot, 1973), (Stanus et al., 
1987), (Kim et al., 1992), depending on different 
scoring epoch lengths and number of readers. 
However it is necessary to remark that most data on 
interscorer agreement are based on the study of 
normal subjects. Processing of sleep recordings 
requires elaborate training and is time consuming 
and expensive. No generally accepted standard 
exists for automatic sleep staging, but 
computerization can improve efficiency and reduce 
cost (Doman, 1995), and enhance collaboration 
between laboratories (Kemp, 1993). 

Various approaches to computer classification of 
PSGs have been used. Johnson et al. (Johnson et al., 
1969) presented a spectral analysis study of the EEG 
in different stages, which was subsequently used by 
Larsen and Walter (Larsen and Walter, 1970) to 
develop an automated staging technique based on 
multiple-discriminant analysis. Agarwal and Gotman 
(Agarwal and Gotman, 2001) use a method based on 
the segmentation and self-organization technique. 
The following five steps are necessary to perform 
computer-assisted staging: segmentation; feature 

extraction; clustering; assignment of stages to 
different clusters of patterns; and optional smoothing 
of the hypnogram. The study (Agarwal and Gotman, 
2001) shows that the greatest discrepancy occurs in 
Stage 1. The sensitivity and the specificity are 
38.6% and 43.4%, respectively. This is to be 
expected in the highly transitional Stage 1. Stage 1 
also has significant similarities to REM stage and 
can be considered as one stage away from Stage 1. 
Moreover, it is accepted that manual scoring of 
Stage 1 is the most subjective due to its transitional 
nature. 

3 METHODS 

In our study we have used similar procedure as 
Agarwal and Gotman and the same we used in one 
of our previous studies (Gerla, Lhotska, and Krajca, 
2005). The sleep EEG signal classification 
comprises several steps: segmentation, feature 
extraction, feature normalization, feature selection, 
and generation of decision trees. 

We have applied wavelet transform (Daubechies, 
1992) to sleep EEG signal preprocessing. Mean of 
the signal is calculated and subtracted from a signal 
before WT is applied. Discrete Wavelet Transform 
(DWT) represented by a filter bank is employed for 
wavelet decomposition. Before the decomposition 
starts it is necessary to select a mother wavelet used 
for defining FIR filters and a level of a 
decomposition tree. For deciding which mother 
wavelet should be selected we consider the impulse 
response and amplitude frequency characteristics of 
the FIR filter specified by the corresponding mother 
wavelet. After the DWT is done we get 
approximation and detail coefficients as input data 
for further processing. Then the segmentation is 
performed. 
Segmentation. The non-adaptive segmentation is 
employed. Non-adaptive or constant segmentation 
divides a signal into segments of a constant length. 
This kind of segmentation is basically the easiest 
one. The disadvantage of this method is that the 
segments are not necessarily stationary. The length 
of a segment is chosen regarding the character of 
data. 
Feature extraction is the second most important 
part after wavelet decomposition. It is a process 
which changes representation of segments by 
extracting features from them. The aim is to select 
those features which carry most information about 
the segment. The statistic parameters are in principle 
very suitable for this purpose. We use autoregressive 
features and computed wavelet coefficients as well. 
We use the following parameters: average absolute 
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amplitude, maximal positive amplitude, maximal 
negative amplitude, maximal absolute amplitude, 
frequency weighted energy, sample mean, sample 
central moment, sample variance, statistical median, 
energy, and entropy. The autoregressive features are 
calculated from the transfer function of an 
autoregressive model, in which a present value xn or 
future values xn+I , i=1,2,… are estimated by using 
the previous values {xn-m ,…. xn-1} (Therrien, 1992). 
We can extract features from each source (an 
original signal, its first and second derivation) 
independently. 
Feature normalization. Mean and standard 
deviation of extracted features are different. That 
could have a negative influence to the classification 
process, when a classifier uses distances between 
points in n-dimensional space. Before we start 
classification the features must be normalized to 
have the same mean and standard deviation. The 
features have normal distribution N(0,1). 
Feature reduction. There are several different ways 
in which the dimension of a problem can be reduced. 
In this work Principal Component Analysis (PCA) 
(Smith, 2002) approach is used which defines new 
features (principal components or PCs) as mutually-
orthogonal linear combinations of the original 
features. 
Feature selection is considered successful if the 
dimensionality of the data is reduced and the 
accuracy of a learning algorithm improves or 
remains the same. Decision tree algorithms such as 
C4.5 can sometimes overfit training data, resulting 
in large trees. In many cases, removing irrelevant 
and redundant information can result in C4.5 
producing smaller trees. The Chi-squared statistic is 
used for feature selection. 
Classification. We have decided to use decision tree 
algorithms because they are robust, fast, and what is 
important especially in medical domain their results 
are very easy to interpret. In particular, the C4.5 
algorithm has been applied, namely its J48 variant 
available in the Weka software tool (Frank et al., 
2007). 
Success rate of classification. As a measure of 
success rate we have used the overall accuracy of the 
classification. The overall accuracy is calculated as 
the relative number of correct decisions. 

4  EXPERIMENTS 

The main purpose of our experiments has been to 
find the most suitable wavelet decomposition and 
the most discriminative features to achieve good 
classification results. The analyzed EEG recordings 

are presented in the next section and then our 
experiments with EEG data are described. 

4.1  Source of EEG Recordings 

Our source of EEG recordings is The Sleep-EDF 
Database (Kemp, 2007). Four EEG recordings from 
different subjects were downloaded. The recordings 
were obtained from Caucasian males and females 
(21 - 35 years old) without any medication. They 
contain horizontal EOG, Fpz-Cz and Pz-Oz EEG, 
each sampled at 100 Hz. The recordings also contain 
the submental-EMG envelope, oro-nasal airflow, 
rectal body temperature and an event marker, all 
sampled at 1 Hz. Hypnograms are also added which 
are manually scored according to Rechtschaffen & 
Kales based on Fpz-Cz / Pz-Oz EEG instead of C4-
A1 / C3-A2 EEG (Sweden et al., 1990). 

Subjects, recordings and hypnogram scoring for 
the 4 sc* recordings are described in (Mourtazaev, 
1995). Subjects and 4 st* recordings are more 
extensively described in (Kemp et al., 2000). The 
sleep stages Wake, Stage1, Stage2, Stage3, Stage4, 
REM and 'unscored' are coded in the file as binaries 
0, 1, 2, 3, 4, 5, 6 and 9. 

After reviewing the data we have found out that 
the classes in data are unevenly represented. Class 1 
(Wake) is the most frequent one and class 5 (stage4) 
occurs sporadically. We have generated the training 
set in which all classes are equally represented. That 
means that a classification error caused by an 
unequal distribution of classes should be reduced. 

4.2  Experiment 1 

A goal of this experiment is to find features which 
contain the information about classes included in 
data. In other words the features should be highly 
correlated with the class. In our case we have six 
classes (wake, stage1, stage2, stage3, stage4, REM). 
This is a complex task and it is quite impossible to 
find only one feature to correlate with all classes.  

We modify our goal to examine all features for 
every combination of two different classes and select 
the most significant feature for discriminating the 
classes from each other. There are 15 combinations 
so we get 15 features in total. We have chosen EEG 
sample (sc4002e0), which includes all 6 classes; 
each having 200000 samples (2000 seconds). For 
WT, the following setting has been used: level of 
decomposition tree 7; mother wavelet db6; wavelet 
coefficients used for feature extraction (2,1), (3,1), 
(4,1), (5,1), (6,1), (7,1), (7,0); segment length 10s.  

The results of this experiment and the best 
features selected for classification of every 
combination  of two  different  classes  are shown  in 
. 
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Table 1: Results of experiment 1 and the best features selected for differentiation between couples of classes. 

Stage Wake Stage 1 Stage 2 Stage 3 Stage 4 REM 
class 1 2 3 4 5 6 
1  96% - f1 97.5% - f2 99.5% - f3 99.5% - f5 98.9% - f1 
2 96% - f1  85% - f7 91.5% - f8 98.5% - f9 70% - f10 
3 97.5% - f2 85% - f7  73% - f11 94% - f12 85% - f4 
4 99.5% - f3 91.5% - f8 73% - f11  85% -f3 94.5% - f13 
5 99.5% - f5 98.5% - f9 94% - f12 85% -f3  99.4% - f6 
6 98.9% - f1 70% - f10 85% - f4 94.5% - f13 99.4% - f6  

Table 2: Description of the used features. 

feature original name of a feature  
source for 

extraction 
wavelet 

coefficient 
full name of the feature 

f1 MeaAbV_1d_d2_Fpz-Cz first derivation  D2 (2.1) average absolute amplitude 
f2 Energy_sg_d4_Pz-Oz signal D4 (4.1) energy 
f3 MeaAbV_Sg_d5_Pz-Oz signal D5 (5.1) average absolute amplitude 
f4 Energy_1d_d5_Fpz-Oz first derivation D5 (5.1) energy 
f5 Energy_1d_d5_Pz-Oz first derivation D5 (5.1) energy 
f6 FrWeiE_Sg_d6_Fpz-Cz signal D6 (6.1) frequency weighted energy 
f7 FrWeiE_1d_d5_Pz-Oz first derivation D5 (5.1) frequency weighted energy 
f8 FrWeiE_Sg_d5_Pz-Oz signal D5 (5.1) frequency weighted energy 
f9 MeaAbV_Sg_d5_Fpz-Cz signal D5 (5.1) average absolute amplitude 
f10 MeaAbV_Sg_d3_Pz-Oz signal D3 (3.1) average absolute amplitude 
f11 FrWeiE_Sg_d7_Pz-Oz signal D7 (7.1) frequency weighted energy 
f12 Energy_Sg_d6_Pz-Oz signal D6 (6.1) energy 
f13 Energy_1d_d6_Fpz-Cz first derivation D6 (6.1) energy 

 
Table 1. The names and sources of these features are 
presented in Table 2. There are five classification 
results below 90% as it is shown in Table 1. It 
means that we are not able to extract any single 
feature which can separate these particular 
combinations of two classes. There must be used a 
combination of features. We can see that there are 
two features (f1, f3) occurring not only once as most 
discriminative. Each of them is chosen to be the 
discriminative feature for two combinations. A set of 
features is therefore reduced and we have 13 
features. Unfortunately 5 of the features (marked in 
italics in Table 1) are not good enough for 
classification and thus we have decided to perform 
another experiment where different wavelet 
coefficients are decomposed and other features are 
examined. 

4.3  Experiment 2 

The goal is implicated by the result of the previous 
experiment. There are five combinations of two 
classes (4x3, 6x2, 3x2, 5x4, 6x3) which are 
classified with success rate lower than 90% by using 
features extracted from the wavelet coefficients. 
Now we try to achieve more accurate results by 

extracting features from such wavelet coefficient 
that have the same frequency resolution. Frequency 
resolution of a wavelet coefficient depends on 
sample frequency of data (100Hz) and on the level 
of the wavelet coefficient. We may be able to find 
more specific features carrying more information 
about separability of classes. Two different settings 
and wavelet decomposition trees are used: 1. level of 
decomposition tree 4; mother wavelet db15; wavelet 
coefficients used for feature extraction (4,0), (4,1), 
(4,2), (4,3), (4,4), (4,5), (4,6), (4,7); segment length 10s; 
2. level of decomposition tree 5; mother wavelet 
db20; wavelet coefficients used for feature 
extraction (5,0), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), 
(5,7), (5,8), (5,9), (5,10), (5,11), (5,12), (5,13), (5,14), 
(5,15); segment length 10s. Wavelet coefficients 
from the highest level of decomposition trees are 
used for feature extraction. They have the highest 
frequency resolution compared with others in the 
wavelet decomposition tree. We can assume that the 
features extracted from these coefficients carry 
different piece of information about classes. 

The results of this experiment have not been so 
successful as we have expected. The only feature 
that has brought relatively significant improvement 
of differentiation between two classes (by 7.5%) has 
been average absolute amplitude FPz-Cz (wavelet 
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coefficient (5,1)). The experiment has shown that 
application of other mother wavelets (db20 or 
higher) and different wavelet decomposition trees 
could result in finding new more discriminative 
features. 

4.4  Experiment 3 

The final experiment has been divided into three 
parts, namely using different groups of classes. EEG 
recordings (sc4012e0, st7022j0, sc4102e0) have 
been used as testing sets for this purpose.  

Part 1. We have classified data into all six classes 
using all features as described in experiment 1. The 
results have verified our assumption that the features 
f3, f4, f7, f10 and f11 which do not separate classes 
well (see Table 1) decrease final classification 
accuracy.  

Part 2. Based on the experiment 1 we have tried 
to distinguish among four classes, organized in two 
groups, namely (1, 3, 5, 6) and (1, 4, 5, 6). We have 
used six features from the original 15 for each 
group. The classification results for the first group 
have been negatively influenced by the feature f3 
and for the second group by the feature f4.  

Part 3. We have verified well discriminating 
features discovered in experiment 1. For this 
purpose we have selected three groups of three 
classes each that can be separated very well by these 
features. The three groups are composed of the 
following classes (1, 5, 6), (1, 2, 5) and (1, 4, 6). 

All results are summarized in Table 3. The record 
sc4102e0 has not been used in those experiments 
where class 5 has been tested because it does not 
contain any segment belonging to class 5. The 
classification results are as we have assumed. They 
are mainly affected by low discriminability between 
classes 2 (stage1) and 3 (stage2) and classes 2 
(stage1) and 6 (REM). 

Table 3: Results of experiment 3 (success rate of 
classification). 

classes sc4002e0 sc4012e0 st7121j0 sc4102e0 
1,2,3,4,5,6 72.1% 69.5% 63% x 
1,3,5,6 87.2% 87.6% 78.4% x 
1,4,5,6 87.8% 82.9% 73.2% x 
1,5,6 98.3% 94.5% 92% x 
1,2,5 97.2 92% 87% x 
1,4,6 96.5% 91.3% 90% 87% 

5 DISCUSSION 

Tables 1 and 2 are used for the interpretation. When 
we look at Table 2 we can see that all features 

extracted for the classification task in the experiment 
1 are based on energy, mean absolute amplitude and 
frequency weighted energy. These features reflect 
the changes of energy in the given wavelet 
coefficient which is related to a specific frequency 
spectrum. This is very important as we see later. 
Now we try to explain why we have got the results 
of classification shown in Table 1. When we look at 
this table we can see that successful classifications 
are for the classes classified with features extracted 
from wavelet coefficients which have the frequency 
spectrum same as the frequency spectrum only a 
single class in the set of two classes has. That means 
that the feature used for such classification has high 
energy for this class and small energy for the other 
one. Then we can simply use a threshold to separate 
these two classes from each other. When we look at 
Table 1 again we can see that all successful 
classification results (success rate higher than 90%) 
are achieved between classes with mutual distance 
more than one class, for example, classes 1x3, 1x4, 
2x5 etc. It is because the distance between these 
classes is quite long which is required for successful 
classification. An exception is the class 1 which is 
classified correctly in all cases. When we examine 
frequency spectra of classes 1 (Wake) and 2 
(stage1), we find out that they are well separable. 
However we have to note that there exists 
overlapping (some frequencies occur in 
neighbouring stages). Therefore poorer classification 
result (below 90%) is for classes just next to each 
other (2x3, 3x4, 4x5 and 6x2). Unfortunately we 
have not yet found any feature better describing the 
classes by using different wavelet decomposition 
(experiment 2). The results of classification in 
experiment 3 are affected by this fact as well. In the 
following paragraph we suggest some ideas which 
could improve classification of sleep EEG data. 

The frequency resolution of wavelet coefficients 
in level 5 of a wavelet decomposition tree is 3.12Hz. 
This decomposition is used in experiment 2. It was 
not detailed enough for distinguishing incorrectly 
classified classes. So we propose to make the 
frequency resolution higher by getting wavelet 
coefficients from level 6 (frequency resolution 
1.57Hz) or even level 7 (0.78Hz). For these purposes 
we must ensure that the filter used for 
decomposition has steep frequency characteristic. 
We would recommend to use mother wavelets db20 
and higher. If this condition is satisfied the results 
would not be influenced by leakage of other 
frequency components (antialiasing). 
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6 CONCLUSIONS AND FUTURE 
WORK 

Sleep problems belong to the most common serious 
neurological disorders. Reliable and robust detection 
of these disorders would improve the quality of life 
of many people. The implemented methods allow 
automatic classification of EEG signals. The 
approach has been tested on real sleep EEG 
recording for which the classification has been 
known. We have focused on discovering the most 
significant features which would be highly 
correlated with classes of data. Our experiments 
have been based on the selection of a single feature 
to separate data belonging to two classes. There have 
been many other features with good selection 
results. The most frequent ones have been 
autoregressive features representing the order of 
used AR model and error of AR model. We have 
determined some features and wavelet coefficients 
which are best suited for classification of sleep EEG 
data. The future work will be focused on 
exploitation of other types of mother wavelets, using 
higher level of wavelet coefficients as source of 
features, and more sophisticated classifiers. 

ACKNOWLEDGEMENTS 

This work has been supported by the research 
program “Information Society” under Grant No. 
1ET101210512 “Intelligent methods for evaluation 
of long-term EEG recordings“. 

REFERENCES 

Agarwal, R., Gotman, J., 2001. Computer-assisted sleep 
staging, IEEE Trans. on Biomed. Engineering, 48 
(12), pp. 1412-1423. 

Bloch, K.E., 1997. Polysomnography: a systematic review, 
Technology and Health Care, 5, pp. 285-305. 

Daubechies, I., 1992. Ten lectures on Wavelets, CBMS-
NSF, SIAM, 61, Philadelphia, Pennsylvania, USA. 

Doman, J., Detka, C., Hoffman, T., Kesicki, D., Monahan, 
J.P., Buysse, D.J., Reynolds III, C.F., Coble, P.A., 
Matzzie, J., Kupfer, D.J., 1995. Automating the sleep 
laboratory: implementation and validation of digital 
recording and analysis, Int. J. Biomed. Comput., 38, 
pp. 277-290. 

Frank, E., Hall, M., Trigg, L. Weka – Data Mining 
Software in Java. Internet site address: http:// 
www.cs.waikato.ac.nz. 

Gaillard, J.M., Tissot, R., 1973. Principles of automatic 
analysis of sleep records with a hybrid system, 
Comput. Biomed. Res., 6, pp. 1-13. 

Gerla, V., Lhotská, L., Krajča, V., 2005. Utilization of 
Time Dependence in EEG Signal Classification. The 
3rd European Medical and Biological Engineering 
Conference EMBEC´05 Prague. 

Johnson, L., Lubin, A., Naitoh, P., Nute, C., Austin, M., 
1969. Spectral analysis of the EEG of dominant and 
nondominant alpha subjects during waking and 
sleeping, Electroencephalogr. Clin. Neurophysiol., 26, 
pp. 361-370. 

Kemp, B., 1993. A proposal for computer-based 
sleep/wake analysis, J. Sleep Res., 2, pp. 179-185. 

Kemp, B., Zwinderman, A., Tuk, B., Kamphuisen, H., 
Oberyé, J., 2000. Analysis of a sleep-dependent 
neuronal feedback loop: the slow-wave 
microcontinuity of the EEG. IEEE-BME 47(9), pp. 
1185-1194. 

Kemp, B., 2007. Sleep Recordings and Hypnograms in 
European Data Format. The Netherlands. Internet site 
address:  http://www.physionet.org/ physiobank/ 
database/sleep-edf. 

Kim, Y., Kurachi, M., Horita, M., Matsuura, K., 
Kamikawa, Y., 1992. Agreement in visual scoring of 
sleep stages among laboratories in Japan, J. Sleep Res., 
pp. 58-60. 

Larsen, L.E., Walter, D.O., 1970. On automatic methods 
of sleep staging by EEG spectra, Electroencephalogr. 
Clin. Neurophysiol., 28, pp. 459-467. 

Mourtazaev, M., Kemp, B., Zwinderman, A., 
Kamphuisen, H., 1995. Age and gender affect 
different characteristics of slow waves in the sleep 
EEG. Sleep 18(7), pp. 557-564. 

Quinlan, J.R., 1990. Decision trees and decision making. 
IEEE Trans System, Man and Cybernetics, 20(2), pp. 
339-346. 

Rechtschaffen, A., Kales, A. (eds.), 1968. A manual of 
standardized terminology, techniques and scoring 
system for sleep stages of human subjects, Brain 
Inform. Service/Brain Res. Inst., Univ. California, Los 
Angeles. 

Schaltenbrand, N. et al., 1996. Sleep stage scoring using 
the neural network model: Comparison between visual 
and automatic analysis in normal subjects and patients, 
Sleep, 19, pp. 26-35. 

Smith, L.I., 2002. A tutorial on Principal Components 
Analysis, University of Otago, New Zealand, 2002. 

Stanus, E., Lacroix, B., Kerkhofs, M., Mendlewicz, J., 
1987. Automated sleep scoring: A comparative 
reliability study of algorithms, Electroencephalogr. 
Clin. Neurophysiol., 66, pp. 448-456. 

Sweden, B., Kemp, B., Kamphuisen, H., Velde, E., 1990. 
Alternative electrode placement in (automatic) sleep 
scoring (Fpz-Cz / Pz-Oz versus C4-A1 / C3-A2). Sleep 
13(3), pp.279-283. 

Therrien, C.W., 1992. Discrete Random Signals and 
Statistical Signal Processing. Englewood Cliffs (NJ): 
Prentice Hall. 

 

USING WAVELET TRANSFORM FOR FEATURE EXTRACTION FROM EEG SIGNAL

241


