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Abstract: This study experimentally investigates the relationships between central cardiovascular variables and 
oxygen uptake based on nonlinear analysis and modeling. Ten healthy subjects were studied using cycle-
ergometry exercise tests with constant workloads ranging from 25 Watt to 125 Watt. Breath by breath gas 
exchange, heart rate, cardiac output, stroke volume and blood pressure were measured at each stage.  The 
modeling results proved that the nonlinear modeling method (Support Vector Regression) outperforms 
traditional regression method (reducing Estimation Error between 59% and 80%, reducing Testing Error 
between 53% and 72%) and is the ideal approach in the modeling of physiological data, especially with 
small training data set. 

1 INTRODUCTION 

The relationships between central cardiovascular 
variables and oxygen uptake during steady state of 
graded exercise have been widely examined by 
numerous investigators (Allor et al., 2000) (Astrand 
et al., 1964) (Fairbarn et al., 1994) (Freedman et al., 
1955) (Kobayashi et al., 1978) (Reeves et al., 1961) 
(Richard et al., 2004) (Rowland et al., 1997) (Turley 
et al., 1997). Most of them investigated the 
relationship between cardiac output (CO) and 
oxygen uptake ( 2OV ) using linear regression 
methods and found the slope between the two 
variables to be approximately 5 – 6 in normal and 
athletic subjects (Rowell et al., 1986). Beck et al 
(Beck et al., 2006) in contrast, investigated this 
relationship in healthy humans using polynomial 
regression. Turley (Turley et al., 1997) described 
both the relationship of stroke volume (SV) and the 
total peripheral resistance (TPR) to oxygen uptake 
during steady state of sub-maximal exercise using 
linear regression. However, from the point view of 
modeling, the regression methods used by the 
previous researchers have several limitations. First 
the empirical risk minimization (ERM) principle 

used by traditional regression models does not 
guarantee good generalization performance and may 
produce models that over-fit the data (Gunn, 1997). 
Secondly, most of the regression models developed 
from early research based on a small sample set with 
limited subjects during three or four exercise 
intensities. Traditional regression approachs are 
particularly not recommended for modeling small 
training sets. Determination of the size of the 
training set is a main issue to be solved in the 
modeling performance because the sufficiency and 
efficiency of the training set is one of the most 
important factors to be considered.  

This study presents a novel machine learning 
approach, Support Vector Regression (SVR) 
(Drucker et al., 1997) to model the central 
cardiovascular response to exercise. SVR, developed 
by Vapnik and his co-workers in 1995, has been 
widely applied in forecasting and regression (Su et 
al., 2007) (Su et al., 2005) (Su et al., 2006) (Valerity 
et al., 2003).  The following characteristics of SVR 
make it an ideal approach in modeling of 
cardiovascular system. Firstly, SVR avoids the over-
fitting problem which exists in the traditional 
modeling approaches. Second, SVR condenses 
information in the training data and provide a sparse 
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representation by using a small number of data 
points (Girosi, 1998). Thirdly, SVR is insensitive to 
modeling assumption due to its being a non-
parametric model structure. Finally, the SVR model 
is unique and globally optimal, unlike traditional 
training which can risk converging to local minima.   

The rest of this paper is organized as follows: 
section 2 describes the experimental design for the 
data collection. Section 3 applies SVR for modeling 
the relationships between central cardiovascular 
variables and oxygen uptake. Finally, some 
conclusions are drawn in Section 4. 

2 EXPERIMENTAL DESIGN 

2.1 Subjects 

We studied 12 normal male subjects. They are all 
active, but do not participate in formal training or 
organized sports. However, since two of them could 
not complete 6 minutes of higher level exercise, only 
the data recorded from 10 subjects (aged 25 ± 4yr, 
height 177 ± 5cm, body weight 73 ± 11kg) are used 
for this study. All the subjects knew the protocol and 
the potential risks, and had given their informed 
consent.  

2.2 Experimental Procedure 

All tests were conducted in the afternoon in an air-
conditioned laboratory with temperature maintained 
between 23-24 oC. The subjects were studied during 
rest and a series of exercise in an upright position on 
an electronically braked cycle ergometer. Exercise 
was maintained at a constant workload for 6 
minutes, followed by a period of rest. The initial 
exercise level was 25W and each successive stint of 
exercise was increased in 25W steps until a 
workload of 125W was reached. The rest periods 
were increased progressively from 10 to 30 minutes 
after each stint of exercise. Six minutes of exercise 
was long enough to approach a steady state since the 
values of oxygen uptake and the A-V oxygen 
difference had become stable by the 5th and 6th 
minutes even for near maximum exertion (Reeves et 
al., 1961). 

2.3 Measurement and Data Processing 

Heart rate was monitored beat by beat using a single 
lead ECG instrument, while ventilation and 
pulmonary exchange were measured on a breath by 
breath basis. Minute ventilation was measured 

during inspiration using a Turbine Flow Transducer 
model K520-C521 (Applied Electrochemistry, 
USA). Pulmonary gas exchange was measured using 
S-3A and CD-3A gas analyzers (Applied 
Electrochemistry, USA). Before each individual 
exercise test, the turbine flow meter was calibrated 
using a 3.0 liters calibration syringe. Before and 
after each test, the gas analyzers were calibrated 
using reference gases with known O2 and CO2 
concentrations. The outputs of the ECG, the flow 
transducer and the gas analyzers were interfaced to a 
laptop through an A/D converter (NI DAQ 6062E) 
with a sampling rate of 500 Hz. Programs were 
developed in Labview 7.0 for breath by breath 
determination of pulmonary gas exchange variables 
but with particular reference to 2OV  ( 2OV  STPD). 
Beat by beat stroke volume and cardiac outputs were 
measured noninvasively using the ultrasound based 
device (USCOM, Sydney, Australia) at the 
ascending aorta. This device has previously been 
reported to be both accurate and reproducible 
(Knobloch et al., 2005). In order to keep consistent 
measurements, all CO/SV measurements were 
conducted by the same person. An oscillometric 
blood pressure measurement device (CBM-700, 
Colin, France) was used to measure blood pressure.  

The measurement of 2OV  and HR were 
conducted during the whole exercise and recovery 
stage. The static values ( 2OV  and HR) were 
calculated for each workload from data collected in 
the last minute of the six minute exercise protocol. 
The measurements of SV, CO and BP (blood 
pressure) were similarly conducted during the last 
minute of  the six minute exercise for each workload 
with the additional requirement that subjects keep 
their upper body as still as possible to minimize 
artifacts caused by the movement of the chest during 
exercise. We then, calculated their static values (CO, 
SV and BP) based on the measurement in the last 
minute for each workload.  

2.4 Results 

We found that the percentage changes of 
cardiovascular variables relative to their rest values 
more uniform than when absolute values are used. 
This may be because using relative values diminish 
the variability between subjects. For example, 
Figure 1 (a) shows the relationship between the 
absolute value of mean arterial blood pressure 
response and the absolute value of oxygen uptake 
rate for all the ten subjects, while Figure 1 (b) is the 
percentage change in mean arterial blood pressure 
relative to its rest value with the percentage change 
in oxygen uptake rate to its rest value for the ten 
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subjects. Obviously, the response in Figure 1 (b) is 
more consistent and gives clearer trend than that in 
Figure 1 (a). It is thus reasonable to believe that 
modeling of cardiovascular responses using relative 
changes may give more robust results than modeling 
with the absolute values. 

 
(a). Mean arterial blood pressure response to oxygen  

uptake rate (in absolute value). 

 
(b). Mean arterial blood pressure response to oxygen 

 uptake rate (in relative value). 

Figure 1: Mean arterial blood pressure response to oxygen 
uptake rate for the ten subjects. 

Based on the above finding, we model CO, SV 
and TPR to 2OV  by modeling the percentage 
changes in CO, SV and TPR with respect to their 
corresponding rest values to percentage change in 

2OV  with respect to its rest value. We use CO%, 
SV%, TPR% and 2OV % to represent their relative 
values (expressed as percentage), respectively.    

3 APPLICATION OF SVR FOR 
MODELING 

We selected radial basic function (RBF) kernels for 

this study, that is  )
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the kernel parameter, ix  is the ith input support 
value and x is the input value. 

Detailed discussion about SVR, such as the 
selection of regularization constant C , radius ε  of 
the tube and kernel function, can be found in (Gunn, 
1997) (Vapnik, 1998). 

In order to show the effectiveness of SVR, we 
applied both SVR and traditional linear regression 
(Least-Square linear regression (LS)) to investigate 
the relationships between percentage change of 
cardiovascular variables (CO%, SV% and TPR%) 
and 2OV %. 

3.1 The Relationship between CO% 
and 2OV % 

3.1.1 Model Identification 

A SVR model was developed to estimate CO% from 
2OV % (Table 1 and Figure 2). Although it is widely 

accepted that there is a linear relationship between 
cardiac output and oxygen consumption (Allor et al., 
2000) (Astrand et al., 1964) (Freedman et al., 1955),  

 
(a). Estimation of percentage change in CO from  

percentage change in 
2OV  using SVR. 

 
(b). Estimation of percentage change in CO from 

percentage change in 
2OV  using LS. 

Figure 2: Comparison of estimation results of CO% 
between using SVR and using LS. 
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their relationship can be better described by the 
nonlinear SVR model in terms of reducing the errors 
(MSE) from 418 to 171 (Table 2), an improvement 
of 59% comparing with that of LS method 

The results in Table 1 also show the efficiency of 
SVR. Unlike traditional regression method where 
the solution of the model depends on the whole 
training data points, in SVR, the solution to the 
problem is only dependent on a subset of training 
data points which are referred to as support vectors. 
Using only support vectors, the same solution can be 
obtained as using all the training data points. SVR 
uses just 13% of the total points available to model 
their nonlinear behavior efficiently.  

3.1.2 Model Validation 

To further evaluate the feasibility of this proposed 
SVR model, the whole data set is divided into two 
parts: the first part (70% of the data) is used to 
design the model and the second part (30% of the 
data) is used to test its performance. Because we do 
not have large sample of data, we separated the data 
set into two parts randomly five times. Each time we 
use 70% of the data for training and the rest for 
testing. We established the SVR model with the 
three design parameters (kernel function, capacity 
( C ) and the radius of insensitivity (ε  )) based on 
the training set, and test its goodness on the testing 
set. In Figure 3, we present the results for one of the 
5 tests. As shown in Table 3, the averaged results 
(MSE) for the 5 times testing for SVR is 245±15. 
However, the averaged error for traditional linear 
regression is as high as 521±19. It indicates that 
SVR can build more robust models to predict CO% 
from 2OV % using only a small training set. It also 
demonstrates that SVR can overcome the over-
fitting problem, even though SVR has more model 
parameters than the traditional linear regression 
method. 

3.2 The Relationship between SV% 
and 

2OV % 

Figure 4 shows the models for estimating SV%. The 
SVR model gives more precisely estimation than the 
LS does and decreases estimation errors (MSE) by 
67% (Table 2).   

The testing models are given in Figure 5 and the 
testing errors are in Table 3. As indicated, the SVR 
model decreases the testing error by 64%. 

 
 
 

(a). Testing of SVR model. 

 
(b). Testing of LS model 

Figure 3: Comparison of models of CO% against % 
change in oxygen uptake using SVR and using LS 
methods. 

 
(a). Estimation of percentage change in SV from 

 percentage change in 
2OV  using SVR. 

 
(b). Estimation of percentage change in SV with   percentage 

change in 
2OV  using linear regression. 

Figure 4: Comparison of estimation results for SV% 
between using SVR and using LS. 
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(a). Testing of SVR model. 

 
(b). Testing of LS model. 

Figure 5: Comparison of the testing results for Stroke 
Volume using SVR and using traditional linear regression. 

3.3 The Relationship between TPR% 
and 2OV % 

As shown in Figure 6, the SVR model describes a 
rapid fall in TPR% at low workloads which remains 
relatively constant even with increasing 2OV %. SVR 
uses just 13% (Table 1) of the total points to get an 
efficient nonlinear model. Compared with linear 
regression, the SVR model decreases MSE from 151 
to 30, an improvement of 80%.  

The testing results for this SVR model and the 
equivalent LS model are given in Figure 7 and Table 
3, respectively. Both of these (Figure 7 and Table 3) 
demonstrate that SVR outperforms the traditional 
linear regression method by reducing testing errors 
significantly, from 130 to 36. 

 
 
 
 
 
 
 
 
 

(a). Estimation of percentage change in TPR from 
percentage change in 

2OV  using SVR. 

 
(b). Estimation of percentage change in TPR with  
percentage change in 

2OV  using linear regression. 

Figure 6: Comparison of the estimation results of TPR% 
between using SVR and LS. 

 
(a). Testing of SVR model. 

 
(b). Testing of LS model. 

Figure 7: Comparison of the test results of TPR% against 
% change on Oxygen uptake using SVR and using LS. 
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Table 1: Fitting data for the model of cardiovascular 
variables and oxygen uptake rate using SVR. 

Relation 
CO% Vs 

2OV % 
SV% Vs 

2OV % 

TPR% 
Vs 

2OV % 
Kernel RBF RBF RBF 
Parameter σ = 200 σ = 500 σ = 500 

Regularization 
constant  C 5000 5000 5000 

ε-insensitivity 19 3 8 
Support 
vectors 
number 

8 (13.3%) 8 
(13.3%) 8 (13.3%) 

Estimation 
error 171 5 30 

Table 2: Comparison of the estimation errors (MSE) 
between using SVR and using linear regression method 

Relation 
CO% Vs 

2OV % 
SV% Vs 

2OV % 
TPR% Vs 

2OV % 
SVR 171 5 30 
LS 418 15 151 

Table3: Comparison of the model fitting errors (MSE) 
using SVR and linear regression methods (N=5). 

Relation 
CO% Vs 

2OV % 
SV% Vs 

2OV % 
TPR%  

Vs 2OV % 
SVR testing 

error 245 ± 15 8 ± 2 36 ± 5 

LS Testing 
error 521 ± 19 22 ± 7 130 ± 12 

4 CONCLUSIONS 

This is the first time that SVR has been applied to 
experimentally investigate the steady state 
relationships between key central cardiovascular 
variables and oxygen consumption during 
incremental exercise. The impressive results 
obtained prove that SVR is an effective approach 
that can be recommended for the modeling of 
physiological data.  
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