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Abstract: This paper proposes a novel technique to eliminate the noise in practical electrocardiogram (ECG) signals. 
Two state-of-the-art denoising techniques, which both based on wavelet bases, are combined together. The 
first one is discussing wavelet bases in Besov spaces.  Compared to traditional algorithms, which discuss 
wavelets in 2 ( )L R  spaces, the proposed technique projects ECG signals onto Besov spaces for the first time. 
Besov space is a more sophisticated smoothness space. Determining the threshold of shrinkage function in 
Besov space could eliminate Gibbs phenomenon. In addition, instead of using linear shrinkage function, the 
proposed algorithm uses nonlinear hyper shrinkage function, which is proposed by Poornachandra. The 
function tends to keep a few larger coefficients representing the function while the noise coefficients tend to 
be reduced to zero. Combining the two techniques, we obtain a significant improvement over conventional 
ECG denoising algorithm. 

1 INTRODUCTION 

Removing noise is an pertinent problem in ECG 
signals processing. Usually, there are two kinds of 
noises in ECG, power line frequency noise and 
white noise. Power line frequency noise can be 
regarded as the result of an electromagnetic 
compatibility issues: background electromagnetic 
field interference from surrounding equipments and 
from buldings and power conductors. White noise is 
usually considered from the measure equipment. 

Previously, different filters based on Fourier 
bases are used to eliminate the noises, such as notch 
filter. The problem of these methods is that they 
could not reduce the two kinds of noises at the same 
time. In addition, because the notch has a relatively 
large bandwidth, which means that the other 
frequency components around the desired null are 
severely attenuated, this method brings in signal 
distortions. In 1995, Donoho (David L Donoho, 
1995) proposed a novel denoising algorithm based 
on wavelet shrinkage. It provides excellent 
performance and since then, wavelets became a 
state-of-the-art denoising method. Before long, P. M 

Agante (P M Agante, 1995) applied soft-threshold 
method in ECG and achieve good results. However, 
traditional wavelet method has its drawbacks. They 
are not shift invariant; therefore, for the signals not 
smooth enough, it will appear Gibbs Oscillation 
phenomenon at the location where the signal is sharp 
changed. In ECG signals, there are R waves, which 
change sharply. As a result, Traditional wavelet 
denoising algorithm brings in Gibbs oscillation after 
R waves.  

In this paper, we apply two techniques to 
eliminate the noise and restrain the Gibbs 
phenomenon at the same time. First, we determine 
the threshold of wavelet shrinkage function in Besov 
spaces. Besov space ( )P

qB Lα  is a smoothness space 
with 0σ > , 2( , ) [1, )p q ∈ +∞ , it is defined by 

( )
( ) { ( ) | }P

q

P p
q B L

B L f L R f α
α = ∈ < ∞  (1) 

Where the Besov seminorm ( )P
qB Lα�  is linked to the 

smoothness modulus of the considered function. 
Besides that, in stead of linear shrinkage function, 
we use nonlinear shrinkage model (S. 
Poornachandra, 2007). Combining the two novel 
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techniques, we obtain a significant improvement 
over conventional wavelet denoising algorithm. In 
order to certify our idea, the noises in ECG signals 
in our experiment are not added by hand. They are 
from actual interfering. We collect the ECG signals 
with noises by our own devices.  

2 INTRODUCTION TO WAVELET 
SHRINKAGE FUNCTION IN 
BESOV SPACE 

Wavelet is defined as orthonormal basis functions 
for the expansion of functions belonging to various 
function spaces. Usually, it is the space of squared 
integrable real functions 2 ( )L R  (functions with finite 
energy). Recently, it has been shown that more 
sophisticated smoothness spaces, such as Besov 
spaces, provide a suitable and more refined 
characterization of real-life signals (Kathrin 
Berkner, 2000). The wavelet series representation of 
a function 2( ) ( )f t L R∈  could be express as 
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ϕ  is called farther wavelet and ψ  is called mother 
wavelet. , ( )j k tϕ  and , ( )j k tψ  are the dilation and 
translation of the wavelet function.  
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, ( ) 2 (2 )j j
j k t kϕ ϕ= −  (3) 
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j k t kψ ψ= −  (4) 

j , k  are the scaling and translation parameters 
respectively, ,j k Z∈ , / 22 j  could maintain the unity 
norm of the basis function at various scales. The 
coefficients 

0 0
,j k j kc g ϕ=  and ,jk jkd g ψ= . Often 

we set 0 0j = , and in that case there is only one 
scaling coefficient. The wavelet series are usually 
discussed in 2 ( )L R  spaces, but in our research, we 
use a more sophisticated set of functions, Besov 
spaces ( )P

qB Lα  ( 0 α< < ∞ , 0 p< ≤ ∞ , 0 q< ≤ ∞ ). In 
Besov spaces, for a function ( )P

qf B Lα∈ , its norm 
could be defined  using its wavelet coefficients as (5) 
(Kathrin Berkner , 2000) 
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The three Besov parameters have natural 
interpretations: a p -norm of the wavelet 

coefficients is taken within each scale j , a weighted 
q -norm is taken across scale, and the smoothness 
parameter α  controls the rate of decay of the jkd , 
increasing α  corresponds to increasing smoothness.  

Based on reference (Antonin Chambolle, 1998), 
the denoising problem could be described as follow. 
Given a positive parameter λ  and a signal f , find a 
function f%  that minimize over all possible function 
the functional 
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Choose a proper λ , the f%  could be the denoising 
signal of f . For simpleness, we set Besov 
parameters 1p q= = . Then the problem could be 
expressed as follow: 
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That means for each j , k , we estimate the d
)

 
use follow expression: 

2 ( 1/ 2)
0

( 1/ 2)
0 0

( ) 2 | |
2

( ) max(| | 2 / )

argmin j

d

j

d d

sign d d

d α

α

λ λ

λ

−

−

− +

= ⋅ −

=
)

 (8) 

 
That means the ECG signal has small Besov 

norm if the wavelet coefficient in each scale have 
small 1l  norms and those 1l  norms decay rapidly 
across scale.  

Note that any wavelet basis having r α>  
vanishing moments can be used to measure a Besov 
norm (Hyeokho Choi, 2004). 

3 INTRODUCTION TO 
NONLINEAR SHRINKAGE 
MODEL 

Donoho and Johnstone were first to formalize the 
wavelet coefficient thresholding for removal of 
additive noise from deterministic signals (David L 
Donoho, 1995). Wavelet thresholding is based on 
the property that typical real-world signals have 
sparse representations in the wavelet domain. The 
small coefficients are usually correlated to noise. 
Therefore, by choosing an orthogonal basis, which 
could efficiently approximates the signal with few 
nonzero coefficients; we could choose a particular 
threshold and set the coefficient bellow the threshold 
to zero. Using these coefficients in an IDWT to 
reconstruct the data, we could kill the noise. 
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The shrinkage function proposed by Donoho and 
Johnstone are the hard and the soft shrinkage 
function. Hard thresholding simply sets the 
coefficients below a threshold T  to zero, as (9). Soft 
thresholding first shrinks each coefficient by T  and 
then hard thresholds, as (10). 
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Both hard and soft shrinkages have their 

disadvantages. Due to the discontinuities of the 
shrinkage function, hard shrinkage estimate tends to 
have bigger variance and can be unstable, that is, 
sensitive to small changes in the data. The soft 
shrinkage estimate tends to have bigger bias, due to 
the shrinkage of large coefficients (S. 
Poornachandra, 2007). 

To overcome the drawbacks of hard and soft 
shrinkage, we decide to use nonlinear shrinkage 
function. There are two kinds nonlinear shrinkage 
estimate in our experiment. The first is called 
nonnegative garrote shrinkage function (M. Vetterli, 
1995), which was first introduced by Breiman 
(1995) as follow: 

2( ) 1 ( / )G x x xλδ λ
+

⎡ ⎤= −⎣ ⎦  (11) 

The shrinkage function ( )G xλδ  is continuous and 
it provides a good compromise between the hard and 
the soft shrinkage functions. It is less sensitive than 
hard shrinkage to small fluctuations and less biased 
than soft shrinkage. The second shrinkage function 
is called hyper shrinkage, which is proposed by S. 
Poornachandra as follow: 

( )( ) tanh( * ) | |hyp x x x tλδ ρ
+

= −  (12) 
 
The major advantage of hyper shrinkage is its 

nonlinearity, that is, the function in wavelet domain 
tends to keep a few larger coefficients representing 
the function while the noise coefficient tend to be 
reduced to zero. 

4 NOISE REDUCTION BY OUR 
METHOD 

The objective of this paper is to eliminate the noise 
buried in practical ECG signals. In our research, we 
combine the two techniques we mention above. 
First, we determined the threshold of shrinkage 
function for each level in Besov spaces. It is 

obviously that for each subband, the parameter α  
should be different. We set jα  for each level 
experimentally. Then we use the two kinds of 
nonlinear shrinkage functions to obtain the estimated 
coefficients. Finally, using these coefficients the 
original ECG signal is thus recovered. The general 
process is showed bellow. The decomposition level 
is 6. 

Step 1. Choose db3 wavelets, and do DWT. 
Step 2. Choose α  at each level. For the fist level 

0 0.9α = , and 0 0.25* (log( 2))j sqrt jα α= + +  for each 
level.  

Step 3. Determine the threshold based on the jα . 
Step 4. Apply hyper shrinkage function and the 

estimated coefficients obtained. 
Step 5. IDWT use the estimated coefficients. 

5 SIMULATIONS AND RESULTS 

In our research, the ECG signals are obtained by our 
own devices. Each piece of signal is about 1 min 
long. The sampling rate is 1200Hz. 

In our research, we use five different denoising 
methods. We show original signal and the processed 
4 signals and their spectrums in Fig.1 to Fig.6. In 
order to see clearly, we show their details of the 
sample points around R waves. The method in Fig.2 
determines the threshold in 2 ( )L R  spaces and use 
hard thresholding shrinkage function, while in Fig.3 
the thresholds is determined in 2 ( )L R  spaces and use 
soft thresholding method. The other three discuss the 
thresholds in Besov spaces. Whereas Fig.4 uses soft 
shrinkage function, Fig.5 use nonnegative garrote 
shrinkage function and the last one uses hyper 
shrinkage function. 

 
Figure 1: The original signal and its spectrum. 
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Figure 2: Determine the threshold in 2 ( )L R  and use hard 
thresholding. 

 

Figure 3: Determine the threshold in 2 ( )L R  and use soft 
thresholding. 

 
Figure 4: Determine the threshold in Besov spaces and use 
soft thresholding. 

 
Figure 5: Determine the threshold in Besov spaces and use 
nonnegative garrote shrinkage function. 

 
Figure 6: Determine the threshold in Besov spaces and use 
hyper shrinkage function. 

As we seen from the pictures above, combined 
with threshold determined in Besov spaces and 
hyper shrinkage function, the recovered signal is the 
most visually pleasant. The proposed technique 
almost eliminate Gibbs phenomenon. To describe 
the oscillation of the recovered signal 
quantificational, we calculate the total variation of 
the six signals. Total variation for a uniform 
sampling discrete signal f  is defined as (S. Mallat, 
1998). 

|| || | [ ] [ 1] |N V N N
n

f f n f n= − −∑  (13) 
Where || ||N Vf  is the Total Variation. In order to 

certify the effectiveness of the proposed method, we 
give 4 pieces of signals’ Total Variation. They are 
show in Table 1. 

Table 1: Total Variation of the signals. 

 1 2 3 4 average 
T1 0.3914 0.3747 0.3801 0.3875 0.3834 
T2 0.1789 0.1654 0.1388 0.1252 0.1521 
T3 0.1789 0.1654 0.1388 0.1252 0.1521 
T4 0.1721 0.1517 0.1006 0.1177 0.1355 
T5 0.1758 0.1504 0.1030 0.1206 0.1374 
T6 0.1431 0.1371 0.0803 0.0919 0.1131 
 
In the above table, T1 means the original signals’ 

Total Variation. T2 to T6 correspond Fig.2 to Fig.5. 
In the table, we could notice easily that discussing 
threshold in Besov space and using nonlinear 
shrinkage function could obtain good results. And 
among those, hyper shrinkage is the most effective, 
it has the least oscillation. 

6 CONCLUSIONS 

This paper proposes a novel approach to eliminate 
the noises in practical ECG Signals. First, we use the 
characterization of Besov space, which is a 
smoothness spaces, through wavelet 
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decompositions. Then we apply nonlinear shrinkage 
function instead of linear shrinkage function. The 
experiment results show that the proposed algorithm 
is visually pleasant compared to traditional methods. 
It could eliminate the noise successfully, and at the 
same time, it suppresses Gibbs oscillation. The 
proposed technique has potential application in data 
acquisition systems, which are generally 
encountered by noise. 
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