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Abstract: We propose a new method for motion estimation between two successive frames in medical image sequences
and videos. The method is based on inverse polynomial interpolation.

1 INTRODUCTION

The applications of motion estimation have been in-
creasingly gaining interest in the field of medical
imaging. (Hemmendorff, 2001) proposed a frame-
work for motion estimation of 2D X-ray angiogra-
phy images and 3D MRI mammograms. Deformable
models were used by (Kurabayashi et al., 2005) to es-
timate the motion in time-series chest MR images.
(Auvray et al., 2006) applied motion estimation to
transparent X-ray image sequences.

Motion estimation is a key step in video cod-
ing and compression, which is an important tool to
achieve bandwidth reduction when transmitting med-
ical image sequences and videos. In addition, remote
and robot-assisted surgeries and medical diagnostic
tools can benefit from motion estimation in analyzing
and interpreting the motions of body parts.

2 PROBLEM STATEMENT

Consider the pair of imagesI1(r,c) andI2(r,c), both
of sizeR×C, where the spacial argumentsr andc re-
fer to the pixel at therth row andcth column. Here we
assume that the two images are successive frames in a
medical video or image sequence with spacial differ-
ences between the two images but no change in inten-
sity. The pixelsI2(r,c) of the destination image can
be generated by shifting corresponding pixels in the
source image in the 2D space. Letτ1(r,c) andτ2(r,c)

be the horizontal and vertical shifts respectively, then
we can write

I2(r,c) = I1(r + τ2(r,c),c + τ1(r,c)) (1)

Sub-pixel shifts are approximated by 2D polynomial
interpolations within square neighborhoods of the
source imageI1. The advantage of this choice is the
separability and simplicity of implementation that al-
lows an approximation of (1) to be written in an easily
manipulated form.

Now assume that|τ1(r,c)| ≤ p and|τ2(r,c)| ≤ p.
Then the neighborhood in consideration would be of
size(2p+1)× (2p+1) and the interpolation polyno-
mial is of order 2p. Define a vector function

u(τi(r,c)) =


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τ2p
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τ2p−1
i (r,c)

...
1
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
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

(2)

The polynomial approximation of (1) can be written
in the form

I2(r,c) = uT (τ1(r,c))A(r,c)u(τ2(r,c)) (3)

whereA(r,c) is a (2p + 1)× (2p + 1) matrix . For
simplicity, the spacial arguments(r,c) are dropped
from this point and assumed implicitly

I2 = uT (τ1)Au(τ2) (4)

With τ1 andτ2 are the unknowns in equation (4),
our goal is to solve the inverse polynomial interpo-
lation problem represented by (4), which would also
solve the motion estimation problem described above.
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Many motion estimation methods use multiscale
or hierarchial levels in order to process large motions,
the proposed method can handle the size of motions
that typically exist between two successive frames
and therefor we are not using any multiscale pyra-
mids.

3 POLYNOMIAL
INTERPOLATION

For a pixel that is assumed to move a maximum of
p pixels to the right or the left in a 1D source signal,
the neighborhood consideredY is of length 2p + 1
and centered at the elementy(0). Using polynomial
interpolation,y(x) representing a shift from the center
by a valuex where|x| ≤ p can be approximated by
using a polynomial of order 2p

y(x) = c2px2p + c2p−1x2p−1+ · · ·+ c2x2 + c1x + c0
(5)

The coefficientsc2p · · ·c0 are found by solving a sys-
tem of 2p +1 linear equations of the form

XC = YT (6)

where
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(7)

and the solution to the linear system is given by

C = QYT
, Q = X−1 (8)

The matrix X in (7) is a special form of the Van-
dermonde matrix. Its inverse can be found using an
explicit LU factorization discussed in the paper by
(Olver, 2006).

Denote theith row of the matrixQ in (8) asqi.
The process of 1D polynomial interpolation can be
expressed as

y(x) = Y
2p+1

∑
i=1

qT
i xi (9)

The 1D polynomial interpolation in (9) can be ex-
tended to the 2D case. When a pixel in a 2D neigh-
borhood is assumed to move a maximum ofp pixels
along any dimension, the neighborhood in considera-
tion is of size(2p +1)× (2p +1) and centered at the
pixel n(0,0).

Recall thatqi is theith row of the matrixQ in (8).
We use the fact that the 2D polynomial interpolation
is separable to build the matrixA, with each element
on theith row andjth column is given by

a(i, j) =
p

∑
m=−p

p

∑
n=−p

N(m,n)q j(m)qi(n) (10)

The process of 2D polynomial interpolation can be
expressed now as

I2 =
2p+1

∑
i=1

2p+1

∑
j=1

a(i, j)τ
2p+1−i
1 τ2p+1− j

2 (11)

with the matrix form of (11) is as given by (4).

4 SOLUTION OF INVERSE
INTERPOLATION

4.1 The Linear Approximation

First we start by finding a linear approximation of (4)
around some values̄τ1, τ̄2 (to be defined later). The
first order approximation using Taylor series is easily
computed since the differentiation of (4) with respect
to etherτ1 or τ2 is trivial.

I2 ≈ uT (τ̄1)Au(τ̄2)+ u̇T (τ̄1)Au(τ̄2) [τ1− τ̄1]
+uT (τ̄1)Au̇(τ̄2) [τ2− τ̄2]

(12)
Equation (12) is written in a form of a linear equa-

tion
Ī(τ̄ττ) = H(τ̄ττ)τττ (13)

where

Ī(τ̄ττ) = I2−uT (τ̄1)Au(τ̄2)+ H(τ̄ττ)τ̄ττ
H(τ̄ττ) =

[

u̇T (τ̄1)Au(τ̄2) uT (τ̄1)Au̇(τ̄2)
]

τ̄ττ =

[

τ̄1
τ̄2

]

, τττ =

[

τ1
τ2

]

(14)
An approximate solution to equation (13) can be

found as

τττ = G(τ̄ττ)Ī(τ̄ττ)
G(τ̄ττ) =

(

HT (τ̄ττ)H(τ̄ττ)+ I2
)−1 HT (τ̄ττ)

(15)

whereI2 is the 2×2 identity matrix.
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4.2 The Iterative Solution

Define τ̄ττ(k) to be the accumulated shifts from initial
step until thekth step

τ̄ττ(k) =
k

∑
i=0

τττ(i) (16)

Starting with an initial valuēτττ(0) = 0, the linear equa-
tion (13) and its solution (15) can be used in an itera-
tive manner as follows

τ̄ττ(0) = 0
e(0) = Ī(τ̄ττ(0))
τττ(1) = G(τ̄ττ(0))e(0)

= G(τ̄ττ(0))Ī(τ̄ττ(0))
e(1) = Ī(τ̄ττ(1))−H(τ̄ττ(1)) [τττ(0)+ τττ(1)]

= Ī(τ̄ττ(1))−H(τ̄ττ(1))τ̄ττ(1)
τττ(2) = G(τ̄ττ(1))e(1)

= G(τ̄ττ(1)) [Ī(τ̄ττ(1))−H(τ̄ττ(1))τ̄ττ(1)]
...

(17)

In general

τττ(k +1) = G(τ̄ττ(k)) [Ī(τ̄ττ(k))−H(τ̄ττ(k))τ̄ττ(k)] (18)

SubstitutingĪ(τ̄ττ(k)) from equation (14) into equation
(18) yields the formula for the iterative numerical so-
lution as

τττ(k +1) = G(τ̄ττ(k))
[

I2−uT (τ̄1(k))Au(τ̄2(k))
]

(19)

Whenτττ(k + 1) in the iterative equation (21) con-
verges to zero (or asmall enough number near zero)
we getτ̄ττ(k +1) such that

I2 ≃ uT (τ̄1(k +1))Au(τ̄2(k +1)) (20)

which is the solution to both problems of motion esti-
mation and inverse polynomial interpolation. Finally,
algebraic manipulation of (19) and using (16) sim-
plify the solution into the iterative formula given by

τ̄ττ(k +1) = τ̄ττ(k)+
I2−uT (τ̄1(k))Au(τ̄2(k))

H(τ̄ττ(k))H(τ̄ττ(k))T H(τ̄ττ(k))T

(21)
Our solution in (21) is closely related to the al-

gorithm proposed by (Biemond et al., 1987). The
major difference is that in (Biemond et al., 1987) a
bilinear interpolation was used to calculate the dis-
placement frame difference, and the spatial gradients
were obtained by rounding off the displacement es-
timates; whereas in we use polynomial interpolation
which provides better interpolation and simplifies cal-
culating the gradients. Also, (Biemond et al., 1987)
used observations from a block of pixels.

Motion estimation results can be improved signif-
icantly by testing multiple initial values. Figure 1

Figure 1: The circled pixel positions are the chosen initial
positions for the 5×5 neighborhood.

shows the chosen initial positions for the 5×5 neigh-
borhood (i.e. p = 2). For the(2p + 1)× (2p + 1)
neighborhood, the number of initial valuesτ̄ττ(0) is p2.
The different initial values are sorted and tried accord-
ing to their distance from the mean shift obtained for
the previously processed adjacent pixels inI2, starting
with the closest. This also establishes dependency be-
tween the motions of the image pixels. For an initial
value, if the iterative equation (21) converges to a so-
lution before reaching a specified maximum number
of iterations, the result is recorded and there would be
no need to try the other initial values. Otherwise, the
next initial value is tried.

5 RESULTS

We tested our method using gray-scaled images. For
comparison, motion in the same frames was estimated
by the elastic image registration method by (Peri-
aswamy and Farid, 2003) and the widely-used optical
flow method by (Lucas and Kanade, 1981). The Mat-
lab code for Periaswamy and Farid’s method is avail-
able on the internet (Web, 1). Examples show that our
method provides better performance.

In the first example (Figure 2) two images are
extracted from an echocardiography video (Web, 2).
The images are of size 430×550 pixels. The second
example (Figure 3) shows two images extracted from
a video recorded during a robotic-assisted repair of a
pulmonary artery (Web, 3). The images are of size
240×352 pixels. For both examples we chosep = 7,
a convergence threshold of 0.001 and the maximum
number of iterations to be 20.

For each example, we computed the peak signal-
to-noise ratio (PSNR) for the displaced frame differ-
ence. The PSNR equation is defined by (22) and the
results are listed in Table 1.

PSRN = 10log10
2552RC

R
∑

r=1

C
∑

c=1
(I2(r,c)− Is(r,c))

2
(22)
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(a) Source imageI1 (b) Destination image
I2

(c) |I2− I1| (d) |I2− IAS|

(e) |I2− IPF | (f) |I2− ILK |

Figure 2: Motion estimation between two successive frames
from echocardiography video.

(a) Source imageI1 (b) Destination image
I2

(c) |I2− I1| (d) |I2− IAS|

(e) |I2− IPF | (f) |I2− ILK |

Figure 3: Motion estimation between two successive frames
from robot-assisted artery surgery video.

Table 1: PSNR of displaced frame difference.

Echocar- Artery
diography Surgery

Our method 50.27 dB 42.34 dB
Periaswamy-Farid 25.66 dB 19.85 dB

Lucas-Kanade 27.10 dB 19.12 dB

In (Periaswamy and Farid, 2003) the motion
within a small neighborhood was modeled locally by
an affine transform. In video sequences the consid-
ered neighborhood may contain one or more different
motions in addition to the stationary background. An
attempt to model these motions and the static back-
ground using one affine transform will produce esti-
mation errors. Our method does not suffer from this
shortcoming because it works on a pixel level.
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