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Abstract: This paper proposes a methodology that analysis and classifies the EMG and MMG signals using neural 
networks to control prosthetic members. Finger motions discrimination is the key problem in this study. 
Thus the emphasis is put on myoelectric signal processing approaches in this paper. The EMG and MMG 
signals classification system was established using the LVQ neural network. The experimental results show 
a promising performance in classification of motions based on both EMG and MMG patterns. 

1 INTRODUCTION 

Biomedical signals means a set of electrical signals 
acquired from any organ that represents a physical 
variable of interest. These signals are normally a 
function of time and can be analysed in its 
amplitudes, frequency and phase. In the proposed 
method it is used two biomedical signals, 
electromyographic (EMG) and mechanomyographic 
(MMG) signals, to control the movement of 
prostheses. 

Prosthesis systems for upper limb are mainly 
based on myoelectric control, recognizing EMG 
signals that occur during muscle contraction on the 
skin surface. Myoelectric control takes advantage of 
the fact that, after a hand amputation, great majority 
of the muscles that generate finger motion is left in 
the stump. The activity of these muscles still 
depends on the patient will, so biosignals that occur 
during it, can be used to control prosthesis motion 
(Asres, A., Dou, H. F., Zhou, Z. Y., Zhang, Y. L., 
and Zhu, S. C., 1996; Wołczowski, A., 2001). 

In order to enhance functionality of such 
prosthesis another biosignal was researched. This 
signal is mechanical wave propagating in a 
contracting muscle (MMG) (Orizio, C., 1993). The 
nature and utility of MMG signals had already been 

studied namely in the control of a free-standing 
prosthetic hand (Goldenberg, M. S., Yack, H. J., 
Cerny F. J., and Burton, H. W., 1991; Ouamer, M., 
Boiteux, M., Petitjean, M., Travens, L., and Sal’es, 
A., 1999). A strategy to combine the MMG data and 
sensor fusion was proposed for the estimation and 
classification of muscle activity (Silva, J., Heim, W., 
and Chau, T., 2004). The fatigue of the biceps and 
brachioradialis muscles during sustained contraction 
was studied by (Tarata, M. T., 2003) using MMG 
signals. A linear classifier with a feature vector 
based on RMS power of the MMG signal was used 
to classify the finger movement in one of three 
possible groups (Grossman, A., Silva, J., and Chau, 
T., 2004). 

In the proposed approach, an identification 
system will try to recognise a certain group of 
movements based on fusion of the mechanical and 
electrical signals (MMG and EMG signals) recorded 
on a patients arm. The features used are based on 
time and frequency histograms. The measurements 
were done on a specialized stand designed for such 
research. 
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2 MEASUREMENT STAND 

Measurement set was created specially for obtaining 
signals from patients arm. The configuration used in 
the measurement contained 6 input channels (Figure 
1). Input channels from 1 to 3 were connected to the 
microphone sensors and input channels from 4 to 6 
were connected to EMG differential electrodes. 
 

 
Figure 1: EMG and MMG acquisition system. 

The microphone sensors are highly sensitive and 
are situated in a heavy brazen housing separating it 
from any external source of vibration. This 
microphone situated on the skin surface, records 
vibrations propagating in the tissue underneath it. 

The microphone conditioning circuit filter out 
frequencies above 150 Hz as the frequency range of 
the mechanomyogram doesn’t shows frequencies 
above this level (Orizio, C., 1993). 

The EMG differential electrodes detect minimal 
potentials occurring on the skin over working 
muscles. It contains two contact poles situated 1 cm 
away from each other and amplifies only the 
difference between the two readings. Frequency of 
the electromyogram goes into range between 20-400 
Hz (Krysztoforski, K. and Wołczowski A., 2005). 

A digital camera can be used as an addition to 
the stand as feedback information. It allows 
extracting data from specific stages of movement. 

3 METHODOLOGY 

In the experiment sensor were attached to the 
patient’s right arm. One set of microphone and 
electrode was positioned at the top of the forearm 
near the elbow. The second and the third pairs of 
microphone and electrode were positioned at the 
bottom of the forearm near the elbow and near the 
wrist, respectively. Table 1 shows the channels used 
in the acquisition of EMG and MMG signals. 

During the measurements patient was repeating 
the same set of movements with various speeds and 
duration of the muscle contraction. Those 
movements were: 

 

I – Hand closing; 
II – Pointing with one finger; 
III –Pointing with two fingers; 
IV – Wrist flexion – down; 
V – Wrist flexion – up; 
VI – Pronation / suplination; 
VII – Whole hand movement left / right; 
 
All measurements were made with 1kHz probing 

density and lasted 5 sec. In each 5 second 
measurement the move was repeated two or three 
times. 

Table 1: Channels used in the acquisition systems. 

Sensor Channel 
MMG microphone 1 

EMG electrode 4 
MMG microphone 2 

EMG electrode 5 
MMG microphone 3 

EMG electrode 6 

3.1 Data Visualisation and Analysis 

In order to create input for a classification system 
the data gathered during the measurements had to be 
analysed in search of the signal features. In figure 2 
is shown typical MMG and EMG signals obtained 
during 5 seconds in channel 4. It can be seen that 
during these interval of time, one type of movement 
was repeated three times during the presented tests. 

 

 
Figure 2: EMG and MMG signals. 
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The signal features were observed on a 3D 
histogram containing information in both time and 
frequency domains using Short Time Fourier 
Transform (STFT). An example of such histogram is 
shown on figures 3 and 4, for MMG and EMG 
signals obtained from one movement, respectively. 

 

 
Figure 3: MMG frequency spectral density histogram. 

 
Figure 4: EMG frequency spectral density histogram. 

It can be deducted from the histograms analysis, 
for every movement, that the MMG histogram has 
two peeks – in the beginning and at the end of the 
movement, whereas in the middle of the muscle 
activation spectral density is relatively low. 

In the EMG histogram the signal is strongest 
while the muscle is kept contracted. 

 

3.2 Feature Extraction 

In the feature selection stage, the same number of 
features for each EMG and MMG channel are used. 

The selection of the elements of the feature input 
vector has to take advantage of the knowledge about 
the signal features in the time and frequency domain.  

Therefore the selection of the input vector 
elements is based on  the time/frequency histograms. 
The proposed algorithm for selecting points is 
divided in five steps: 
 
1- Extracting the movement part from every channel 
of 5s measurement record (Figure 5); 

 

 
Figure 5: EMG signal obtained in channel 4. 

2- Application of the STFT in the beginning (0.3t, 
where t is the movement time span), in the middle 
(0.5 t) and at the end (0.7 t) of the extracted 
movement; 
 

3- In the frequency domain, in three specified 
moments of time, a set of n points is obtained (from 
the frequency range adequate to the channel type) 
(Figure 6). 
 

 
Figure 6: Frequency components in EMG signal. 

4- Step 2 and 3 is repeated for every channel; 
 

5- Normalization of the signals amplitude. 
This procedure allows to create input vectors with an 
adjustable size. The minimum number of elements 
in the feature vector using 6 channels is 18. The 
minimum structure of these feature vector used as an 
input in the classifier based on a neural network is 
given by: 
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3.3 Classification Method 

The electromyographic and mechanomyographic 
signals are classified using the Learning Vector 
Quantization (LVQ) neural network. The LVQ 
network is a mutation of self-organizing Kohonen’s 
maps. Unlike standard neural networks, it contains 
usually only one layer of neurons. Each neuron is 
subscribed to one class (Figure 7). The [x1, x2, …, 
xn] is the feature vector and [y1, y2, …, yn] represents 
each output movement. This kind of network proved 
to be efficient in biosignal recognition problem in 
previous research conducted by the authors 
(Wolczowski A. 2001, Krysztoforski, K. and 
Wołczowski A., 2005).   

Usually there is more than one neuron for each 
class. Each neuron has its weight vector containing 
as many elements as data input (Kohonen, Teuvo K., 
1995). During the teaching of the network, in every 
iteration, for each data vector a winning neuron is 
being settled based on the closeness (in Euclid’s 
metrics) of the neuron weights to the data vector 
(Kohonen, Teuvo K., 1995). 
 

 
Figure 7: Neural Network architecture. 

If the winning neuron represents the same class 
as the input vector, its weights are being changed to 
be even closer to this input. If the classes are 
different the weights are being pushed away. 

 
The basic update algorithm is: 
→ If x and mc represent the same class then 
 

( ) ( ) ( ) ( ) ( )[ ]ttttt ccc mxmm −+=+ α1  (3) 
 
→ if x and mc represent different classes then 
 

( ) ( ) ( ) ( ) ( )[ ]ttttt ccc mxmm −−=+ α1  (4) 
 
-> from i ≠ c, 
 

( ) ( )tt ii mm =+1  (5) 
 
where c is the index of the winning neuron and 

( )tα  is a teaching factor ( ( ) 10 << tα ). 
There is a different teaching factor for each 

neuron in the system and adapts during the process 
of teaching, starting from the initial value of 0.5 
according with the following expression: 
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An algorithm for handling unused neurons in 

every teaching epoch was applied. 

4 EXPERIMENTAL RESULTS 

Experiments were carried out in laboratory, and 
EMG and MMG signals were captured and recorded 
simultaneously during the motion of the subject’s 
hand (Figure 8). The next step was extracting the 
features according to the proposed algorithm. Two 
sets of vectors (containing 36 or 90 element) were 
created. The vectors were divided into two groups – 
one for teaching and the other for testing, each one 
contained 81 vectors. 

In each test the neural network was trained with 
200 epochs using vectors from the teaching group. 
Training was followed by the classification process 
preformed on the vectors from the test group. The 
same procedure was repeated using vectors based 
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only on EMG signal features and vectors based only 
on MMG signal features in order to determine how 
useful is the combination of both biomedical signals. 

 

 
Figure 8: Patient's arm with attached sensors. 

Figures 9 and 10, show the neural network error 
during the training stage when the input vector size 
is 36 and 90, respectively. The training error, for 
each epoch, is obtained by the mean value of the 
Euclidean distance between the current teaching 
example and the winning neuron. 

 

 
Figure 9: Training error for a vector size of 36. 

 
Figure 10: Training error for a vector size of 90. 

 
Tables 2-3 and Table 4, show the results of the 

test vectors classification with the input vector size 

of 18 and 36, respectively. In the first row of each 
table it is represented the number of class movement 
indicated by the classification process. In the first 
column of each table are represented the class 
movements of the examples introduced in to the 
neural network. The test examples classified 
correctly are in bold. 

Table 2: Classification based on MMG signals. 
 

 1 2 3 4 5 6 7 
1 10 0 2 0 0 0 0 
2 2 13 3 0 0 0 0 
3 0 0 8 0 1 0 0 
4 0 0 0 10 0 0 0 
5 0 0 0 0 11 0 3 
6 0 0 0 0 0 8 1 
7 1 0 0 0 0 2 6 

Table 3: Classification based on EMG signals. 
 

 1 2 3 4 5 6 7 
1 12 0 1 0 0 0 0 
2 0 12 1 0 0 0 0 
3 1 0 11 0 0 0 1 
4 0 0 0 10 0 0 0 
5 0 0 0 0 11 0 0 
6 0 0 0 0 0 10 1 
7 0 1 0 0 1 0 8 

Table 4: Classification based on EMG and MMG signals. 
 

 1 2 3 4 5 6 7 
1 12 0 1 0 0 0 0 
2 0 13 1 0 0 0 0 
3 1 0 11 0 0 0 0 
4 0 0 0 10 0 0 0 
5 0 0 0 0 11 0 0 
6 0 0 0 0 0 10 1 
7 0 0 0 0 1 0 9 

 
The classification error obtained for the testing 

vectors group using only information form MMG 
channels was 18.52%. The error obtained using only 
the EMG signals in the input feature vectors was 
8.64%. Finally, when features from both the EMG 
and MMG signals were used in the input vector, the 
classification error decreased to 6.17%. 

The same tests were done using an input vectors 
with 45 and 90 elements. The results of the 
classification process are shown in Tables 5-6 and 
Table 7, respectively. The classification error 
obtained using only MMG signal features was 
24.7%. The error obtained using only the EMG 
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signals in the input feature vector was 2.46%. When 
it is combined in the input vector, the features from 
both the EMG and MMG signals, the classification 
error decreased to 1.24%. 

Table 5: Classification based on MMG signals. 
 

 1 2 3 4 5 6 7 
1 9 0 2 0 0 0 0 
2 1 9 2 0 1 0 0 
3 3 4 9 0 0 0 0 
4 0 0 0 10 1 0 2 
5 0 0 0 0 10 1 0 
6 0 0 0 0 0 7 1 
7 0 0 0 0 0 2 7 

Table 6: Classification based on EMG signals. 
 

 1 2 3 4 5 6 7 
1 13 0 1 0 0 0 0 
2 0 13 0 0 0 0 0 
3 0 0 12 0 0 0 1 
4 0 0 0 10 0 0 0 
5 0 0 0 0 12 0 0 
6 0 0 0 0 0 10 0 
7 0 0 0 0 0 0 9 

Table 7: Classification based on MMG and EMG signals. 
 

 1 2 3 4 5 6 7 
1 13 0 1 0 0 0 0 
2 0 13 0 0 0 0 0 
3 0 0 12 0 0 0 0 
4 0 0 0 10 0 0 0 
5 0 0 0 0 12 0 0 
6 0 0 0 0 0 10 0 
7 0 0 0 0 0 0 10 

5 CONCLUSIONS 

The results obtained during the experiment imply 
that efficient identifying hand movements based 
only on one MMG sensor is very difficult. 
Especially the first three movements are being 
confused during the identification process. The 
reason for such error is because those movements 
are caused by similar muscles and therefore sounds 
propagating during those movements are much alike. 

The EMG based identification system gives 
much greater accuracy. The neural network taught 
with EMG based data badly recognizes only a small 
percent of test examples. Using the information 
obtained from both mechanomyogram and 

electromyogram improves results of the EMG-based 
recognition. Therefore it can be concluded that the 
mechanomyographic sensors can be used as a 
enhancement to a EMG prosthesis system improving 
the accuracy of identification and count of the 
supported range of movements. LVQ network 
proved produced sufficient and satisfactory 
recognition ratio, therefore proving its usefulness in 
the biosignal-based prosthesis control problem. 
Further improvement could be achieved by applying 
more complex neural network architectures in the 
recognition process and also by modifying the 
feature extraction algorithm.  Those are the key 
areas for future investigation of the problem. 
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