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Abstract: Proportional noise, in which the standard deviation of signal noise is proportional to signal mean, is a 
fundamental constraint on human motor performance but why it occurs is unknown. We show that for 
neural networks with binary thresholded units, channel capacity is maximised with a recruitment strategy 
that produces PN. The size principle also emerges, in agreement with observation. We therefore argue that 
Fitt’s law, speed-accuracy trade-off, and the minimum variance trajectories (including minimum jerk 
trajectories for limiting brief movements), which are observed in most human point-to-point movements, 
have evolved as optimal strategies resulting from maximising channel capacity. We conclude that 
biomimicry of minimum variance and minimum jerk trajectories in robotics is probably only of aesthetic 
value when using standard technology. In contrast, biomimicry using neuromorphic technology in which 
networks are built from stochastic silicon ‘neurons’ with thresholds, is functional biomimetics and 
optimization of channel capacity will produce behaviours that are human-like. 

1 INTRODUCTION 

A fundamental tenet of biomimetics is that naturally 
occurring systems have intrinsically ‘good’ qualities. 
By mimicking natural systems, it is believed that 
these qualities will transfer to synthetic systems. 
While there are some positive examples (eg. ‘gecko 
tape’ Geim et al, 2003), it is not always obvious 
what true benefits accrue from biomimicry, and 
building copies of nature may become an aesthetic 
end in itself. Natural systems evolve and adapt to 
solve problems of survival and reproduction, often 
by optimizing performance and structure within a 
particular environment or constraint. Mimicking the 
behaviour or structure without understanding the 
natural constraints may not be beneficial and may be 
quite suboptimal if the context/constraints are not 
relevant to the synthetic system. To translate 
nature’s solutions to synthetic systems requires a 
scientific understanding of the problem nature is 
attempting to solve. 

Mimicking human movements in robots is a 
particularly pertinent example. It is well-known that 
human movements that redirect an effector (limb, 
eye, etc.) from one point to another in space, such as 
reaching or saccadic eye movements, are highly 

stereotyped with characteristisc ‘smooth’ 
trajectories. For brief (rapid) movements, velocity 
profiles tend to be symmetrical, ‘bell-shaped’ and 
rather straight. Historically, this behaviour was first 
captured by the ‘minimum jerk’ trajectory (MJ) 
(Hogan, 1984; Flash & Hogan 1985) which 
purported to show that observed trajectories 
minimised the square of jerk (derivative of 
acceleration) integrated over the movement duration. 
It was argued that the MJ trajectory was a maximally 
‘smooth’ trajectory.  Subsequently, the MJ has been 
mimicked as a control objective in numerous robotic 
systems, presumably because of the smoothness 
performance (it is also easy to compute). However, 
from a biological viewpoint, the MJ hypothesis has 
been criticised because of the lack of plausibility of 
smoothness as a biological relevant performance 
criterion. Much smoother trajectories are feasible 
(Harris, 2004) and the MJ model cannot explain why 
longer movements have asymmetrical velocity 
profiles. So why build robots with MJ trajectories? – 
is it aesthetic biomimicry or does it build ‘good’ 
robots? 

A more recent optimal control model of human 
movement is the minimum variance model (MV) 
(Harris & Wolpert, 1998) in which it is proposed 
that trajectories minimise the inaccuracies caused by 
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proportional noise (PN), which is a specific kind of 
signal-dependent noise where the standard deviation 
of noise on a signal is proportional to the mean of 
the signal.     

Kxx =σ     (1) 

where K is a constant. The MV model captures 
many features of observed trajectories including 
increasing asymmetry with duration and the 
ubiquitous Fitt’s law (see below). In this model, 
‘smoothness’ is a by-product - not an objective - of 
the optimization because rapid changes in effector 
position cause more output variance. We are now 
beginning to see the incorporation of MV objectives 
in robotic systems (Simmons & Demiris, 2005). 
Again though, why build robots with MV 
trajectories? – is it biomimicry for its own sake, or 
does it build ‘better’ robots? 

There is no doubt (mathematically) that the 
‘smoothness’ cost function is a by-product of the PN 
constraint, but why does PN occur in natural 
systems? Indeed is PN optimal itself for some 
deeper constraint, and for roboticists is this deeper 
constraint even relevant to robotics? This is the 
question we wish to address. 

Human movement appears to be tightly 
constrained by the effects of PN. Most point-to-point 
movements (such as arm reaching) can be described 
by the empirical Fitt’s law in which the duration of a 
movement depends only on the ratio of target 
distance to target width. This invariance implies that 
that the standard deviation of end-point error is 
proportional to target distance (ie. PN). 
Physiological measurements have confirmed the 
existence of PN in isometric force production 
(Schmidt et al., 1979; Jones et al, 2002). For low-
pass systems (such as muscles), PN on the input 
command leads directly to a speed-accuracy trade-
off. Faster transitions at the ouput require more 
intense commands which are noisier because of PN, 
which in turn lead to greater end-point error. For a 
given muscle plant, there is a unique trajectory that 
minimises end-point variance (for a given duration) 
which has been shown to be in close agreement with 
the observed bell-shape velocity profiles (Harris & 
Wolpert, 1998, 2006).  

It is important to distinguish PN from the noise 
encountered in renewal point processes (eg. Poisson 
process), which we call Renewal Noise (RN). The 
firing rate of neurons has often been modelled as a 
renewal point process, but in RN it is the variance 
that is proportional to the mean rate, where the 
constant of proportionality (Fano factor F) depends 
on the inter-spike interval distribution:  

( ) 2/1Fxx =σ    (2) 

PN does not emerge as a ‘natural’ property of a 
renewal process (Harris, 2002). Simple mixing of 
renewal processes does not produce PN, but tends to 
produce an ever more Poisson-like renewal process 
(Cox & Miller, 1977). PN must emerge in some 
other way. 

In this paper, we consider an idealised motor 
recruitment network, or ‘channel’, and show 
analytically that there is an optimal recruitment 
strategy to maximise the number of signals that can 
be transmitted for a given error probability. PN 
emerges as the optimal noise for binary sub-
channels. We then consider the implications for 
dynamic motor control. 

2 THE IDEALISED CHANNEL 

The idealised recruitment channel consists of a 
parallel network of a large number of noisy sub-
channels (eg. motor neurons) each driven by the 
same input, )(tx . The channel output, )(ty , is a 
linear weighted sum of the sub-channel outputs 
(fig.1). 

 
Figure 1: An idealised recruitment channel.  

Each sub-channel has a thresholded response 
function, so that when the instantaneous value of the 
input exceeds the threshold of the sub-channel, the 
sub-channel is switched on and generates a noisy 
signal. When the input is below threshold, the sub-
channel is switched off and generates no output and 
no noise. We denote the output of the ith sub-
channel ( Ni ,1= ) by  
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where (.)if denotes the response characteristic of the 
ith sub-channel, and iθ is a constant threshold for 
that sub-channel.  

Each sub-channel generates noise when switched 
on, which we assume to be mutually independent 
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from the noise of any other channel. We denote the 
instantaneous noise variance at the output of each 
sub-channel by: 
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    (4) 

where (.)ig  denotes how noise variance depends on 
the sub-channel input. The output of the whole 
channel is then given by 

∑
=
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)()(    (5) 

where iw is a fixed positive weight. The total output 
variance is given by 

∑
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22 )()( σ      (6) 

We assume that (.)if  and (.)ig  are pre-specified 
functions determined by the characteristics of the 
sub-channels. For convenience, we drop the time 
dependence and consider only steady-state responses 
(we will return to the dynamic case later). 

Because of the redundancy in the system, it is 
obvious that there are many ways we can generate a 
specified output value, y, for a given input value x, 
by suitable choice of weights and thresholds. 
However, in general, each way will produce a 
different )(tv . Therefore, our goal is to find the 
distribution of weights and thresholds that optimises 

)(tv according to some cost function. To do this we 
develop the problem using continuous functions to 
allow us to use variational calculus to find the 
optimal weights and thresholds. 

2.1 Continuous Recruitment Equations 

We approach this problem analytically by assuming 
that there are a large number of sub-channels so that 
we can approximate summations in equations 5 and 
6 with integrals. In anticipation of a possible 
singularity occurring at 0=x , we also assume that 
the input can range only over maxxx ≤≤ε whereε is 
a small positive constant max0 x<<≤ ε . We next 
assume that there is a ‘density’ of units with 
thresholds x=θ  denoted by )(xρ , which is 
constrained by: 

∫=
max

)(
x

dxxN
ε

ρ    (7) 

The weights of sub-channels are approximated by 
the continuous function )(xw . The output can then 
be written as a convolution integral:  

∫ −= ′

x

x dxxxfxxwxy
ε

ρ )'()'()'()(   (8) 

Where (.)xf  is the response characteristic of 
subchannels with threshold at x. The output variance 
is similarly:  

∫ −== ′

x

xy dxxxgxxwxxv
ε

ρσ )'()'()'()()( 22     (9) 

2.2 Channel Capacity 

We now consider how to optimise the channel’s 
performance when the expected value of channel 
output is required to follow the input (ie. a unity gain 
linear channel). 

maxmax       )( xxxyxxy ≤≤≤≤= εε    (10) 

The channel is required to transmit signals of 
different values at different times. We assume that 
these signal values are uniformly distributed over the 
range maxxx ≤≤ε , and that  the channel is 
memoryless with no expectation of which signal is 
to be transmitted.  

We consider the input to be deterministic, so that 
the noise perturbing the output is due to the internal 
noise of the recruited sub-channels, which we 
assume to be Gaussian. Let us now assume that we 
wish to transmit M signals spread across the range. 
Consider three adjacent input signals, 1−jx , jx 1+jx  

(fig.2). We can see that the output y  given jx  
could deviate sufficiently from the expected value 

)( jxy  such that a maximum likelihood detector 
could make an error by attributing the output  to be 
more likely to arise from 1−jx  or 1+jx  (shaded tails 
in fig.2). Assuming noise variance changes slowly 
with x, then the probability of the detector being 
correct is  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ Δ
≈

iy

i
c erfp

σ
2    (11) 

where iΔ is the width of the region of correct 
response. We argue that, of all the possible channel 
configurations, the one that maximises the number 
of signals that can be transmitted for a specified 
probability of correct detection per signal is the best 
configuration. 

Assuming iΔ  to be small so that we can 
make a continuous approximation, the number of 
signals that can be transmitted is: 
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∫ Δ
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It follows from eq.11 that for a fixed probability of 
correct response, we need to maximise the benefit 
function 

∫∫ =≈
maxmax

)()( 2/1

xx

dx
xv

bdx
x

bM
εε

σ
   (13) 

where )(/2 1
cperfb −= . This optimization is, 

however, constrained by the channel’s possible 
output variance functions, eq(9), which are 
determined  by the weighting function )(xw  and the 
threshold density function )(xρ which must also 
yield the desired output )(xy according to eq.10. 
Finally the density function must also be constrained 
by the total number of sub-channels according to 
eq.7. We solve this is variational problem 
analytically for simple binary sub-channels. 

 
Figure 2: Output of subchannels for deterministic input. 

3 BINARY CHANNELS 

We now consider a ‘neuromorphic’ example in 
which each sub-channel is a ‘neuron’ with an output 
signal given by a spike train with a mean firing rate 
of unity. We assume that the spike-train is a renewal 
point process so that its variance is proportional to 
the mean according to eq.2. We further assume that 
when the neuron is switched on, the mean firing rate 
does not change with increasing input, ie, the neuron 
response function is a step function (see figure 3). 

    
θ
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>=− t
ttu 0

1)(    (14) 

The recruitment equation (8) then simplifies to: 
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which has the solution 
1)()( =xxw ρ    (16)

 

The variance will be given by: 
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Figure 3: Binary sub-channel. Signal and variance are 
step-functions. 

Differentiating we have 

)(
)(

xv
Fx
′

=ρ                  (19) 

where the dash means the derivative with respect to 
x. Substituting into eq.7, we have the constraint: 

∫ ′
=

max

)(

x

dx
xv

FN
ε

         (20) 

3.1 Isoperimetric Problem 

We recognise that maximising the benefit function 
(eq.13) subject to the integral constraint (eq.20) 
forms an isoperimetric problem in variational 
calculus. The Lagrangian is: 

v
F

v
bvvxL

′
+=′ λ

2/1),,(    (21) 

whereλ is a constant Lagrange multiplier. The 
Euler-Lagrange equation is  

( )
04

32/3 =
′

′′
−

v
vF

v
b λ                   (22) 

which has the solution of the form 

( )2)( Kxxv =                          (23) 

where K is a positive constant. This is a maximum 
and for positive v′  it satisfies the Weierstraussian 
condition for a strong extremum (not shown here). 
Since we have xy = , we can write the output 
variance as 

( )2Kyv =    (24) 
which is proportional noise. 
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3.2 Singularity 

The threshold density function can now be found by 
substituting eq.23 into eq20: 

xK
Fx 22

)( =ρ    (25) 

which will require an infinite threshold density at the 
origin. This is not physically realizable, so we 
consider max0 x<<< ε . In this case we see from 
eq.20 that  

⎟
⎠

⎞
⎜
⎝

⎛
=

ε
max

2
ln2

x
N

K
F                  (26) 

Thus it appears that we can come arbitrarily 
close to the origin if we are willing to devote a large 
enough number of channels. It also appears from 
eq.25 that reducing K, is very expensive in sub-
channels since 

⎟
⎠

⎞
⎜
⎝

⎛
=

ε
max

2 ln
x

K N
F     (27) 

As a numerical example, consider ε to be 0.1% of 
maxx , then if we used a N=1000 sub-channels, then 

K~0.06 for a Poisson sub-channel renewal process 
(F=1). 

 An important property of this optimization is that 
a size principle emerges. From eq.25 we see that the 
number of sub-channels deceases with increasing 
output, but from eq.16 we have 

F
xK

x
xw

22
)(

1)( ==
ρ

.  (28)
 

The weights (or strengths) increase with increasing 
signal. In human movement physiology, the size 
principle is a well-known phenomenon, but we see 
that it an inevitable emergent property of optimizing 
the channel. 

Thus far we have only considered positive 
signals. To handle signals of either sign, we employ 
two channels of different polarities with a common 
origin, so that:  

xK=σ       (29) 

We note that there are other configurations in which 
the two channels could be active simultaneously by 
having shifted origins (co-activation). This could 
overcome problems with the singularity, but we do 
not explore this here.   

4 DYNAMICS 

We now consider the dynamics of the optimal 
channel. We will only give an outline to emphasise 

some remarkable emergent properties, as some 
aspects have already been dealt with in depth 
elsewhere and others have yet to be explored 
experimentally. 

4.1 Fano Factor and Bandwidth 

It can be seen from above, that the resources needed 
for the optimal channel also depend on the Fano 
factor F of the sub-channels. Thus fewer sub-
channels are needed if we can reduce F (eq.26). 
However, for spike trains, reducing F comes at a 
price, since it reduces bandwidth.  

So far we have dropped the dependence on time. 
Indeed, the above derivation is independent of time 
provided there are no bandwidth restrictions on the 
sub-channel response characteristics. However, for 
the neuromorphic embodiment of sub-channels, the 
output )(tzi  depends on the firing rate of a motor 
neuron (sub-channel). Modelling the motor neuron 
spike train as a renewal point process, the response 
of )(tzi  will therefore depend on the inter-spike 
interval probability distribution. For exponential 
interval distributions, the rate process is Poisson 
(F=1) with an autocovariance given by a delta 
function. Thus a Poisson process yields a fast 
temporal response, but requires a high F. In fact 
motor neuron firing rates are not Poisson, but have 
considerable lower Fano factors. This will result in a 
broader autocovariance function and hence more 
sluggish impulse response function (Cox & Miller, 
1977). The relationship between the impulse 
response function and the spike-interval distribution 
is complex and non-stationary, so we will 
approximate it by a first-order impulse response 
function with a time-constant τ : 

ττ /)( /t
z etR −=            (30) 

4.2 Linear Plant Considerations 

Assume that we use our optimal channel to drive a 
physical effector plant, such as a real muscle, a 
robotic arm, a prosthetic limb, etc.. We approximate 
the plant as linear 2nd-order with mass/inertia, 
viscosity, and elasticity. The drive to this plant is the 
output of our channel, )(ty  which is not only 
perturbed by PN, but also has its own dynamics 
because of the non-Poisson statistics of the firing 
rates. We must therefore consider an augmented 
plant with a higher order, which will be at least 3rd 
order (given eq.31) (fig.4).  
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Figure 4: Simplified lumped linear model of a motor 
system driven by the optimized recruitment channel. The 
channel generates a drive with PN which then is passed to 
a 3rd order system including the response function of the 
motor neuron renewal process and the actual 2nd order 
effector plant. 

Denote the augmented plant impulse response by, 
)(tp with Laplace transform given by: 

)1)(1)(1(
1)(

21 +++
=

sTsTs
sP

τ
  (31) 

Then the variance at the output of the plant is given 
by the convolution (Harris 1998): 

tdttptxKt
t

o ′′−′= ∫
0

2222 )()()(σ         (32) 

Note that the kernel is the square of plant impulse 
response, and causes the variance response to be 
more sluggish (and less intuitive) than the signal 
response.  

4.3 Optimal Trajectories 

PN and its transfer through a linear system (eq.33) 
has far reaching implications when we are required 
to move an effector from one point to another, as in 
reaching or saccadic eye movements. If we want to 
move more quickly then we clearly need a larger 
input signal, )(tx but this will lead to a larger output 
variance and hence larger pointing errors (end-point 
errors). Conversely, if accuracy is important then the 
input needs to be small and the movement will take 
a longer time. The speed-accuracy trade-off implies 
that for a given movement duration, there is a unique 
trajectory (velocity profile) that minimises end-point 
error. This has been found numerically and 
analytically (Harris & Wolpert 1998, 2006). In two 
dimensions trajectories tend to be straight. 

For very brief movements, a 3rd order system 
becomes dominated by the 3rd derivative (jerk) and 
the kernel in eq. 33 tends towards the square of jerk. 
Thus the variance at the end of the movement is 
given by: 

td
td

todKT
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⎜
⎜
⎝

⎛

′
′

⎯⎯ →⎯ ∫→
0

2

3

3
2

0
2 )()(σ          (33) 

Minimising jerk is therefore minimising variance in 
the limit for a 3rd order system. However, this is only 

approximate for brief movements. Careful analysis 
of data using Fourier analysis reveals that arm 
reaching and saccades are not MJ but closer to MV 
(Harris & Harwood, 2005; Harwood et al., 1999). 
For longer movements velocity profiles become 
quite asymmetric and cannot be fit by the MJ model. 

In summary, a vast amount of human goal-
directed dynamic motor behaviour is explicable as 
an optimal trade-off between speed and accuracy, 
which a direct result of PN. Perhaps most 
remarkable, is that this can all be attributed to 
maximising channel capacity! 

5 DISCUSSION 

If we start with a collection of noisy binary sub-
channels (units) with thresholds, then the optimal 
pattern of threshold levels and weights is to recruit 
sub-channels according to equations 25 and 28. This 
arrangement maximises the number of different 
signals we can transmit for a given error probability 
per signal. It emerges that the output signal of such a 
configuration exhibits proportional noise (PN) 
(eq.1). This result is consistent with known 
neurophysiology which has shown that PN emerges 
from the orderly recruitment of motor units in 
human arm movements (Jones et al, 2001). The 
configuration of thresholds and weights is also 
consistent with the well-known empirical size 
principle in which stronger motor units are recruited 
at higher thresholds. We have only considered 
binary sub-channels, but it appears that a similar 
result could occur for other types of rapidly 
saturating sub-channels away from the origin (not 
shown here). We propose, therefore, that PN is itself 
is an optimal strategy that has evolved to maximise 
channel capacity.  

Once PN has emerged, it places a trade-off 
between speed and accuracy for point-to-point 
movements, which leads to an optimal trajectory 
(the minimum variance trajectory), which fits 
observations remarkably well (Harris & Wolpert 
1998). For brief movements, the MV trajectory 
becomes bell-shaped and similar to (but not exactly 
the same as) the minimum jerk (MJ) profile. This is 
why the MJ trajectory seems to fit observation quite 
well (but only for brief movements). 

Our overall conjecture is that through 
evolution/adaptation multiple noisy sub-channels 
with thresholds will ultimately and inevitably lead to 
smooth straight movements. 
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5.1 The Biomimetic Question 

Clearly we could build synthetic systems (robots 
etc.) that mimic the smooth straight trajectories 
made by humans simply because they look like 
human movements. This is aesthetic biomimicry. 
Incorporating minimum jerk (MJ) trajectories in 
robots is probably as example of this kind of 
mimicry. It could be argued that smoothness is 
useful in reducing wear-and-tear, but there are much 
smoother trajectories than MJ (Harris, 2004). One 
would need to trade-off the cost of wear-and-tear 
against poor dynamic performance. In any case, 
human movements are not MJ, and are much better 
described by minimum variance (MV) trajectories in 
which PN inaccuracies are optimally traded against 
duration. MJ trajectories are just a limiting case of 
MV trajectories for brief durations. But copying 
human trajectories, albeit more precisely with MV 
profiles, is still aesthetic mimicry unless PN exists in 
the synthetic system.  

In contrast to aesthetic mimicry, functional 
biomimetics copies the control objective of human 
movement and incorporates it into the constraints in 
the synthetic system. For example if the control 
signal in a synthetic system were perturbed by 
stationary additive Gaussian noise, making an 
accurate and rapid movement would probably be 
achieved by a bang-bang control solution. It only 
makes sense to incorporate an MV controller if the 
synthetic control signal is perturbed by PN, which in 
our experience, is not common in conventional 
engineered systems. One could, of course, introduce 
PN deliberately, but this would just be aesthetic 
mimicry. 

5.2 The Neuromorphic Approach 

Building synthetic systems with artificial neurons is 
a fundamentally different proposition. 
Neuromorphic technology can now produce silicon 
neurons with thresholds and stochastic spike trains. 
When configured optimally for movement control, 
they should produce PN because, as we have shown 
here, PN emerges at the output of the optimal 
channel (at least for binary channels). For robots 
built on this technology, MV trajectories would be 
an optimal solution for speed and accuracy. This is 
functional rather than aesthetic biomimetics.  

But, why should synthetic systems employ 
artificial neurons? Is this not just another level of 
aesthetic mimicry? We suggest that the 
neuromorphic argument runs deeper. Over eons, 
biological functions and structures have improved 

survival through natural selection. Optimal solutions 
to problems emerge (without mathematical premise) 
that are not obvious to us, and not even achievable 
with current technology. In the case of neural 
systems, it is only by building them 
neuromorphically, that we can discover these 
solutions.  
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