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Abstract: In this paper, probabilistic-based workspace scan modes of a robot manipulator are presented. The scan 
modes are governed by a Brain Computer Interface (BCI) based on Event Related Potentials 
(Synchronization and Desynchronization events). The user is capable to select a specific position at the 
robot’s workspace, which should be reached by the manipulator. The robot workspace is divided into cells. 
Each cell has a probability value associated to it. Once the robot reaches a cell, its probability value is 
updated. The mode the scans are made is determined by the probability of all cells at the workspace. The 
updating process is governed by a recursive Bayes algorithm. A performance comparison between a 
sequential scan mode and the ones proposed here is presented. Mathematical derivations and experimental 
results are also shown in this paper.  

1 INTRODUCTION 

Brain Computer Interfaces have got a great impulse 
during the last few years. The main reasons for this 
growing are the availability of powerful low-cost 
computers, advances in Neurosciences and the great 
number of people devoted to provide better life 
conditions to those with disabilities. These interfaces 
are very important as an augmentative 
communication and as a control channel to people 
with disorders like amyotrophic lateral sclerosis 
(ALS), brain stroke, cerebral palsy, and spinal cord 
injury (Kubler et al.,2001, Wolpaw et al., 2002). 

The main point of a BCI is that the operator is 
capable to generate commands using his/her EEG 
(electroencephalographic) signals in order to 
accomplish some specific actions (Wolpaw et al., 
2002, Lehtonen, 2003, Felzel, 2001, Millán et al., 
2003). Thus, an operator using a BCI can control, 
for example, a manipulator, a mobile robot or a 
wheelchair (amongst other devices) without using 
any muscle. The EEG frequency bands have enough 
information to build an alphabet of commands in 
order to control/command some kind of electronic 
device (Ochoa, 2002). In this paper a BCI, which is 

controlled through alpha waves from the human 
brain, is used. Although the EEG signal 
acquisition/conditioning, which is part of this BCI, 
was developed in other work of the authors (Ferreira 
et al., 2006), one of the objectives of this paper is to 
illustrate its versatility, mainly in terms of the simple 
algorithms used.  

Event related potentials (ERP) in alpha 
frequency band are used here. Such potentials are 
ERD (Event Related Desynchronization) and ERS 
(Event Related Synchronization), well described in 
the following sections. This BCI has a Finite State 
Machine (FSM) which was tested in a group of 25 
people.  

The main contributions of this paper are the scan 
mode algorithms proposed to allow the user to 
command a manipulator (Bosch SR-800), based on a 
probabilistic scan of the robot’s workspace. The 
workspace is divided into cells. Each cell contains 
three values: its position ),( yx at the robot’s 
workspace plane and a probability value. This value 
indicates the accessibility of that element. Once a 
particular cell is accessed, its probability is updated 
based on Bayes’ rule. 
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This paper is organized as follows: a brief 
description of the sequential scan mode of the 
manipulator’s workspace is presented in section 2. 
The probabilistic scan modes proposed are shown in 
Section 3. Section 4 shows the results for a 
Montecarlo experimentation, where the probabilistic 
evolution of the whole workspace and of a specific 
cell is presented. Section 5 shows the conclusions of 
this work. 

2 SEQUENTIAL SCAN MODE 

As a brief introduction, the sequential scan mode of 
the robot workspace developed in Ferreira et al. 
(2006) is presented here. 

The workspace is previously divided into three 
main zones as it can be seen in Fig. 1. The system 
iteratively scans from zone 1 to zone 3 until one of 
them is selected by the user (using EEG signals). 
Once it is so, the selected zone is scanned row by 
row until one is selected. Once a row is selected, the 
system scans cell by cell (switching columns) 
iteratively inside the selected row. After a cell is 
selected by the user, the robot reaches the position 
given by that cell.  

 
Figure 1: Main zone division at robot’s workspace. 

3 PROBABILISTIC SCAN 
MODES 

The two probabilistic scan modes shown in this 
paper are based on Bayes rule for updating 
probability values of the cells at the manipulator’s 
workspace. The scan modes are shown in the 
following sections. 

3.1 First Approach of a Probabilistic 
Scan Mode 

The first approach of a probabilistic scan mode 
works as follows: 

1. The workspace’s resolution is set to 72 cells and 
can be easily changed, decreasing or increasing 
this number. The workspace behaves as a pmd 
(probabilistic mass distribution). 

2. Each cell has its own initial probability. This 
value can be previously determined by some 
heuristic method (for example: if the BCI 
operator is right-handed, then cells to the right of 
the workspace will have higher accessing 
probability than the ones to the left). However, it 
is also possible to set all cells to a probability 
near zero, in order to increase or decrease them 
depending on the times they are accessed by the 
user. In this work, the first case was adopted. 

3. Let a and b be the higher and lower probabilities 
cells respectively. Then, the workspace is divided 
into three zones according to these values. Table 
1 shows how division is made. Let )|( GCP i  be 
the probability of cell iC  given a group G to 
which it belongs. 

4. Every zone at the workspace is divided in three 
sub-zones under the same philosophy presented 
before. Each one of these sub-zones contains a set 
of probabilistic weighted cells. 

5. The scan mode proceeds as follows: 
I. First, the zone with the highest probability 

value at the workspace is highlighted. If that 
zone is not selected by the operator, the 
second highest probabilistic zone is 
highlighted. If it is not selected, the highlight 
passes to the third and last zone. The scan 
keeps this routine until a zone is selected. 

II. When a zone is selected, the highlight shows 
first the sub-zone with the highest probability 
inside the zone previously selected. The scan, 
in this case, is exactly the same used in the 
last step. 

III. When a sub-zone is selected, then the scan 
highlights first the cell with the highest 
probability of occupancy. If it is not selected, 
the scan passes to the next cell value. This 
routine keeps going on until a cell is selected. 
Once a position is selected, the probability 
value of the cell, sub-zone, zone and complete 
workspace is updated. The update of the 
probabilities values is made by the Bayes’ 
rule. 

As it can be seen, the number of cells that belong to 
a sub-zone or a zone is variable. Then, the 
organization of the zones at robot’s workspace is 
dynamic. This allows improving the scan mode in 
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order to access in a priority way to the most 
frequently used cells. 

The probability update of each cell at the 
workspace is based on the recursive Bayes’ rule. 
Once a cell is reached by the user, its probability 
value changes according to (1). 

Table 1: Workspace’s Zones Definitions. 

a  highest probability cell 
value 

b  lowest probability cell 
value 
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zone 2: the set of all 
cells which 
probabilities are of 
middle range 
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zone 3: the set of all 
cells with the lower 
probability of the 
workspace. 

Let C  be any cell at robot’s workspace and G  a set 
to which that cell belongs. Thus, the updating 
algorithm is given by, 
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Though (1) is mainly used in very simple 
applications (Thrun et al., 2005), it fits as an 
updating rule for the purpose of this work. 

Equation (3) can be re-written in (4), where a 
scale factor was used. 

)|()|()|( 1 GCPCGPGCP kkk −=η  (2) 
 

According to the Total Probability Theorem (Thrun 
et al., 2005), η  is the scale factor, which represents 
the total probability of )(GP . In (1), )|(1 GCPk− is the 
prior probability of a cell given the primary set to 
which it belongs at time 1−k . )|( CGPk  is the 
transition probability which represents the 
probability that a given cell C belong to a set G. 
Finally, )|( GCPk  is the posterior probability -at 
instant k- of the cell used given the zone to which it 
belongs.  

In order to make sense to the use of the recursive 
Bayes algorithm, an initial probability value must be 
given to all cells at the workspace. 

Figure 2 shows the evolution of a cell’s 
probability when it is accessed successively by the 
user. 

The cell used in Fig. 2, for example, has an 
initial value of 0.05 but it is increased each time the 
cell is accessed by the user. As was expected, the 
maximum value a cell can reach is one. When this 
situation occurs, the whole workspace is scaled. This 
scaling does not change the scan mode because the 
relative probability information remains without 
changes, i.e., if a cell p has the maximum probability 
over all cells, after scaling, p will continue being the 
cell with the highest weight. A more extended 
development of this algorithm can be seen at 
Papoulis (1980). Once the updating algorithm is 
complete, the scan algorithm is released as described 
in Section 3. 
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Figure 2: Evolution of Cell’s probability when 
successively accessed. 
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Figure 3: Probabilistic distribution of a workspace for a 
right-handed user. 

Figure 3 shows the workspace’s pmd for a right-
handed user. Fig. 3.a shows the cells probability’s 
value and Fig. 3.b shows the different zones of the 
manipulator’s workspace. 

3.2 Second Approach 

This second approach investigated in this work is 
based on the sequential scan mode algorithm. Each 
zone or sub-zone -as those shown in Fig. 1- has a 
probability value associated with it. As the 
workspace is considered as pmd then each zone or 
sub-zone’s probability value is calculated as the sum 
of all probability values of the cells that belong to 
that group. The scan mode proceeds as follows: 
1. The zone with the highest probability is 

highlighted first; then, the second higher 
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probability zone is highlighted and then the last 
zone (see Fig. 1). The highlighting process 
repeats until the user chooses a zone. 

2. Once a zone is chosen, the row with the highest 
probability -inside that zone- is highlighted. A 
row of a zone is known as sub-zone. If this sub-
zone is not selected by the user after a period of 
time, the highlight passes to the next higher 
probability value row. This process is repeated 
iteratively until a row is selected by the user. 

3. Once a sub-zone is chosen, the cell with the 
highest probability of that sub-zone is 
highlighted. If it is not chosen after a period of 
time, the highlight passes to the next higher 
probability cell. The process continues and if no 
cell is chosen, it starts from the beginning cell. 

4. If a cell is chosen, then its probability is updated 
according to the Bayes rule (Eq. 3). Then, 
workspace pmf, sub-zone’s probabilities and all 
zone’s probabilities are also updated. 

The sampling time used in all scan modes is the 
same one used in Ferreira et al. (2006). 

4 EXPERIMENTAL RESULTS 

This section is entirely dedicated to compare the 
three scan types: sequential and probabilistic ones. 
For this purpose, a Montecarlo experiment was 
designed (Ljung, 1987). This experiment shows the 
performance of the three methods by measuring the 
time needed to reach different cells at the robot’s 
workspace. 

4.1 Montecarlo Experiment 

The robot’s workspace consists of 72 cells. It also 
can be considered as a 184× matrix. According to 
this, a cell’s position is defined by a number of row 
and a number of column at that matrix. The number 
of a row and a column can be considered as a 
random variable. To generate a random position of a 
cell destination, the following algorithm was 
implemented. 

i. An uniform random source generates two 
random variables: x and y . 

ii. The random variable x  is mapped into the 
rows of the 184× matrix workspace. 

iii. The random variable y  is mapped into the 
columns of the 184× matrix workspace. 

iv. When a position is generated, both scan 
types begin. The time needed to reach the 
cell is recorded. 

v. After the system reaches the position 
proposed, a next process point generation is 
settled -the algorithm returns to point i-. 

4.2 Mapping Functions 

Let xf  be a mapping function such as: 

mx
BAf x

→
→

        
:  
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 and let yf  be another mapping function such as: 
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Equations (3) and (4) show the domain and range of 
the mapping functions. Finally, the mapping is made 
according to the following statements. 
i. Let δ  be the sum of all weights at robot’s 

workspace, that is, ∑∑
∈ ∈

=
Bi Cj

ijPδ , where ijP  is 

the probability value of a cell located at the 
rowi −  and columnj − . 

ii. Let Ax∈  be an outcome of the uniform 
random source for xf .  

 If 
δ

∑
∈=<≤ Cji

ijP

x ,10  then 1)( == ixf x . This 

means that the value of Ax∈  should be 
lower than the sum of all cell’s values in row 
one -over δ - to )(xf x  be equal to one. 

 If 
δδ

∑∑
∈=∈= <≤ Cji

ij
Cji

ij P

x

P
,2,1  then 2)( == ixf x . 

This means that Ax∈  should be greater or 
equal to the sum of all cell’s values in row 
one and lower than the sum of all cell’s 
values in row 2. 

 The same process continues up to the last 
row, whose expression is: if 

δδ

∑∑
∈=∈= <≤ Cji

ij
Cji

ij P

x

P
,4,3  then 4)( == ixf x . 

 Each time a cell is selected, the mapping 
functions vary. It is so because they are 
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dependent with the probability value of the 
cells. 

 For the mapping over the columns, the 
procedure is the same, however in this case, 
the sum is made over the set B (four rows). 

Concluding, the mapping presented here is dynamic 
because it is updated each time a cell varies its 
probability value. For the case implemented in this 
work (a right-handed user) the initial mapping 
functions are represented in Figs. 4.a and 4.b. In Fig. 
4.b is also possible to see that column 10 has higher 
probability than column 1. It is also important to see 
that, if all cells at robot’s workspace have the same 
probability weight, then the mapping functions 
would be uniform. Thus, each row or column would 
have the same probability to be generated. 

4.3 Montecarlo Simulation Results 

The objective of Montecarlo experiments was to test 
the performance of both scanning methods: 
probabilistic and sequential ones. The performance 
is measured in function of the time needed to access 
a given position. This position is generated by the 
uniform random source. After 500 trials the mean 
time needed to access a random position by the first 
approach of the probabilistic scan was of 20.4 
seconds. For the second approach of the 
probabilistic scan the mean time needed was of 16.8 
and for the sequential scan was of 19.8 seconds. The 
three results are in the same order but the 
probabilistic second approach of the scan mode 
requires less time. Consider now only the right side 
of the workspace, which is, according to Fig. 3, the 
most accessed side. The mean time of access for all 
points belonging to the workspace right side is of 8.4 
seconds under the first approach of the probabilistic 
scan instead of 11.3 seconds corresponding to the 
second approach of the probabilistic scan mode. 
Under sequential scan, the mean time is of 14.8 
seconds. The probabilistic scan mode first approach 
is 43% faster than the sequential scan for cells over 
the right side of the workspace while the second 
approach is 23.7% faster. 
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Figure 4.a: Mapping function for the four values of rows. 
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Figure 4.b: Mapping function for the 18 values of 
columns. 

Figure 5 shows how a low probability valued cell in 
the probability scan first approach evolves after 
successive callings. The cell passes through the 
different zones of cells according to its actual 
probability value. After 240 iterations -or callings-, 
the cell has passed through three zones and its 
performance has also been improved as long as its 
weight. In Fig. 5, one can see that at the beginning, 
32 seconds were needed to access that cell.After 240 
iterations, only 14 seconds were needed. This time is 
smaller than the one needed on the sequential scan 
mode which is of 18 seconds. Fig. 5 also shows 
when the cell changes zones. Thus, if its probability 
increases, the cell passes from, for example, primary 
zone 2 to primary zone 1. Though a cell could be the 
first in being scanned in the primary zone 2, if it 
increases its value and passes to primary zone 1, it 
could be the last scanned element in this zone. That 
is the reason of the two time increments in Fig. 5. A 
cell under the second approach of the probabilistic 
scan shows similar behavior to the one showed in 
Fig. 5. 
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Figure 5: Evolution of a cell access time. 

Figure 6 shows the workspace state after 500 
iterations generated by the Montecarlo experiment 
using the first approach of the probabilistic scan.  
Fig. 6.a shows the probability state of each cell at 
the workspace while Fig. 6.b shows the new three 
zones of the scan mode algorithm. One can see that 
the non-connectivity tends to disappear. 
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Figure 6: Workspace state after 500 iterations. 

On the other hand, Fig. 7 shows the workspace state 
after the same iterations of Fig. 6 under the second 
approach of the probabilistic scan, though this scan 
do not imply a dynamic behavior of the number of 
cells of the different zones. 
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Figure 7: Workspace state after 500 iterations under the 
second approach of the probabilistic scan mode. 

As it can be seen from Figs. 6 and 7, probabilistic 
distribution of the workspace depends on the type of 
scan mode used. Both probabilistic scan modes 
presented in this work show a better performance 
respect to the sequential scan mode. 

5 CONCLUSIONS 

The work presented here showed the implementation 
of two probabilistic scan modes, based on a 
recursive Bayes algorithm, of a robot manipulator’s 
workspace. A comparison between these methods 
and a sequential scan mode showed that the 
probabilistic scan improves the access time of the 
most frequently accessed cells. Although this system 
could be implemented in several Human-Machine 
Interfaces, it was primary designed for a Brain-
Computer Interface. 

Experimental results show that the time needed 
to access a specific position at the workspace is 
decreased each time the position is reached. This is 
so because the recursive Bayes algorithm 
implemented updates the probability value of that 
position once it is reached. A decrement of the 

access time means that the user of the Interface 
needs less effort to reach the objective.  

In this work, a right-handed workspace 
distribution case was presented. This case showed 
that all cells to the right of the middle point -half of 
the main workspace- have the higher probability and 
the lower time needed to be accessed. 

Finally, it is possible to say that the system learns 
the user’s workspace configuration. It pays special 
attention to those cells with the highest probability 
minimizing the time needed to access them. 
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