
DEFINING AND USING A METAMODEL FOR
DOCUMENT-CENTRIC DEVELOPMENT METHODOLOGIES

Manuel Bollain and Juan Garbajosa
System and Software Technology Group, Technical University of Madrid (UPM), E.U. Informatica

Km. 7 Cra. Velencia, E-28031 Madrid, Spain

Keywords: Document centric software engineering, document-driven software engineering, product and process mod-
elling.

Abstract: The concept of software product is often associated to software code; process documents are, therefore, con-
sidered as by-products. Also very frequently, customers primarily demand ”results” and, in a second place,
documentation. Development efforts are then focused on code production at the expense of documents quality
and corresponding verification activities. As discussed within this paper, one of the root problems for this is
that documentation in the context of methodologies is often described with not enough level of detail. This
paper presents a metamodel that faces this problem. It is an extension of ISO/IEC 24744, the metamodel for
methodologies development. Under this extension, documents can become the drivers of the methodology
activities. Documents will be the artifact in which method engineers should focus for methodology devel-
opment, by defining its structure and constraints. Developers will put their effort in filling sections of the
documents as the way to progress in the process execution. This process execution will be guided by those
documents defined by the method engineers. This approach can be, as well, the basis for a new approach to a
Document-Centric Software Engineering Environment.

1 INTRODUCTION

In software production, work products are both pro-
grams and documents. Methodologies describe the
activities and tasks for producing such documents and
programs but in many cases, organizations have prob-
lems for following the defined process (if any). Time
schedule delays force developers to skip over docu-
ment production, and related activities, trying to re-
lease a ”operational” product in time. This is a com-
mon situation that pushes companies to adhere to pro-
cess maturity models, and attain a maturity level. Ma-
turity models maybe a baseline to guide the efforts to
cope with the documentation issue, but not a complete
solution, even in the case of defining a specific matu-
rity model for the documentation process as in (Vis-
conti and Cook, 1993), more in scenarios with strong
time constraints or high pressure. Technicians like to
solve technical problems, and associated documenta-
tion is often considered as the ”boring” part of the
work. For all these reasons, documentation quality is

often neglected. We can also consider applying agile
methods and therefore to reduce the effort in docu-
mentation production, and maintaining some control
over documentation quality and completeness, but the
ongoing debate still remains the same: ”Working soft-
ware over comprehensive documentation” (Boehm,
2002).

One of the root problems is that the existing pre-
defined processes and methodologies consider docu-
ments as one of their natural outputs. Very often they
simply provide guidelines on how to perform the pro-
cess considering proper documents as resulting from
performing good process practices. The problem with
this assumption is that, being true, the granularity
level is too coarse. It is necessary to establish, as for-
mally as possible, the existing relationship between
documents and the rest of the elements of the soft-
ware process at a level of detail enough to consider
the production of documents not simply as a result of
activities but as a part of the process itself.

Within this paper, the concepts of process and

33
Bollain M. and Garbajosa J. (2007).
DEFINING AND USING A METAMODEL FOR DOCUMENT-CENTRIC DEVELOPMENT METHODOLOGIES.
In Proceedings of the Second International Conference on Evaluation of Novel Approaches to Software Engineering , pages 33-40
DOI: 10.5220/0002586400330040
Copyright c© SciTePress



methodology as described in (Gonzalez-Perez and
Henderson-Sellers, 2005) will be followed, and ap-
plied in the context of ISO 24744:2007 emerging
standard (ISO, 2007). Following this standard, a doc-
ument is a durable depiction of a fragment of real-
ity. However it is possible to be more concrete and
consider that a document will be composed of sec-
tions and subsections. It is possible to describe mod-
els in terms of documents, assuming that documents
are structured; UML class model is an example when
described using OCL. It is just necessary to describe
the model in a textual fashion. In our approach, all
the activities must correspond with a product, that is,
a document; we adopt a strategy in which all the pro-
cess outputs can be represented as documents, in other
words, a document-centric perspective of the software
process as in (Luqi Zhang et al., 2004) and (Bollain
et al., 2003). According to this, all the activities will
produce a ”touchable” result in form of a document;
this includes source code. The approach to this re-
search work is based on specifying the relationship
between documents and the rest of the elements of
the software process.

It is common that standards define activities as
lists of tasks in which the verb to document partici-
pates at the beginning or the end of the list. For ex-
ample, in ISO 12207 (ISO, 1995), we can go to sec-
tion 5.3.4.1 that reads The developer shall establish
and document software requirements, including the
quality characteristics specifications, described below
[...]. As discussed above, in many cases, the descrip-
tion of an activity includes the act of documenting
its execution results. This takes us to a situation in
which, in practice, the tools used for assisting in an
activity have some sort of utility intended for report
or document generation. This report or document will
contain the results of the activity, that is what is usu-
ally understood as the software product. This makes
the activity execution and to document two different
issues. If we accept that all software products will
be documents, corresponding to previously defined
templates, and that activities will be defined in accor-
dance to that templates, the act of document creation
will mean performing the corresponding activities or
tasks. With this approach we found the following ad-
vantages:

• All the project information is within documents,
following the template established by the method
engineer and there is no need of further work for
documenting the performed activities. This will
require to define modelling formalisms in terms
of documents as outlined in (Bollain et al., 2003).
Stakeholders models adopted in software process
models such as (Sharp et al., 1999) and (Robinson

and Volkov, 1997) can be partially supported as
well with this approach. Defining roles for differ-
ent participants or stakeholders could be achieved
using different points of view of each stakeholder
for different documents or document sections.

• Documentation preparation is timely. This is
ISO/IEC 12207, section 6.4.2.7 compliant. As
progress in the development process is through
documents fulfillment, it is not necessary verify
if documentation preparation is timely.

This paper is structured as follows: this section, 1,
is an introduction. Related work is analysed in section
2. The necessary ISO/IEC 24744 standard extensions
for achieving a document-centric methodology defini-
tion, the outcome classes and types and the new rela-
tionships will be explained in section 3. How to make
a usage of this extension for defining a document-
centric methodology will be developed in section 4,
and finally, some conclusions, advantages of the ap-
proach, pitfalls and future work will be presented in
section 5.

2 RELATED WORK

Document-centric approach has been addressed such
as in (Luqi Zhang et al., 2004) and more recently in
(Rausch et al., 2005). Reference (Luqi Zhang et al.,
2004) introduces a document centric approach and
concludes that a document driven approach is feasi-
ble and useful; however the approach is different in
the sense it is not based on a study on process meta-
modelling but rather on how documents can be trans-
lated from a user oriented form into machine equiva-
lent forms more oriented to be processed and how to
get advantage of this. Reference (Rausch et al., 2005)
introduces some ideas in line with this work but they
are not developed in detail. Reference (Nguyen and
Munson, 2003) presents and environment in which
documents play an essential role, but the work de-
scribed is oriented to support web applications. XML
documents contain the information of the project, that
is, documents and data are the same as described in
(Nguyen et al., 2003). This approach makes it pos-
sible to support traceability and configuration man-
agement on the document itself. In all the cases, the
source code is still independent from the project doc-
uments.

The use of documents to drive the software pro-
cess is presented in (Bollain et al., 2003) and (Alarcón
et al., 2004); it can be considered as a precedent
research work to this one, but the theoretical back-
ground is not provided within here; these references

ENASE 2007 - International Conference on Evaluation on Novel Approaches to Software Engineering

34



also introduce which are the requirements for docu-
ments to support models.

There are several techniques for defining and sup-
porting process. Process definition usually lies on
Process Modeling Languages (PML) based on some
linguistic paradigms such as (Cass et al., 2000), Petri
nets or logical languages; several of them are dis-
cussed in (Fuggetta, 2000). Others are component-
based software process support (Gary et al., 1998),
role-based approaches (Kopka and Wellen, 2002), co-
ordination rules (Ciancarini, 1995); some interesting
reflections can be found in (Barnes and Gray, 2000).
Even process support could based on tools integration
mechanisms, like in (Pohl et al., 1999).

In (Gonzalez-Perez and Henderson-Sellers,
2005), several approaches on process metamodelling
are discussed: a well accepted modelling language as
UML (OMG, 2001) deal with modelling issues but
neglect process, while widespread methodological
frameworks such OPEN (Atkinson and Kune, 2000)
or Extreme Programming] (Beck, 1999) emphasize
the process side and are less detailed when it comes
to work product. In the beginning of 2007, ISO/IEC
24744:2007 (ISO, 2007) Metamodel for development
methodologies was published; it offers a balance
between process and product in the methodology
definition issue. This standard has been the basis for
defining our metamodel in which process and product
will be closely related.

Other related works include document extraction
from central repositories like in (Gray et al., 1999),
(Henrich, 1996)and (Singh and Han, 1997). Docu-
ment contents is based on project information, but just
as a result of querying the project repository. Also
Hypertext linking management in HTML documents
has been studied in (Devanbu et al., 1999) and (Oinas-
Kukkonen, 1999), where part of the project data, like
traceability information, is in the document, but the
document info is still the result of querying a reposi-
tory.

3 A METAMODEL FOR
SUPPORTING DOCUMENTS AS
FULL PRODUCTS

ISO/IEC 24744 standard (ISO, 2007), has a three do-
main context: the metamodel domain, the method-
ology domain and the endeavour domain, as shown
in figure 1. According to ISO/IEC 24744 an endeav-
our is an Information-based domain development ef-
fort aimed at the delivery of some product or service
through the application of a methodology.

Figure 1: Three domains layers conforming to ISO/IEC.
24744:2007

Metamodels are useful for specifying the con-
cepts, rules and relationships used to define method-
ologies. A methodology is the specification of the
process to follow together with the work products
to be used and generated, plus the consideration of
the people and tools involved, during an Information-
based domain development effort. A methodology
specifies the process to be executed, usually as a set
of related activities, tasks and/or techniques, together
with what work products must be manipulated (cre-
ated, used or changed) at each moment and by whom,
possibly including models, documents and other in-
puts and outputs. In turn, specifying the models that
must be dealt with implies defining the basic building
blocks that should be used to construct these models.

Most metamodelling approaches define a meta-
model as a model of a modelling language, process
or methodology that developers may employ. Follow-
ing this conventional approach, classes in the meta-
model are used by the method engineer to create in-
stances (i.e. objects) in the methodology domain and
thus generate a methodology. However, these objects
in the methodology domain are often used as classes
by developers to create elements in the endeavour do-
main during methodology enactment. This apparent
contradiction is solved by conceiving a metamodel as
a model of both the methodology and the endeavour
domains. Thus, we find a dual-layer modelling, one
layer in the methodology domain and other in the en-
deavour domain. Modelling a methodology element
in both layers should be performed by means of Clab-
jets, that is a dual entity that is a class (for the endeav-
our layer) and an object (for the methodology layer)
at the same time

ISO/IEC 24744 is an open and flexible standard
and has been designed to be extended. Therefore the
approach to define in detail the existing relation be-
tween documents, tasks and other process elements
was to extend ISO/IEC 24744 to provide the method
engineer with a new tool. ISO/IEC 24744 classes are
immutable. It is allowed to introduce new attributes
and relationships only in new extended classes.

ISO/IEC 24744 contains a relationship between
producer, task and document, as shown in figure 2,

DEFINING AND USING A METAMODEL FOR DOCUMENT-CENTRIC DEVELOPMENT METHODOLOGIES

35



but this is not enough for defining a direct relation-
ship between them. ISO/IEC 24744 classes will be
extended in order to obtain a direct relationships be-
tween producer (role) and product (document). The
same type of relationship between document, task,
technique and tool is required. The following para-
graphs present how classes have been extended.

Figure 2: Relationships between producers, tasks and doc-
uments in the standard.

Extension of Role class: this is a subclass of Pro-
ducer. In ISO/IEC 24744 it is possible to define the
roles to be played by persons, teams or even tools.
There is a indirect relationship between producers and
products through Workperformance, Task and Action
classes. It is possible to specify which producers have
been involved in different products creation, but is
not possible state explicitly which participant is in-
volved in the creation of a particular product. In our
approach, a direct relationship for setting this partic-
ipation is needed. At the same time, it is necessary
to set the producers role type in relation to the prod-
uct. For achieving this, a new attribute called Type
is created with two possible values: producer or con-
sumer. The new extended class is called Figure and it
is a subclass of the ISO/IEC 24744 class Role. Both
extended classes in the methodology domain and in
the endeavour domain are shown in figure 3.

Extension of Document Class: As presented
in figure 4, Document class and its parent class,
WorkProduct are the main classes of our approach. It
is important to highlight that a Document could have
a parent document. This hierarchy allows a subdocu-
ments schema that could be used to support document
sections and subsections. This provides the meta-
model with a mechanism for defining the methodol-
ogy documentation at any level of detail, depending
on the required document granularity. The Document

Figure 3: Role Class Extension.

class extension is necessary for setting the following
new relationships:

• Relationship with producers, that is, with Figure
class, as previously discussed.

• Relationship with tasks, techniques and tools
needed for document or subdocument (section)
development. In ISO/IEC 24744 there is a di-
rect relationship between tasks and products (doc-
uments) through the Action class, but is not pos-
sible to state the same type of relationship with
the applicable techniques. Although this direct
relationship is not necessary in the methodology
domain, we consider it essential in the endeav-
our domain for our approach. The same case oc-
curs with tools relationship: there is no direct re-
lationship in ISO/IEC 24744, but we consider it
necessary for achieving a well defined document-
centric methodology .

• Relationship between documents for setting up
constraints among them. In the methodology do-
main, the different types of documents and the
constraints among them should be defined. A doc-
ument could have constraints that involve other
documents that are subdocuments of the first one.

Extension of Constraint Class: The Standard
Constraint class is a condition that holds or must hold
at certain point in time. Constraints are often used
to declaratively characterize the entry and exit condi-
tions of actions. This class applies only in the method-
ology domain, having no sense in the endeavour level.
Initially, it is related with ActionKind class, setting
conditions form the execution of its related actions.
In our approach, the constraints will be applied on
documents: the document production will depend on
conditions applied on other documents (or subdocu-
ments). From this, it is necessary an extension of the
Constraint class and setting a new relationship.

Extension of TaskTechniqueMapping Class:

ENASE 2007 - International Conference on Evaluation on Novel Approaches to Software Engineering

36



Figure 4: Document Class Extension.

the TaskTechniqueMapping ISO/IEC 24744 class es-
tablishes the relationship between tasks and the appli-
cable techniques in both the methodology and the en-
deavour domains. However, our aim is, as discussed
above, providing the method engineer with the pos-
sibility of assigning tasks to documents and corre-
sponding techniques with a direct relationship. At
the same time, we consider useful the possibility of
assigning which tools should be involved in certain
tasks execution, following certain techniques, related
with these documents. For this, we need to extend
the TaskTechniqueMapping ISO/IEC 24744 class in
the new DocumentTaskTechniqueToolMapping class,
which makes it possible the direct document assign-
ment to the corresponding tasks for completing it, the
applicable techniques in each case, and the tools to
be used. Figure 5 shows the classes involved in this
mapping. In our approach, this mapping is necessary
in both methodology and endeavour domains in order
to provide support not only for the methodology def-
inition, but the Document-Centric Software Engineer
Environments as well.

Extension of Tool Class: ISO/IEC 24744 tool
class is a subclass of the Producer class and it is re-
lated with other producers that are assisted by it. As
Producer subclass, it has the same relationship with
products as described for Role class. As previously
discussed, in our approach, tools are related in an di-
rect way with tasks and techniques required for de-
veloping a document. The relationship between tools
and assisted producers is established, in an indirect
way, through the document in which they take part.
The relationship between Tool class and Document-
TaskTechniqueToolMapping could be achieved by the
extension of the Tool class into a new class called As-
signedTool.

The metamodel extension, in the methodology do-

Figure 5: Task, Technique and tool mapping.

main, is shown in figure 6. The ConstrainedDocu-
mentkind is the core of our proposal: Figures are re-
lated with documents and will follow the tasks, use
the techniques and tools attached to the documents
under the corresponding documents constraints.

Figure 6: Metamodel extension in the methodology domain.

DEFINING AND USING A METAMODEL FOR DOCUMENT-CENTRIC DEVELOPMENT METHODOLOGIES

37



The metamodel extension in the endeavour do-
main is shown in figure 7. It is very similar to the cor-
responding methodology domain point of view. The
main difference lies on the lack of constraints in this
domain.

Figure 7: Metamodel extension in the endeavour domain.

4 METAMODEL EXTENSION
USAGE

The steps for defining a methodology using this ex-
tension are the following:

• Document structure definition. ConstrainedDoc-
umentKind structure in the methodology domain
and ConstrainedDocument structure in the en-
deavour domain. A document kind is composed
by a set of subdocuments that could be treated as
sections. The detail level of each subdocument
depends on the desired detail level in the method-
ology definition.

• FigureKind definition. For each Constrained-
DocumentKind, FigureKind, an extension of
RoleKind class, will be defined. This ele-
ment could grant access on document kinds to
TeamKind or Rolekind elements. At this point,

stakeholders will be defined and also the role they
will play as document or subdocument producers
or consumers. In the endeavour domain, it is pos-
sible as well, the definition of concrete persons as
Figures.

• Document constraints definition. Using Docu-
mentConstraint class, it is possible the documents
(or subdocuments) to define constraints such as
creation conditions or documents precedence. For
example, a Unit Test Report document could be
produced only if a Unit Test Plan document is
approved and the first draft of Source Code doc-
ument is baselined. This constraint could only
be defined in the methodology domain. Though
working at document level can be considered a
coarse granularity, it is necessary to recall that this
kind of constraints can equally be defined at any
document sub-structure level.

• Document Tasks, techniques and tools assign-
ment. Any document development will involve
tasks, techniques and tools that will be carried out
by the figures with producer grants on this docu-
ment. For example, a Unit Test Report document
can be assigned to a producer Figure called Unit
Test Team. This document also have assigned the
Run Unit Test task, using the Black Box tech-
nique, with the Test Case Generator tool support.

Therefore, tasks precedence, responsibilities distribu-
tion and applicable techniques and tool definition are
determinated by complete documents definition, and
consequently, documents are the drivers of methodol-
ogy definition and process execution.

5 CONCLUSION AND FUTURE
WORK

This paper has presented an approach that is charac-
terised by two issues: first, documents become the key
product developers produced, not as by-products and,
second, it enables the possibility to define method-
ologies that use constraints on documents templates
to drive software processes. For this, the standard
ISO/IEC 24744:2007 Software Engineering – Meta-
model for Development Methodologies has been ex-
tended in order to provide a modelling baseline to
support the approach.

While the approach looks promising on the one
side, an identified limitation is related to the need of
having detailed document templates. A balance be-
tween the approach and the required information for
a cost-effective project is required. Another issue is

ENASE 2007 - International Conference on Evaluation on Novel Approaches to Software Engineering

38



that software/system models should have to be spec-
ified in the form of documents. For instance in the
case UML, OCL will facilitate this task obviously.

As future work, it is planned to extend this meta-
model in order to support configuration management.
This will imply that for any type of document it will
be necessary to identify at which level configuration
control will be performed. For instance for a software
requirement document the configuration item could
be each requirement. This will be a methodologi-
cal decision that should be taken in each case by the
method engineer.

Automation may be a key issue to support the ap-
proach described within this paper. Therefore it is
planned to set up the basis to define a software engi-
neering environment architecture in which documents
are the central issue and supports all the concepts in-
troduced within the paper. Documents will be used as
the integration mechanism of tools and services us-
ing XML schemes to define the document templates.
These XML schemes will be the result of applying
some mapping rules to the proposed metamodel. A
Software Engineering Environment will manage the
XML schemes and documents and will trigger the ex-
ecution of the defined tools for performing the tasks
assigned to different documents or subdocuments. A
prototype was already developed few years ago as
presented in (Alarcón et al., 2004).

ACKNOWLEDGEMENTS

Authors are indebted to Cesar Gonzalez for the
support and advice provided while working with
ISO/IEC 24744. The work reported herein has
been partially supported by Spanish ”Ministerio
de Educacion, Ciencia y Cultura” within the AG-
MOD TIC2003-08503 and the OVAL/PM TIC2006-
14840, the project VULCANO FIT-340503-2006-
3 from ”Ministerio de Industria, Turismo y Com-
ercio”, and by the DOBERTSEE project, Eu-
ropean Space Agency ESA/ESTEC Contract No.
15133/01/NL/ND.

REFERENCES

Alarcón, P. P., Garbajosa, J., Crespo, A., and Ma-
gro, B. (2004). Automated integrated support for
requirements-area and validation processes related to
system development. In IEEE INDIN, Los Alamitos,
CA, USA. IEEE Computer Society.

Atkinson, C. and Kune, T. (2000). Meta-level indepen-
dent modelling. In 14th European Conference on

Object-Oriented Programming, editor, International
workshop on model engineering.

Barnes, A. and Gray, J. (2000). Cots, workflow, and soft-
ware process management: An exploration of soft-
ware engineering tool development. In Proceedings
of the 2000 Australian Software Engineering Confer-
ence, page 221. IEEE Computer Society.

Beck, K. (1999). Extreme Programming Explained: Em-
brace Change. Addison-Wesley Professional.

Boehm, B. W. (2002). Get ready for agile methods, with
care. IEEE Computer, 35(1):64–69.

Bollain, M., Alarcon, P. P., Garbajosa, J., and Amador, J.
(2003). A low-cost document-centric software/system
engineering environment. In Proceedings of the 16th
International Conference ”Software & Systems Engi-
neering and their Applications” Paris, 2003.

Cass, A. G., Lerner, B. S., Stanley M. Sutton, J., McCall,
E. K., Wise, A., and Osterweil, L. J. (2000). Little-
jil/juliette: a process definition language and inter-
preter. In ICSE ’00: Proceedings of the 22nd inter-
national conference on Software engineering, pages
754–757. ACM Press.

Ciancarini, P. (1995). Modeling the software process using
coordination rules. In WETICE, pages 46–53.

Devanbu, P., Chen, Y.-F., Gansner, E., M&#252;ller, H., and
Martin, J. (1999). Chime: customizable hyperlink in-
sertion and maintenance engine for software engineer-
ing environments. In Proceedings of the 21st inter-
national conference on Software engineering, pages
473–482. IEEE Computer Society Press.

Fuggetta, A. (2000). Software process: a roadmap. In Pro-
ceedings of the conference on The future of Software
engineering, pages 25–34. ACM Press.

Gary, K., LindqKuist, T., Koehnemann, H., and Derniame,
J. (1998). Component-based software process sup-
port. In 13th IEEE International Conference on Au-
tomated Software Engineering (ASE’98), pages 196 –
199.

Gonzalez-Perez, C. and Henderson-Sellers, B. (2005). Tem-
plates and resources in software development method-
ologies. Journal of Object Technology, vol. 4, no. 4.

Gray, J., Scott, L., Liu, A., and Harvey, J. (1999). The first
international symposium on constructing software en-
gineering tools (coset ’99). In Proceedings of the
21st international conference on Software engineer-
ing, pages 707–708. IEEE Computer Society Press.

Henrich, A. (1996). Document retrieval facilities for
repository-based system development environments.
In Proceedings of the 19th annual international ACM
SIGIR conference on Research and development in in-
formation retrieval, pages 101–109. ACM Press.

ISO (1995). ISO/IEC 12207:1995 Information technology
- Software life cycle processes.

ISO (2007). ISO/IEC 24744:2007 Software Engineering –
Metamodel for Development Methodologies. Interna-
tional Organization for Standarization.

DEFINING AND USING A METAMODEL FOR DOCUMENT-CENTRIC DEVELOPMENT METHODOLOGIES

39



Kopka, C. and Wellen, U. (2002). Role-based views to ap-
proach suitable software process models for the de-
velopment of multimedia systems. In ISMSE, pages
140–147.

Luqi Zhang, L., Berzins, and V. Qiao, Y. (2004). Documen-
tation driven development for complex real-time sys-
tems. Software Engineering, IEEE Transactions on,
pages 936 – 952.

Nguyen, T. N. and Munson, E. V. (2003). The software con-
cordance: a new software document management en-
vironment. In Proceedings of the 21st annual interna-
tional conference on Documentation, pages 198–205.
ACM Press.

Nguyen, T. N., Munson, E. V., and Boyland, J. T. (2003).
Configuration management in a hypermedia-based
software development environment. In Proceedings
of the fourteenth ACM conference on Hypertext and
hypermedia, pages 194–195. ACM Press.

Oinas-Kukkonen, H. (1999). Flexible case and hypertext.
ACM Comput. Surv., 31(4es):7.

OMG (2001). OMG Unified Modelling Language Specifi-
cation. Version 1.4. Object Management Group.

Pohl, K., Weidenhaupt, K., Haumer, P., Jarke, M., and
Klamma, R. (1999). PRIME - toward process-
integrated modeling environments. ACM Trans. Softw.
Eng. Methodol., 8(4):343–410.

Rausch, A., Bartelt, C., Ternité, T., and Kuhrmann,
M. (2005). The V-Modell XT Applied Model-
Driven and Document-Centric Development.
In 3rd World Congress for Software Quality,
VOLUME III, Online Supplement, number 3-
9809145-3-4, pages 131 – 138. International
Software Quality Institute GmbH. available at
http://www.isqi.org/isqi/deu/conf/wcsq/3/proc.php.

Robinson, W. N. and Volkov, V. (1997). A meta-model
for restructuring stakeholder requirements. In ICSE,
pages 140–149.

Sharp, H., Finkelstein, A., and Galal, G. (1999). Stake-
holder identification in the requirements engineering
process. In DEXA Workshop, pages 387–391.

Singh, H. and Han, J. (1997). Increasing concurrency in
object-oriented databases for software engineering en-
vironments. In DASFAA, pages 175–184.

Visconti, M. and Cook, C. R. (1993). Software system doc-
umentation process maturity model. In ACM Confer-
ence on Computer Science, pages 352–357.

ENASE 2007 - International Conference on Evaluation on Novel Approaches to Software Engineering

40


