
EVALUATION OF TEST-DRIVEN DEVELOPMENT
An Industrial Case Study

Hans Wasmus
AEGEON NV, Service Center Pensioen, AEGEONplein 50

2591 TV Den Haag, The Netherlands

Hans-Gerhard Gross
Software Engineering Research Group (SERG)

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

Keywords: Software development management, Software testing, Software requirements and specification.

Abstract: Test-driven development is a novel software development practice and part of the Extreme Programming
paradigm. It is based on the principle that tests should be designed and written for a module iteratively, while
the code of the module is devised. This is the opposite of what is usual in current software development
methods in which testing is often an afterthought, rather than a primary driving factor of design.
Once applied systematically and continuously, test-driven development is supposed to incorporate require-
ments changes easier, lead to superior technical solutions in software, result in better and cleaner code, and
motivate all stakeholders. We present a development project carried out in a company in which we put those
claims to a test. We found that, indeed, some of the claims are valid, but we can also report difficulties with
applying the test-driven development approach.

1 INTRODUCTION

Test Driven Development is one of the core practices
of extreme programming (XP) and thus a part of the
XP methodology (Beck, 2005). It addresses the prob-
lems of changing requirements that the “more tra-
ditional, heavy-weight, predictive” methods address
only inadequately. TDD incorporates new require-
ments coming from the customer during the life-
cycle, and it avoids long requirement elicitation and
analysis phases (Beck, 2004; Geras et al., 2004;
Janzen and Saiedian, 2005). The motto of TDD, is
”clean code that works” (Beck, 2004). We should,
therefore, not attempt to get a perfect model for a sys-
tem, but rather use an iterative development approach
to expand the project and its features along the way.

TDD is based on unit tests, and to some extent also
on higher-level acceptance tests, as only specification
items, evaluating pieces of code to be developed. The
main difference between normal unit testing and TDD
is the development of the test case before develop-
ing the functionality, instead of after. Tests guide the
design and development in TDD, and “if you can’t
write a test for what you are about to code, then you
shouldn’t even be thinking about coding” (Chaplin,

2001) is one of the basic rules for TDD. In Extreme
Programming (XP), this is prescribed as “testing ev-
erything that could possibly break” (Jeffries et al.,
2000).

Many practitioners say that TDD has several
shortcomings or disadvantages such as lack of design
(Pancur et al., 2003), problems with applying unit
tests, lack of documentation (van Deursen, 2001), re-
liance on refactoring, dependence on the skills of the
programmer (George and Williams, 2004) and dif-
ficulties with scalability (Constantine, 2001), which
are commonly put forward. However, other peo-
ple believe that TDD has also numerous advantages
over the more traditional, predictive development ap-
proaches. A non-exhaustive list of references on ex-
periences with applying TDD is (Müller and Hag-
ner, 2002), (George and Williams, 2003), (Maxim-
ilien and Williams, 2003), (Williams et al., 2003),
(George and Williams, 2004), and (Erdogmus et al.,
2005).

This paper presents an evaluation of the positive
aspects that the TDD community is commonly putting
forward. We performed this evaluation as part of an
industry-scale application development project at EP-
COS Inc. (EPCOS AG, 2007). This application, a

103
Wasmus H. and Gross H. (2007).
EVALUATION OF TEST-DRIVEN DEVELOPMENT - An Industrial Case Study.
In Proceedings of the Second International Conference on Evaluation of Novel Approaches to Software Engineering , pages 103-110
DOI: 10.5220/0002584401030110
Copyright c© SciTePress



project forecasting system, was meant as a pilot study
to decide whether TDD could be introduced as new
development paradigm across software development
units at EPCOS.

This article is organized as follows. In Section
2, we list the claims that are commonly put forward
by proponents of TDD in favor of their chosen de-
sign approach, and we describe how we evaluated
these claims. In Section 3, we briefly describe the
type of system developed in which we applied TDD
as methodology. Section 4 discusses our experiences
with applying TDD in the presented case study, and
Section 5 summarizes our findings. Finally, Section 6
concludes the paper.

2 CLAIMS OF TDD COMMUNITY
AND HOW THEY WERE
EVALUATED

TDD can be used anywhere in any project. Pro-
ponents of TDD say that it is cost-effective to apply it
anywhere in any software project. With minor adap-
tations, TDD will be suitable for testing databases,
interfaces and any other software technologies. We
talked to people involved to evaluate this usability
claim, and we tried out several aspects for imple-
menting our application. We assessed where and un-
der which circumstances TDD may be used and what
could be done in areas where we thought TDD was
not so suitable.

TDD handles changes in requirements better than
predictive approaches. TDD does not propagate
upfront analysis and design that must be amended ev-
ery time a requirement is changed or added. This
should make the development process more suitable
for changes, and the iterative approach, that results in
working prototypes that can be extended, explicitly
invites changes. Moreover, change requests emerging
during implementation should have limited impact on
the source codes. We assessed this by evaluating how
much work needed to be done, considering the ex-
pected impact of the change. For each change re-
quest, we looked at when the request was issued, and
whether this change request could have been detected
earlier. Apart from looking at the change request it-
self, we looked at the impact of the change on the
system, e.g., time required to implement the change,
compared to the time it would have taken in a later
stage of the project.

Developers will be able to look further with TDD.
It is also argued, that programmers can come up with
better solutions for their code. We assessed the entire
life cycle of our project to evaluate this claim. We
looked at which solutions were found to solve tech-
nical problems on an architectural level and on the
code level, and how decisions were made in favor
or against the solutions. An important question was
“how would an early prototype affect the decisions of
the stakeholders, the customers, in particular?”

The TDD process is more enjoyable for the stake-
holders. The people involved in the case study were
senior developers, new team members and the cus-
tomers. It was difficult to make an assessment of
the “joy” of the people working in the project. We
talked to the stakeholders and looked at how well
new people integrated in the project. A general ob-
servation was that developers appreciated the short-
ened requirements engineering and analysis cycle, so
that they could immediately dive into development.
TDD provides positive reinforcement: “a green bar
is displayed which means that the test works and the
code is ok.” Tests are the replacement for specifica-
tion and documentation (van Deursen, 2001) which
takes a huge burden off the developers for produc-
ing such documents. TDD proponents argue that doc-
umentation is always out-of-date, anyway, and new
team members rather start with looking at the code
instead of going through outdated and bulky text doc-
uments.

Code quality will be higher. Except for delivering
a better suited product, supporters of TDD say that
the quality of the code will also improve. That is be-
cause we can achieve nearly 100% test coverage, dur-
ing development, so that bugs will be found sooner,
decreasing the necessity for workarounds and fixes in
the final product. Unfortunately, we could not to draw
definite conclusions about our code quality, but we
got a general idea of the quality of the code coming
out of our TDD approach. Secondly, we used code
metrics in order get an idea of some properties, such
as code complexity, dependability and size. Unfor-
tunately, we could not to draw definite conclusions
about our code quality, but we got a general idea of
the quality of the code coming out of our TDD ap-
proach.

3 THE EPCOS CASE STUDY

We evaluated the claims put forward at an EPCOS
software development unit, applying TDD in a web-

ENASE 2007 - International Conference on Evaluation on Novel Approaches to Software Engineering

104



based project forecasting application. EPCOS is one
of the largest manufacturers of passive components
for electronic devices.

Project forecasting was, initially, not supported
through a computer system. Originally, external sales
representatives worked together with customers on
the design of electronic devices which embed EP-
COS’ products. They told Marketing which types
and volumes of components would be required, and
hence, should be produced in the future. All infor-
mation concerning product forecasting was gathered
by Marketing through phone and email. Eventually,
they sent out orders to the factories which assessed
the requests, planned the production, and estimated
the delivery dates. In order to streamline this infor-
mation flow, the company decided to develop and set
up a new web-based forecasting application.

The forecasting application has a typical 3-tier ar-
chitecture with a client layer, a web interface and a
database. The client is used by the sales represen-
tatives, with operations concerning project tracking
and forecasting. The web service connects the client
application database, and provides the business logic
and authentication features. The application is used
to forecast orders and calculate their budgets. Ini-
tially, it was done on a yearly basis, making forecasts
inaccurate. The goal was to increase accuracy by in-
creasing the frequency with which representatives up-
date the database. Additionally, tracking of forecasts
should be implemented, and access should be possi-
ble through a web interface. With the new system, the
factories are now able to view and confirm the fore-
casts placed by the marketing department, and they
can already start production before a concrete order is
placed. This improves delivery time considerably.

The project was developed on typical PCs, con-
necting to Windows servers. The servers we used
were Windows 2000 Servers running Microsoft .NET
2003 runtime libraries and IIS. The size of the project
is, with some 3 person years, rather small. However,
the system is typical in terms of size and complexity
for this development unit, so that we can use the expe-
riences gathered here, well for future projects. During
the project, we applied an iterative development pro-
cess. We had in total three iterations with a length of
two and a half months each. Before this project was
begun other developers had already worked on a pro-
totype system for approximately 6 months. The first
month of this project was used to gather requirements
from the “customers” (from within the company), and
understand their problems. The project was staffed
with some 2 FTE programmer positions, with 1/2 FTE
allocated to testing. The project team comprised two
graduates and one experienced programmer/tester.

4 EVALUATION DURING THE
CASE STUDY

TDD proposes to test every single atomic piece of
implementation in order to facilitate changes. After
devising a test, it should be realized and executed as
soon as the code to be tested becomes available. Fi-
nally, the code is refactored according to the outcome
of the test. Tests should be independent from each
other, meaning that one code piece should only be
assessed by one test, so that when this code piece is
changed, only one test has to be adapted. If tests were
not independent, we would have to amend all tests
that are somehow linked to the tested code when a
change imposes a code update. If that was not the
case, we would have to maintain a trace table that
links code pieces to corresponding test cases. It is,
therefore, important to keep in mind that poorly or-
ganized tests can impede code changes considerably,
which would be exactly the opposite of what we want
from using TDD.

Usability claim. The first question to answer is if
developers are able to use TDD anywhere in devel-
opment project, and continue using it. Since there is
not a predefined development process enforced, the
focus here is on using the TDD as a practice. If it
is too much effort to use TDD, developers will even-
tually let go off the practice which is especially the
case in small projects, where mostly no strict stan-
dard processes are defined. In order to get an idea of
usability of TDD over the lifetime of our project, ev-
ery time a development phase finished, the changes
were committed to the source repository. The com-
mits in the repository have been monitored for six
months throughout the development cycle.

Figure 1 and Figure 2 display the commits per
task category performed in percent and in absolute
numbers, respectively. Month 3 is not a very re-
liable data point, since it was the beginning of a
new iteration within the project. The figures show
that Test/Works/Refactored slightly go down making
place for more bug fixes. The figures indicate TDD
is still adopted by the developers, and more time is
spent on fixing bugs. After each new test case written,
there was a commit, and the the conclusion is primary
based on looking at the time spent for writing tests.
We could observe that the time spent on writing tests
was still around 50According to the programmers, the
charts give a good indication of the issue. During
this cycle, the Test/Works/Refactored sequence was
omitted selectively. This was due to the type of code,
e.g., user interfaces are hard to test. Figure 3 con-
firms this experience in that the effort spent for test-

EVALUATION OF TEST-DRIVEN DEVELOPMENT - An Industrial Case Study

105



Commits / Month

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6

Month

Nu
m

be
r o

f c
om

m
its

 (%
)

Other
Bug Fix
Refactored
Works
Test

Project time line (months)

Task Categories Performed (Commits)

Figure 1: Task categories performed (commits) per month
in percent.

Commits / Month

89 74 33 103 36 45
0
5

10
15
20
25
30
35
40
45
50

1 2 3 4 5 6

Month

Nu
m

be
r o

f c
om

m
its

 (#
)

Test
Works
Refactored
Bug fix
Other
Total

Project time line (months)

Number of Commits per Month

Figure 2: Task categories performed (commits) per month
in absolute numbers.

ing went down from 18% to 6% compared to Figure
1. In comparison, the test commits only went down
from 29% to 21%, resulting in a lower time per test
implementation. This strengthens the idea that, later
on in the project, fewer tests are made for those parts
of an application that are more difficult to test. An-
other explanation is that the developers became more
experienced with devising tests.

The other two categories, time spent on “fixing
bugs” and “miscellaneous” activities, display an ex-
pected flow. Time spent for bug fixes is increasing
towards the end of the life-cycle. The final months
are largely impacted by the ”other” category which

Time / Month

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

Month

Ti
m

e 
sp

en
d 

(%
) Other

Bug Fix

Refactored

Works

Test

Project time line (months)

Effort per Category

Ti
m

e 
sp

en
t (

%
)

Figure 3: Task categories performed (commits) per month
in effort.

includes adding/removal of projects, adding of com-
ments and testing of possible technologies to embed.
TDD was used continuously during the duration of the
case study. To verify if the decrease of the time spent
in Test/Work phases was caused by selective use of
TDD by the programmers, the TDD usage was evalu-
ated per application component.

In some cases TDD might not be suitable. We
consider TDD to fail, when: (1) it is technically im-
possible/extremely difficult to test code using unit
tests, or when (2) the time required creating a test is
not in relation with manual verification of a feature, in
respect to the complexity of the implemented feature,
e.g. checking a dialog window. Inspecting a window
on the screen is straightforward, simply by looking at
the screen, but creating a unit test for a display is very
difficult (access to the video memory, etc.).

Testing the database. The first step in the case
study was the development of the database. Accord-
ing to TDD, we should first develop tests to assess fea-
tures in the database, and we should test all features,
e.g., test to add an unknown customer to a project.
This way we can test all foreign and primary keys in
the database, and, as a side-effect, generate a database
design similar to what a design tool would do. Ap-
plying TDD for database design, we could take small
steps and got results quickly, which increased pro-
grammer satisfaction. However, some problems ap-
peared. Database adapters require making a connec-
tion with the database, writing an SQL statement and
storing the result in a data set. Then, the result can
be compared with the expected result or exceptions

ENASE 2007 - International Conference on Evaluation on Novel Approaches to Software Engineering

106



can be analyzed. This is a typical unit test. For the
database design, however, this was a time-consuming
procedure, because the developers spent some 90%
of their time creating test infrastructure for accessing
the database, and only the rest of their time went into
its design. This is largely caused by the lack of sup-
port of C# for testing databases. With a proper tool,
the tests could have been created much easier. There-
fore, it is advisable to create a simple test interface for
the database. If possible, the database interface of the
tested application could be used to setup the database
connections. It is also helpful to wrap or modify the
SqlException objects to throw more specific errors to
be used for testing. In order to test security-related is-
sues or error behavior, tests should send faulty infor-
mation to the database, and to see whether the right
SQL exception are generated.

Testing the web service. TDD is very suitable for
testing general functions of web services. However,
they can only be checked through executing a client
connecting to the web service application. We can-
not execute the web-service without a client. Using
unit tests, we could assess the full range of inputs
and outputs including behavior, and the developers
found it easy to devise all sorts of different test cases
for the web service. We could easily achieve nearly
100% test coverage, and changes were implemented
quickly, and the tests amended. Web service devel-
opment appeared to be an ideal candidate for TDD in
our case study.

However, there are some problems concerning
testing of security features. Web services use environ-
ment variables, such as identification of the client by
IP number or network ID. Tests for setting IP numbers
are difficult, because they require various networked
computers as test setup. Another issue are static vari-
ables. Executing tests that change such variables, can
damage the web-service leading to unexpected behav-
ior. Operations related to authentication are another
issue. Windows user accounts cannot be created and
removed easily in a test case, and permissions are dif-
ficult to simulate.

A good example for such a problem was a flaw
discovered with with multiple open service sessions.
The web service opened a new database connection
for each user. This worked well with our tests de-
veloped according to TDD, and with only one user
on the system. However, when two users logged into
the system the database connection was reopened and
the first user could see data which was only intended
for the second user. Our TDD tests were not power-
ful enough to discover this issue. It was only found
through inspection.

From our experience, we believe TDD works well
for developing web services, although, only checking
function and behavior of the service are not sufficient.
Dealing with security issues, such as the concurrent
login of users, we have to take environmental issues
into account. It is advisable to develop/adapt a small
test suite that can be deployed on multiple clients for
checking sessions and behavior under concurrent ex-
ecution.

Testing the client. This is where TDD showed the
greatest benefits. Specific technical task are easy to
test and easily adapted when changes are requested.
A success story in this respect was a request for faster
system response. The design available at the time,
loaded all the data from the web service when re-
quested. With the accumulation of new projects, this
became slower. The goal was to redesign parts of the
application, but yet leave the original test cases intact.
This can be compared with a maintenance activity and
a regression test, albeit during system development.
Our existing tests could instantly uncover problems
with the new design that could be resolved quickly.

Using TDD for developing the logic of a client ap-
plication is straight-forward in terms of building suit-
able test cases. However, the user interface is an en-
tirely different story. It is daunting to build test cases
mimicking human interaction with the system. It is
very difficult to register, create and catch events in test
cases, and it is difficult to check output on the screen.
We found a solution by using mock objects based on
DotNetMock. Mock objects are fake interface objects
that act like real interface objects. The best way to
use mock objects for interface testing is to split the
interface components according to the Model-View-
Controller design pattern (Gamma et al., 1995). This
splits an interface into two classes: a controller and a
view class. The view class displays the controls, pass-
ing on events. The controller class handles the input
and output of the view class. The view class can be
“faked” using a mock-up class. The application loads
the real viewer into the controller, but the test loads
a fake viewer (MockObject). In this way, the con-
troller logic can be tested extensively without having
to display the interface every time. In our case study,
the GUI interfaces was changed a lot, so that having
set up a usable testing environment turned out to be a
major advantage.

EVALUATION OF TEST-DRIVEN DEVELOPMENT - An Industrial Case Study

107



5 SUMMARY OF THE
EVALUATION

First claim. It is possible to apply TDD in a soft-
ware project anywhere where requirements are imple-
mented. With minor adaptations TDD will be suitable
for testing databases, interfaces and other technolo-
gies.

This is in not true, in general. There are definitely
problems with applying TDD everywhere in a project.
Some approaches such as aspect oriented program-
ming (AOP) and testing, increase the applicability of
TDD, but do not diminish the problem of testing ev-
erything there is.

Second claim. TDD handles changes in require-
ments better than “traditional” development ap-
proaches.

Our development process was lead by requirement
changes and what was supposed to be a forecasting
application, originally, evolved into a project manage-
ment application, eventually. During development,
the stakeholders did not have a concrete idea of what
should be in the end product and what shouldn’t. New
requirements were accommodated while the project
evolved. A good example is the development of a
feedback plug-in for Microsoft Outlook. Initially,
feedback was not even on the requirements list. In
the second project iteration, after working with the
first release, a feedback panel was added as high prior-
ity requirement. Later, this lead to the idea of adding
emails to a project and thus creating an e-mail plug-in.
When several users believed the application had suffi-
cient features to move from their Excel sheets towards
the application, another new requirement was men-
tioned: an action list panel. Many of the requirements
of the final product only appeared through using pre-
liminary versions once people recognized the poten-
tial of an undeveloped product. After the first and sec-
ond iteration, the requirements of the end users got
more and more specific and changed several times. It
cannot be denied that implementing changes is costly;
however, it saved a lot of time implementing changes
after the delivery of the application. With TDD, the
design of the application is continuously optimized.
When changes have to be implemented after the de-
velopment of the system is completed, they are typ-
ically ’hacked’ into the design. Eventually, this can
turn into a maintenance-nightmare.

Third claim. Developers will be able to look fur-
ther with TDD, thinking of better solutions while pro-
gramming.

We found that developers are indeed able to look
further with TDD, but only for low level program-
ming problems. The main technologies to be used in
the case study were decided in the period from before
the implementation until the first weeks of the imple-
mentation. Also, the general design was determined
in this period. During the implementation, several al-
ternations were made to improve the design or to im-
plement newly discovered technologies. An advan-
tage of TDD is that programmers will know sooner
whether the product will satisfy the end user. In this
respect, TDD helps to ensure that the customers get
the product they want.

Fourth claim. The TDD process is more enjoyable
for the stakeholders.

Programmers appreciated the fact that they could
quickly jump into developing code, and not having
to write lengthy requirements documents, designs,
and other technical documentation. However, mak-
ing many tests and having to change those tests when
requirements are added or changed can slow down
productivity. Especially when simple changes make
many tests fail, it can become frustrating for the de-
velopers, becoming reluctant to writing more tests.
This would, in fact, mean a failure in the usage of
TDD.

For new team members, the lack of a written tech-
nical documentation was not an obstacle. The tests
provided necessary documentation and all architec-
tural information was supplied by using small paper
documents and discussions. Not having a large writ-
ten documentation was not at all an inhibiting factor
during the course of our project.

For a customer, the TDD approach is ideal, ac-
cording to various interviews held among customers.
Customers can get used to a new system, ask for mi-
gration tools and propose new requirements. Pricing
models requiring payments for each change should be
avoided, since this decreases the flexibility and does
not impose the delivery of quality on the developers.
Instead, payment can be based on usage (e.g. by using
licenses).

Fifth claim. Except for delivering a better suited
product, supporters of TDD say that the quality of
the code will also improve with TDD. Due to creating
tests first, nearly 100% test coverage of the code could
be achieved at no extra cost (as for a traditional testing
phase). There was a working product after each itera-
tion, which was not full of bugs. Moreover, the prod-
uct could also be shaped according to the customer’s
wishes, which means that programming and design

ENASE 2007 - International Conference on Evaluation on Novel Approaches to Software Engineering

108



time is invested in the requirements most needed by
the customer.

To get an estimate of the quality of the code, the
final libraries were examined through code analysis
tool, called NDepend (NDepend, 2007). It measures
several metrics at assembly level and at type level.
The metrics at assembly level can indicate how well
the design of a project is in terms of maintainabil-
ity. The type level metrics evaluate the program at
a lower level and can detect possible complex classes,
that cause trouble. When we compared the results
with another project developed based on TDD, the
NUnit project, experiences were similar. Compared
to the CrystalDecisions library, which is part of the
.NET framework, there are noticeable differences, es-
pecially for the cyclomatic complexity. By creating a
control graph, cyclomatic complexity is an indicator
for the complexity of a module (McCabe, 1976). In
NUnit and in our case study, the highest complexity in
a module is around 90, in the CrystalDecisions mod-
ule this is more than 650. It must be noted that cyclo-
matic complexity is just an indicator of complexity; it
is arguable whether cyclomatic complexity is an ac-
curate complexity measure (Shepperd, 1988).

Finally, the code coverage of the test in both the
client and the web service was 93.5%, which is close
to the goal of TDD of 100% code coverage. These
figures were produced by nCover (http://ncover.org)
that issues the lines of code executed in the unit tests.
We have to note that these figures can only count as an
indication, not as evidence of code quality: a deeper
investigation with more samples is required to be able
to speak of evidence.

6 CONCLUSION

From the evaluation of the claims we can conclude
that the use of TDD for developing applications has
many advantages. Despite the problems caused by
test dependencies, the construction of tests during
the development process remained steady. The main
problem with creating unit tests in our case study was
creating tests for everything that should be tested.
Sometimes the creation of many tests was simply
too time consuming compared to manual verifica-
tion. This was in particularly the case with testing the
database and the user interface. In other cases, it was
technically very difficult or even impossible to create
a suitable test for a given situation. This is the case
with the user interface, build-in features and special
technologies, such as AOP techniques.

The biggest advantage of TDD is that a product
of high quality can be developed by maintaining flex-

ibility. The case study provided various indications
for high quality source code. By creating tests first,
we could refactor the design continuously avoiding
changes that may have had a negative influence on the
system design. This resulted in source code which
was easier to maintain. By using iterations and ac-
tive customer participation, we could identify prob-
lems faster, leading to lower effort for refactoring the
code. The previous statements help the programmer
to have a smooth development process, which adds to
programmer’s satisfaction. Work satisfaction can be
an important ingredient for success. Customer partic-
ipation also gives the customers the feeling they can
shape the application to their needs and give a better
understanding of the problems the programmers are
facing and the other way around.

REFERENCES

Beck, K. (2004). Test-Driven Development. Addison-
Wesley.

Beck, K. (2005). Extreme Programming Explained.
Addison-Wesley.

Chaplin, D. (2001). Test first programming. TechZone.
Constantine, L. (2001). Methodological agility. Software

Development, pages 67–69.
EPCOS AG (2007). Epcos company web site.

http://www.epcos.com.
Erdogmus, H., Morisio, M., and Torchiano, M. (2005). On

the effectiveness of the test-first approach to program-
ming. IEEE Transactions on Software Engineering,
31(3):226–227.

Gamma, E., Helm, R. abd Johnson, R., and Vlissides,
J. (1995). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley.

George, B. and Williams, L. (2003). An initial investigation
of test driven development in industry. In Proc. of the
2003 ACM Symposium on Applied Computing, pages
1135–1139, Melbourne, Florida, USA.

George, B. and Williams, L. (2004). A structured experi-
ment of testdriven development. Information and Soft-
ware Technology, 46(5):337–342.

Geras, A., Smith, M., and Miller, J. (2004). A prototype
empirical evaluation of test driven development. In
Proceedings of the 10th International Symposium on
Software Metrics, pages 405–416.

Janzen, D. and Saiedian, H. (2005). Test-driven develop-
ment concepts, taxonomy, and future direction. Com-
puter, 38(9):43–50.

Jeffries, R., Anderson, A., and Hendrickson, C. (2000). Ex-
treme Programming Installed. Addison-Wesley.

Maximilien, E. and Williams, L. (2003). Assessing test-
driven development at ibm. In Proc. of the 25th Intl
Conference on Software Engineering, pages 564–569,
Portland, Oregon, USA.

EVALUATION OF TEST-DRIVEN DEVELOPMENT - An Industrial Case Study

109



McCabe, T. (1976). A complexity measure. IEEE Transac-
tions on Software Engineering, 2(4):308–320.

Müller, M. and Hagner, O. (2002). Experiment about
test-first programming. IEE Proceedings Software,
149(5):131–136.

NDepend (2007). .net code analyzer. www.ndepend.com.

Pancur, M., Ciglaric, M., M., T., and Vidmar, T. (2003). To-
wards empirical evaluation of test-driven development
in a university environment. In EUROCON 2003,
Computer as a Tool, The IEEE Region 8, volume 2,
pages 83–86.

Shepperd, M. (1988). A critique of cyclomatic complexity
as a software metric. Software Engineering Journal,
3(2):30–36.

van Deursen, A. (2001). Program comprehension risks and
opportunities in extreme programming. In Proceed-
ings of the Eight Working Conference on Reverse En-
gineering (WCRE’01), pages 176–185.

Williams, L., Maximilien, E., and Vouk, M. (2003). Test-
driven development as a defect-reduction practice. In
Proc. of the 14th Intl Symposium on Software Reliabil-
ity Engineering, pages 34–48, Washington, DC, USA.

ENASE 2007 - International Conference on Evaluation on Novel Approaches to Software Engineering

110


