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Abstract: Software development is an intractable, multifaceted process encountering deep, inherent difficulties. 
Especially when trying to produce accurate and reliable software cost estimates, these difficulties are 
amplified due to the high level of complexity and uniqueness of the software process. This paper addresses 
the issue of estimating the cost of software development by identifying the need for countable entities that 
affect software cost and using them with artificial neural networks to establish a reliable estimation method. 
Input Sensitivity Analysis (ISA) is performed on predictive models of the Desharnais and ISBSG datasets 
aiming at identifying any correlation present between important cost parameters at the input level and 
development effort (output). The degree to which the input parameters define the evolution of effort is then 
investigated and the selected attributes are employed to establish accurate prediction of software cost in the 
early phases of the software development life-cycle. 

1 INTRODUCTION 

Project managers devote extensive effort to achieve 
the highest possible control over the software 
process and predict, and therefore reduce, the risk 
caused by any contingencies. Plans, strategies, 
timetables, risk analyses and many other issues are 
carefully addressed by project managers in an 
attempt to estimate from the beginning of a project 
the prospective cost. Especially in the case of 
software development, which is considered a very 
complex and intractable process affected by various 
interrelated parameters, effort and cost are extremely 
difficult to predict. Nevertheless, software cost 
estimation is identified as a valuable and critical 
process. This process includes estimating the size of 
the software product to be developed, assessing the 
complexity of the functions to be included, 
estimating the effort required – usually measured in 
person months – developing preliminary project 
schedules, and finally, estimating the overall cost of 
the project.  

In the mid ‘90s, the Standish Group surveyed 
over 8000 software projects and the results showed 
that for every 100 projects that start there are on 
average 94 restarts. Also, an average of 189% of 
projects exceed their original cost estimate, their 

original time estimate or schedule by 239%, whereas 
more than 25% of the projects were completed with 
only 25%-49% of the originally-specified features 
and functions. In addition, an average of more than 
50% of the completed projects had less than 50% of 
the original requirements (Standish Group, 1995). 
Another survey performed by the Standish Group in 
2001 shows that 23% of all software projects are 
cancelled before completion, of those projects 
completed only 28% are delivered on time, within 
budget and with all originally specified features and 
the average software project overruns budget by 
45% (Laird and Brennan, 2006). In the same year, 
the British Computer Society Review revealed that 
after surveying 1027 projects, found only 130 
successful, and of 500 development projects only 3, 
with success being defined as delivering every 
functional aspect originally specified, to the quality 
agreed on, within the time and costs agreed on 
(Coombs, 2003). Reviews on surveys until today 
indicate that most projects (60-80%) encounter 
effort and schedule overruns (Aggarwal et al., 2005). 
The above statistics reveal and underline the 
inherent problems the software process faces and 
justify the difficulties observed with project 
management activities. 
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The accurate and reliable software cost 
prediction can significantly increase the productivity 
of an organisation and can facilitate the decision 
making process (Briand et al., 1999), while, at the 
same time, it is highly important to both developers 
and customers (Leung and Fan, 2002).  Project 
managers commonly stress the importance of 
improving estimation accuracy and the need for 
methods to support better estimates, as these can 
help diminish the problems concerning the software 
development process and contribute to better project 
planning, tracking and control, thus paving the way 
for successful project delivery (Lederer and Prasad, 
1992). Once a satisfactory and reliable software cost 
model is devised, it can then be used for efficiently 
developing software applications in an increasingly 
competitive and complex environment. The model 
may thus constitute the basis for contract 
negotiations, project charging, classification of tasks 
and allocation of human resources, task progress 
control, monitoring of personnel and other resources 
according to the time schedule, etc. 

The parameters anticipated to affect software 
development cost are not easy to define, are highly 
ambiguous and difficult to measure particularly at 
the early project stages. The hypothesis here is that 
if we manage to detect those project characteristics 
that decisively influence the evolution of software 
cost and assess their impact then we may provide 
accurate estimations. Therefore, finding the 
fundamental characteristics of the software process 
is critical, as these can lead to the creation of various 
computational models that aim at measuring or 
predicting certain factors affecting this process, such 
as software development effort, quality and 
productivity. The work presented in this paper aims 
to provide accurate predictions of software 
development cost by utilising computational 
intelligent methods along with Input Sensitivity 
Analysis (ISA) to find the optimal set of input 
parameters that seem to describe better the cost of a 
software project, especially in early phases of the 
software development life-cycle (SDLC). 

The rest of the paper is organised as follows: 
Section 2 presents a brief overview of the relevant 
software cost estimation literature and outlines the 
basic concepts of artificial neural networks, the latter 
constituting the basis of our modelling attempt. 
Section 3 introduces the dataseries used for 
experimentation and describes in detail the cost 
estimation methodology suggested. Section 4 
provides the application of the methodology and 
discusses the experimental results obtained, 
commenting on the factors that mostly affect 
software cost. Finally, Section 5 draws the 

concluding remarks and suggests future research 
steps. 

2 COST ESTIMATION MODELS: 
A THEORETIC BACKGROUND 

During the end of the 50s and 60s, researchers and 
software engineers began focusing on software cost 
estimation. Since then various estimation techniques 
and models have been proposed in order to achieve a 
better and more accurate cost prediction. Software 
cost estimation is conceived in this paper as the 
process of predicting the amount of effort required 
to develop software. The success of this process lies 
with the quality of the data and the selected 
parameters used for performing the estimation. 

A considerable amount of the models used for 
software cost estimation are either cost-oriented, 
providing direct estimates of effort, or constraint 
models, expressing the relationship between the 
parameters affecting effort over time. COCOMO 
(Constructive Cost Model), an example of a cost 
model, has a primary cost factor (size) and a number 
of secondary adjustment factors or cost drivers 
affecting productivity. Since its first publication 
(Boehm, 1981) it has been revised to newer versions 
called COCOMO II (Boehm et al., 1995) and later in 
(Boehm, 1997), mixing three cost models, each 
corresponding to a stage in the software life-cycle: 
Applications Composition, Early Design, and Post 
Architecture, appearing to be more useful for a 
wider collection of techniques and technologies.  

SLIM (Software Life-cycle Model), an example 
of a constraint model, is applied on large projects, 
exceeding 70000 lines of code and assumes that 
effort for software projects is distributed similarly to 
a collection of Rayleigh curves (Putnam and Myers, 
1992). It supports most of the popular size 
estimating methods including ballpark techniques, 
function points (Boehm et al., 2000), component 
mapping, GUI (object) sizing, sizing by module etc. 
(visit the Quantitative Software Management 
website: http://www.qsm.com, for more information 
on recently developed SLIM tools). A stepwise 
approach, utilising software and manpower build-up 
equations, is used and the necessary parameters that 
must be known upfront for the model to be 
applicable are the system size, the manpower 
acceleration and the technology factor. 

 Software cost models are evaluated considering 
certain error criteria, with the most common method 
comparing the estimated with the actual effort. 
Existing software cost models experience 
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fundamental problems based on the criteria results, 
especially if we consider the suggestion that a model 
is acceptable if 75% of the predicted values fall 
within 25% of their actual values (Fenton, 1997). 
The difficulty lies with specifying which metrics to 
use as inputs in a cost model and obtaining sample 
values rated with high quality in terms of reliability, 
objectivity and homogeneity (MacDonell and Gray, 
1997). Unfortunately, in most of the models there is 
not an agreement on which parameters to use to 
provide better estimates. Since for many metrics the 
actual value is never known with certainty before the 
project is completed, they are often given values that 
managers or experts anticipate, or may be created 
using past project data samples. While the former 
case suffers from subjectivity, in the latter case the 
difficulty in having metric values increases as there 
is lack of publicly available, reliable and 
homogenous data. Homogenous project data sets 
may become available only if they are carefully 
collected, under the same conditions (similar 
processes, technologies, environments, people and 
requirements) and as long as a consistent measuring 
mechanism is used. In addition, collaboration 
between the industry and research institutions is 
relatively narrowed and confined only to certain 
parts of the world, while at the same time historical 
databases of cost measurements are limited and 
scattered due to the difficult, costly and time-
consuming nature of the data gathering procedure. 

While various studies attempted to predict 
development effort, results reported indicate high 
dependence on data and input parameters. In 
MacDonell and Gray (1997) Artificial Neural 
Networks (ANN) and Fuzzy Models were used on 
the Desharnais dataset. The performance of the 
ANN (measured using the Correlation Coefficient 
(CC) and the Mean Relative Error (MRE) measures) 
was not overly impressive, with 7 out of the 27 
validation cases not being predicted even within 
50%, while the best result obtained marked 
CC=0.7745 and MRE=0.4586. Idri et al. (2002) 
attempted to estimate software cost using 
backpropagation trained Multi Layer Perceptrons 
(MLP) on the COCOMO ’81 dataset and their best 
results reached MREs equal to 1.5%, 203.66%, 
84.35%, while the main conclusion was that 
accuracy increases as the number of projects in the 
training process rises. In Finnie and Wittig (1997) , a 
back-propagation trained MLP was used on the 
Desharnais and ASMA datasets presenting 
encouraging results, with MRE=27% and 
MRE=17% respectively. Jeffery et al. (2000) 
compared three estimation techniques, Ordinary 
least-squares (OLS) Regression and analogical and 

algorithmic cost estimation on company-specific 
(Megatec) and multi-organisational (ISBSG) data 
and the results showed Median MRE=0.38, 
pred(0.25)=0.21 and Median MRE=0.66 and 
pred(0.25)=0.05 respectively. The need for 
qualitative and consistent datasets is revealed once 
again as the estimations produced using data 
measured in the same development environment 
(Megatec) seem more accurate than with scattered 
information (ISBSG). Recently, efforts have been 
made to extract and analyse a subset of important 
variables to provide more effective and complete 
analysis in terms of both quality and quantity 
(Santillo et al., 2005). 

Summarising the above, the use of computational 
intelligent techniques for software cost estimation is 
quite rich. Nevertheless, the results obtained thus far 
are not satisfactory, and, moreover, not consistent in 
terms of prediction accuracy and type of cost factors 
used in the models. In this work we attempt to cover 
this gap and achieve on one hand high cost 
prediction accuracy and on the other propose a 
systematic way to select the most appropriate cost 
factors in the context of ANN. ANN consist of 
interconnected nodes able to deal with complex 
domains, perform intelligent computations and are 
utilised for forecasting sample data to generalise 
knowledge learned through examples without 
requiring an a priori mathematical expression of the 
output in terms of the inputs used. Further details 
may be found in (Haykin, 1999). 

3 DATA AND METHODOLOGY 

We move now to describing firstly the available 
datasets and the necessary pre-processing activities, 
and secondly our methodology for identifying the 
most critical factors within the datasets which 
determine software cost through the application of 
sensitivity analysis on selected ANN.  

3.1 Description of Datasets 

The Desharnais dataset (Desharnais, 1988) includes 
observations for more than 80 systems developed by 
a Canadian software development house at the end 
of 1980 and describes 9 features. The basic 
characteristics of the Desharnais dataset account for 
the following: project name, development effort 
measured in hours, team’s experience, project 
manager’s experience, both measured in years, 
number of transactions processed, number of 
entities, unadjusted and adjusted Function Points, 
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length of development, scale of the project and 
development language. 

The second dataset called ISBSG (International 
Software Benchmarking Standards Group; 
Repository Data Release 9) contains an analysis of 
software costs for a group of projects. The projects 
come from a broad cross section of industry and 
range in size, effort, platform, language and 
development technique data. These projects undergo 
a series of quality checks for completeness and 
integrity and then they are rated in order to achieve 
the grade of usefulness of the data for various 
analyses. The ISBSG reports that this dataset 
represents the more productive projects in the 
industry, rather than industry norms, because 
organisations are considered to be among the best 
software development houses and also, they may 
have chosen to submit only their best projects rather 
than typical ones. Therefore, the projects have not 
been selected randomly and the dataset most 
probably is subject to biases. The main issue that is 
being raised here is the homogeneity of the 
dataseries which stems by the fact that the recorded 
projects come from different companies all over the 
world. Therefore, the variety in people, processes, 
practices, tools, etc. suggest that there is significant 
heterogeneity in fundamental parameters affecting 
the measurements. 

3.2 Data Pre-processing 

The aforementioned datasets were used in a stepwise 
approach aiming firstly either to limit the number of 
inputs used for software development cost 
estimation, or define the relationship among certain 
parameters affecting effort over time; secondly, to 
provide better accuracy to software cost prediction. 
The process suggested in this paper for achieving the 
above, begins with data pre-processing, performed 
on the initial dataseries in order to prepare them for 
the next steps. The data pre-processing included the 
subtraction of projects with null values in the 
attributes from the two datasets, whereas from the 
ISBSG dataset we also subtracted certain parameters 
with incomplete data, or alphanumeric data 
(containing categorical variables instead of 
numerical) or parameters with no direct or apparent 
affect on software cost. After data sampling, we 
chose representative subsets from the whole 
populations, 78 projects and available attributes (10 
in number as described before) for the Desharnais 
dataset and 739 projects and 19 attributes for the 
ISBSG dataset. The latter attributes are: project 
name, functional size (A1), adjusted function points 
(A2), reported PDR (afp) (A3), project PDR (ufp) 

(A4), normalized PDR (afp) (A5), normalized PDR 
(ufp) (A6), project elapsed time (A7), project 
inactive time (A8), resource level (A9), input count 
(A10), output count (A11), enquiry count (A12), file 
count (A13), interface count (A14), added count 
(A15), changed count (A16) and deleted count 
(A17). Additionally, normalization in the range [-1, 
1] was performed on the data since learning was 
based on the gradient descent with momentum 
weight / bias learning function which works with 
neuron transfer functions operating in this value 
range. Thus, normalization on the data would 
prevent the loss of information encapsulated in 
values with small numerical differences.  

3.3 Neural Networks and Data Input 
Sensitivity Analysis  

As previously mentioned, our methodology utilises 
ISA performed on ANN to define which attributes 
from the available datasets mostly affect and 
ultimately define the value of software cost. The 
main argument here is that software cost analysis 
methods and models would be safer if we can isolate 
the important underlying parameters more likely to 
cause critical cost differences from the metrics 
population in the datasets.  The importance of the 
project attributes is measured via sensitivity analysis 
and more specifically by the input weights 
associated in each network created and trained, 
provided that the network yielded high prediction 
ability. The latter is assessed using specific error 
metrics that compare the actual sample values to the 
predictions outputted by the network. Sensitivity 
analysis is a good method to assure that results are 
robust, ensure that the relationship and influence 
among factors and cost are comprehended correctly 
and remove outlying parameters from the model. As 
also pointed out by Saltelli (2004) sensitivity 
analysis’ scope should be specified beforehand. In 
our case we use ANN and then perform sensitivity 
analysis on their inputs describing software cost data 
to identify the relevant factors and their degree of 
dependence with the output factor which is effort. In 
this way, we attempt to simplify the model and 
prioritise factors in an order of importance so as to 
guide further research and future software cost 
estimations. Our main effort is centralised on 
whether we can minimise the number of factors used 
for cost prediction to only those factors that can be 
evaluated from the early software development 
cycle, having relatively easier, lower cost and time 
data gathering processes and also ensuring as 
accurate cost estimates as possible. 
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3.4 Design of the Experiments 

The core architecture utilised in our experiments 
consists of a feed-forward MLP network, with a 
single hidden layer. Several network topologies are 
created comprising different number of hidden 
neurons: We start with networks having the number 
of hidden neurons (NHN) equal to the number of 
inputs (NI) and we proceed producing new ANN 
architectures by increasing HN by one until it 
doubles NHN. Each network is trained to learn and 
predict the behaviour of the available datasets and 
characterise the relationship among the inputs and 
the output, the latter being the development effort. 
The data is divided into training, validation and 
testing sets. The training set is used during the 
learning process, the validation set is used to ensure 
that no overfitting occurs in the final result and that 
the network was able to generalise the knowledge 
gained. The testing set is an independent dataset, i.e., 
does not participate during the learning process and 
measures how well the network performs with 
unknown data. The extraction is made randomly 
with 70% of the data samples used for training, 20% 
for validation and 10% for testing. During training 
the inputs are presented to the network in patterns 
(inputs/output) and corrections are made on the 
weights of the network according to the overall error 
in the output and the contribution of each node to 
this error. After training we take the best 20% of our 
ANN in terms of accuracy and apply the ISA as an 
extension to the whole process, according to which 
the weights of each input to the hidden layer are 
summed up, thus developing an order of significance 
for the input parameters. The higher the sum of 
weights for a certain parameter is the highest the 
contribution of that parameter in defining the final 
output of the network. Using this significance values 
we move to filtering parameters, i.e. some of the 
inputs are accepted as important software cost 
factors while others are rejected, according to two 
different criteria: a Strict (S) and a Less Strict (LS) 
method. Each method identifies as significant those 
inputs for each network whose sum of weights is 
above a certain threshold. The threshold for the strict 
method is defined in equation (1), while that the less 
strict method in equation (2). 

2
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The threshold for the strict method is specified as 
such to consider significant those inputs whose sum 
of weights is higher than half the difference between 
the corresponding maximum and minimum weight 

sums among the inputs of the network. Whereas, the 
threshold for the less strict method is more flexible, 
characterizing as significant those inputs whose 
summed weights value is higher than the 25% of the 
corresponding ANN’s maximum value. The final 
criterion to decide which inputs to keep and perform 
new experiments (final runs) is equation (3). 
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Equation (3) simply calculates for each input 
parameter i the percentage to which it was rated 
significant using each method (S or LS) Therefore, 
we practically enhance the specified thresholds with 
a second criterion, i.e., the input should appear as 
important parameter in more than half of the best 
ANN trained. In this way, not only the weights 
define which inputs to accept as important factors to 
cost estimation, but also whether these variables are 
also considered important to more than half of the 
best ANN is investigated for enhancing the 
assessment of their overall significance.  

Using the results obtained according to equation 
(3) the inputs considered more significant and thus 
safer to use for software cost prediction are isolated 
for including them in the final set of experiments; 
we will call this the Final Parameters (FP) set. It 
should be noted at this point that the whole process 
(starting from ANN creation and training and ending 
to the formation of the FP set) is repeated 10 times, 
each time picking randomly the order of the projects 
from the datasets. This accounts for the random and 
heuristic nature of ANN and yields more reliable, 
robust and unbiased results. The leading variables 
for the final runs are selected according to how 
many times during the experiments they were 
selected as important by both the ISA and the S and 
LS threshold, i.e., how many times they were 
present in the FP sets of the 10 repetitions. 

4 EXPERIMENTAL RESULTS 

The performance of the ANN is evaluated using the 
following error metrics:  
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In equations (4) to (8) xact represents the actual 
value of the data sample and xpred the predicted one. 
The Relative Mean Absolute Error (RMAE) given 
by (4) shows prediction error by focusing on the 
actual sample being predicted (normalization). The 
Correlation Coefficient (CC) between the actual and 
predicted series, given by (5), measures the ability of 
the predicted samples to follow the upwards or 
downwards of the original series. An absolute CC 
value equal or near 1 is interpreted as a perfect 
follow up of the original series by the forecasted 
one. A negative CC sign indicates that the 
forecasting series follows the same direction of the 
original with negative mirroring, that is, with 180o 
rotation about the time-axis.    

The Normalized Root Mean Squared Error 
(NRMSE) detects the quality of predictions: if 
NRMSE=0 then prediction is perfect; if NRMSE=1 
then prediction is no better than taking the mean of 
the actual values as the predicted one. 
Equation (8) defines how many data predictions k 
out of n (total number of data points predicted) 
performed well, i.e., their RE metric given in 
equation (9) is lower than level l. In our experiments 
the parameter l was set equal to 0.25.  
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Additionally, the well known error metrics Mean 
Square Error (MSE) and Mean Absolute Error 
(MAE) were used to evaluate the ANN’s 
performance. Although both metrics suffer from 
scaling dependence, their results will be reported in 
this paper, as well so as to make comparisons with 
relevant work feasible. 

In Table 1 we summarise the results from the 
best ANN in one of the ten iterative experiments 
performed with the Desharnais dataset, reporting the 
training and testing errors, while Table 2 shows the 
corresponding results with the ISBSG dataset. In the 
middle part of these tables we present the average 
weights of the input parameters and at the lower part 
the leading inputs for cost estimation are indicated 
by each of the two thresholds (S and LS). 

Commenting on the results of both tables, based 
on the error figures we can observe a very successful 
modelling and forecasting of development effort 
data samples as the RMAE and NRMSE values are 
quite low, while CC and pred(l) are more than 
adequately high. These findings indicate accurate 

predictions of software cost based on historical data 
of the selected input parameters. 

The ISA performed on the networks suggested a 
first order of significance for the inputs (average 
weights of 10 repetitions). This significance was 
then refined using the S and LS approaches which 
indicated the important parameters (marks on 
tables). These indications were combined with 
equation (3) and the important parameters marked in 
more than 50% of the best networks (in our case 
having more than 2 marks) were selected for the 
final experiments (FP set). 

The final runs included the training and testing of 
a feed-forward MLP network, with a single hidden 
layer comprising once again a varying number of 
neurons and using the inputs included in the FP set 
resulted from the S approach and the LS approach. 
Additionally a third approach was followed based on 
which we used as inputs those parameters that 
appeared more frequently in the results of the ISA 
alone and can be measured during the early 
development phases. With the latter approach (called 
“ideal”) we attempt to minimise the prediction 
complexity by diminishing its dependence on many 
factors which are difficult to measure at the early 
project stages and increase the time and cost 
overheads of the measuring procedure. 

Tables 3 and 4 list the results of the best 
performed ANN conducted for the Desharnais and 
ISBSG datasets respectively using the FP parameters 
set and the ideal approach. More specifically, the 
inputs used for the final runs with the Desharnais 
dataset as suggested by the S approach were Points 
Adjusted and Points Non Adjusted, while those of 
the LS approach were Team Experience, 
Transactions, Points Adjusted, Envergure and Points 
Non Adjusted. The “ideal” approach for early phase 
estimation used Team Experience, Manager 
Experience, Points Adjusted and Points Non 
Adjusted. The FP set for Desharnais appears 
consistent in creating a strong relationship among 
work effort and software size measured with 
function points. The inputs used for the final runs of 
the ISBSG dataset as suggested by the S approach 
were the Normalised PDR (afp), File count and the 
Added count, while the LS approach suggested 
Normalised PDR (afp), Enquiry count, File count, 
Added count, Changed count as the important ones 
The “ideal” estimation used as inputs the Functional 
Size, the Adjusted Function points and the 
Normalised PDR (afp).  One may observe here the 
following: (i) predictions of the effort in both 
datasets are equally successful as with the original 
experiments with the whole spectrum of the
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Table 1: Desharnais dataset ANN Experimental Results. 

ANN Experimental Results / Training And Testing Errors (Indicative runs – out of 10 iterations) 
TRAINING TESTING ANN. NRMSE CC MSE RMAE MAE pred(l) NRMSE CC MSE RMAE MAE pred(l) 

9-20-
1 0.2328 0.9720 0.0058 0.1012 0.0592 0.9811 0.3289 0.9552 0.0026 0.0470 0.0366 1 

9-16-
1 0.2489 0.9682 0.0066 0.1033 0.0597 1 0.3666 0.9325 0.0033 0.0610 0.0440 1 

9-10-
1 0.3055 0.9514 0.0100 0.1235 0.0729 0.9811 0.3777 0.9215 0.0035 0.0634 0.0504 1 

9-19-
1 0.1797 0.9834 0.0034 0.0709 0.0453 1 0.4661 0.8997 0.0053 0.0735 0.0600 1 

ANN Experimental Results / Average Weights for each Input 
ANN Team Exp. Manager Exp. Length Transactions Entities Points adj. Envergure Points non adj. Language 
9-20-

1 0.0658 0.0910 0.0238 0.0606 0.2068 0.0790 0.0577 0.1495 0.0658 

9-16-
1 0.1232 0.0109 0.0354 0.2124 0.0633 0.4583 0.0290 0.0300 0.1232 

9-10-
1 0.1096 0.1718 0.0699 0.0845 0.2855 0.3958 0.0698 0.1939 0.1096 

9-19-
1 0.0855 0.0176 0.1947 0.0951 0.2519 0.1112 0.1179 0.0312 0.0855 

ANN Experimental Results Input Sensitivity Analysis / Strict (S) and Less Strict (LS) Approach 
Team Exp. Manager Exp. Length Transactions Entities Points adj. Envergure Points non adj. Language ANN S LS S LS S LS S LS S LS S LS S LS S LS S LS 

9-20-1                   
9-16-1                   
9-10-1                   
9-19-1                   

Table 2: ISBSG dataset ANN Experimental Results. 

ANN Experimental Results / Training And Testing Errors (Indicative runs – out of 10 iterations) 
TRAINING TESTING 

ANN NRM
SE CC MSE RMAE MAE pred(l) NRMSE CC MSE RMAE MAE pred(l) 

18-22-1 0.385
7 0.9237 0.0020 0.0349 0.0294 1 0.3761 0.9381 0.0044 0.0642 0.0474 1 

18-23-1 0.430
7 0.9026 0.0026 0.0355 0.029 0.9980 0.3764 0.9509 0.0048 0.0541 0.0430 0.9932 

18-35-1 0.493
4 0.8727 0.0034 0.0434 0.0373 0.9980 0.3587 0.9482 0.0044 0.0532 0.0432 0.9932 

18-19-1 0.329
4 0.9452 0.0015 0.0300 0.0256 1 0.2616 0.9675 0.0025 0.0409 0.0328 1 

ANN Experimental Results / Average Weights for each Input 
NHN

* A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A
17 

22 0.1
17 

0.0
53 0.10 0.02 0.086 0.01 0.06 0.03 0.05 0.05 0.014 0.14 0.056 0.016 0.11 0.05 0.

08 

23 0.0
62 

0.0
79 0.09 0.18 0.153 0.13 0.02 0.01 0.03 0.05 0.009 0.07 0.010 0.131 0.06 0.04 0.

01 

35 0.0
03 

0.0
38 0.04 0.03 0.013 0.01 0.05 0.10 0.13 0.08 0.128 0.06 0.075 0.088 0.11 0.05 0.

01 

19 0.0
59 

0.1
73 0.00 0.15 0.185 0.18 0.09 0.03 0.05 0.11 0.027 0.18 0.079 0.011 0.15 0.01 0.

22 
ANN Experimental Results  Input Sensitivity Analysis / Strict (S) and Less Strict (LS) Approach 

N
H
N
* 

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 

 S L
S S L

S S L
S S L

S S L
S S L

S S L
S S L

S S L
S S L

S S L
S S L

S S L
S S L

S S L
S S L

S S L
S

2
2                           

2
3                                 

3
5                      

1
9                          

* NHN denotes the number of hidden neurons in the ANN topology at the upper part of the table 
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Table 3: Desharnais dataset ANN Final Runs. 

Strict (S) Approach 
TRAINING TESTING ANN 

Arch. NRMSE CC MSE RMAE MAE pred(l) NRMSE CC MSE RMAE MAE pred(l) 
2-3-1 0.8147 0.5697 0.0608 0.6006 0.1807 0.9245 0.6916 0.6999 0.0169 0.1956 0.0907 1 
2-4-1 0.8254 0.5621 0.0624 0.6018 0.1878 0.9245 0.7172 0.6762 0.0181 0.2089 0.1027 1 
2-5-1 0.8413 0.5490 0.0648 0.6276 0.1980 0.9245 0.8602 0.5801 0.0261 0.2431 0.1125 1 
2-6-1 0.7892 0.6044 0.0570 0.5872 0.1762 0.9245 0.7202 0.6759 0.0183 0.2026 0.0905 1 

Less Strict (LS) Approach 
TRAINING TESTING ANN 

Arch. NRMSE CC MSE RMAE MAE pred(l) NRMSE CC MSE RMAE MAE pred(l) 
5-7-1 0.7008 0.7111 0.0449 0.4937 0.1554 0.9245 0.6550 0.8330 0.0151 0.1844 0.0806 1 
5-8-1 0.6155 0.7846 0.0347 0.3681 0.1298 0.9434 0.6967 0.7719 0.0171 0.1875 0.0767 1 
5-11-

1 
0.6742 0.7338 0.0416 0.4528 0.1603 0.9245 0.6104 0.8410 0.0131 0.1718 0.0826 1 

5-12-
1 

0.7655 0.6350 0.0536 0.5377 0.1649 0.9245 0.6414 0.8040 0.0145 0.1780 0.0781 1 

“Ideal” (Early Phase) Approach 
TRAINING TESTING ANN 

Arch. NRMSE CC MSE RMAE MAE pred(l) NRMSE CC MSE RMAE MAE pred(l) 
4-6-1 0.8767 0.4702 0.0704 0.7095 0.1987 0.9245 0.8772 0.4852 0.0272 0.2463 0.1108 1 
4-7-1 0.7294 0.6769 0.0487 0.6134 0.1637 0.9245 0.7052 0.7405 0.0175 0.2044 0.0932 1 
4-8-1 0.7556 0.6466 0.0523 0.5851 0.1755 0.9245 0.7419 0.6769 0.0194 0.2095 0.0945 1 
4-10-

1 
0.8014 0.5885 0.0588 0.5983 0.1819 0.9245 0.8390 0.5076 0.0248 0.2370 0.1349 1 

whole spectrum of the available parameters 
acting as inputs, something which leads to infer that 
we actually managed to identify those parameters 
that describe best the cost in terms of ANN learning, 
(ii) the “ideal” case is also quite successful, although 
a very small and in some cases negligible prediction 
accuracy degradation may be observed, a fact that 
leads us to conclude that if we are confined to those 
variables that can indeed be measured early we can 
produce accurate cost estimations. 

Overall, the results appear to be more than 
promising indicating high predictive power, good 
estimates and very low error rates with the use of 
ANN. With the use of the FP set, after the ISA, the 
error rates appear slightly worse but this is 
considered minimal trade-off since we managed to 
minimise the number of the contributing factors to 
software cost. The approach resulted in slight 
deterioration in terms of predictive power; 
nevertheless, it was able to disengage the cost 
estimation process from the difficult and time-
consuming process of gathering values for a large 
variety of metrics, something which enables the 
production of cost estimations from the first phases  
of the project using cost factors that are available 
early in the development process. The stepwise 
approach we proposed resulted in devising a 
satisfactory and reliable software cost model that can  
be afterwards used as a basis for efficiently 
assessing software development cost. 

4 CONCLUSIONS 

This work proposed a stepwise process that utilises 
Artificial Neural Networks (ANN) and Input 
Sensitivity Analysis (ISA) to create a software cost 
prediction model based on historical samples. 
Firstly, different topologies of ANN were trained 
with the Desharnais and ISBSG datasets and then 
ISA was applied on the best performed networks to 
calculate the weights of each input parameter fed 
using a Strict (S) and a Less Strict (LS) threshold 
approach. This led to the definition of the significant 
inputs that determine the course of estimating 
development cost. We observed a relative 
consistency in the selected parameters by each 
approach, with inputs such as the Points Adjusted 
for the Desharnais and the Normalised PDR (afp) for 
the ISBSG being universally considered as 
important cost drivers in all experiments conducted. 

Finally, the significant parameters were isolated 
and used separately for new experiments The 
performance of the model was assessed through 
various error measures, with the results indicating 
highly accurate effort estimates. Therefore, we 
achieved to minimise the number of parameters used 
for software cost prediction and concluded that only 
an average of 3 to 5 specific parameters is enough to 
provide good effort estimates.. Moreover, we 
succeeded in identifying a small set of parameters, 
which can be measured early in the software life 
cycle, that result in equally successful estimates as 
with using all the available input parameters.
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Table 4: ISBSG dataset ANN Final Runs. 

Strict (S) Approach 
TRAINING TESTING ANN 

Arch. NRMS
E 

CC MSE RMAE MAE pred(l) NRMSE CC MSE RMAE MAE pred(
l) 

3-4-1 0.6982 0.7227 0.0059 0.0464 0.0399 0.9980 0.5246 0.8523 0.0077 0.0374 0.0350 0.99
32 

3-5-1 0.5063 0.8621 0.0031 0.0382 0.0322 1 0.2195 0.9766 0.0013 0.0260 0.0242 1 
3-6-1 0.6783 0.7378 0.0055 0.0499 0.0425 0.9980 0.4290 0.9086 0.0052 0.0418 0.0390 0.99

32 
3-7-1 0.6342 0.7749 0.0048 0.049 0.0419 1 0.3564 0.9386 0.0035 0.0390 0.0360 1 

Less Strict (LS) Approach 
TRAINING TESTING ANN 

Arch. NRMS
E 

CC MSE RMAE MAE pred(l) NRMSE CC MSE RMAE MAE pred(
l) 

5-6-1 0.5721 0.8243 0.0039 0.0462 0.0394 1 0.3031 0.9565 0.0026 0.0384 0.0355 1 
5-7-1 0.6942 0.7251 0.0058 0.0499 0.0427 0.9980 0.5229 0.8617 0.0077 0.0445 0.0418 0.99

32 
5-11-

1 
0.6718 0.7402 0.0054 0.0400 0.0343 0.9980 0.5984 0.8055 0.0101 0.0389 0.0360 0.99

32 
5-12-

1 
0.8378 0.5570 0.0085 0.0563 0.0482 0.9980 0.6938 0.7178 0.0136 0.0495 0.0457 0.99

32 
“Ideal” (Early Phase) Approach 

TRAINING TESTING ANN 
Arch. NRMS

E 
CC MSE RMAE MAE pred(l) NRMSE CC MSE RMAE MAE pred(

l) 
4-6-1 0.6151 0.7880 0.0045 0.0495 0.0419 1 0.2968 0.9559 0.0024 0.0392 0.0363 1 
4-7-1 0.4826 0.8755 0.0028 0.0333 0.0280 1 0.2355 0.9731 0.0015 0.0258 0.0239 1 
4-8-1 0.3924 0.9197 0.0018 0.0293 0.0250 1 0.1962 0.9805 0.0010 0.0232 0.0218 1 
4-9-1 0.4774 0.8785 0.0027 0.0323 0.0270 1 0.2805 0.9602 0.0022 0.0276 0.0257 1 

 

The overall benefit of our approach is a faster, less 
complex and accurate cost estimation model, even 
from the early development phases, which, among a 
variety of well known and used parameters, traces 
and addresses only those factors that decisively 
influence the evolution of software cost.  

Future work will include further investigation of 
the proposed approach focusing on the use of other 
datasets and examining the consistency of the 
significant cost factors derived. Our goal is to 
incorporate in our model enterprise or organization 
dependent factors and assess the degree to which a 
set of inputs measured under the same software 
development conditions, team and project 
characteristics, may be used for real situation 
software cost estimation. Furthermore, the results 
derived from the “ideal” scenario allow the reuse of 
this knowledge in estimating cost for a small-to-
medium software enterprises usually working on 
projects of similar size and scale. Finally, we plan to 
conduct experiments on the basis of a more 
systematic approach, utilising evolutionary methods, 
such as Genetic Algorithms, to evolve ANN  
topologies and improve their predictive power for 
producing reliable cost estimates. 
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