
SOFTWARE COST ESTIMATION USING ARTIFICIAL NEURAL
NETWORKS WITH INPUTS SELECTION

Efi Papatheocharous and Andreas S. Andreou
University of Cyprus, Dept. of Computer Science

75 Kallipoleos str., CY1678 Nicosia, Cyprus

Keywords: Artificial Neural Networks, Software Cost Estimation, Input Sensitivity Analysis.

Abstract: Software development is an intractable, multifaceted process encountering deep, inherent difficulties.
Especially when trying to produce accurate and reliable software cost estimates, these difficulties are
amplified due to the high level of complexity and uniqueness of the software process. This paper addresses
the issue of estimating the cost of software development by identifying the need for countable entities that
affect software cost and using them with artificial neural networks to establish a reliable estimation method.
Input Sensitivity Analysis (ISA) is performed on predictive models of the Desharnais and ISBSG datasets
aiming at identifying any correlation present between important cost parameters at the input level and
development effort (output). The degree to which the input parameters define the evolution of effort is then
investigated and the selected attributes are employed to establish accurate prediction of software cost in the
early phases of the software development life-cycle.

1 INTRODUCTION

Project managers devote extensive effort to achieve
the highest possible control over the software
process and predict, and therefore reduce, the risk
caused by any contingencies. Plans, strategies,
timetables, risk analyses and many other issues are
carefully addressed by project managers in an
attempt to estimate from the beginning of a project
the prospective cost. Especially in the case of
software development, which is considered a very
complex and intractable process affected by various
interrelated parameters, effort and cost are extremely
difficult to predict. Nevertheless, software cost
estimation is identified as a valuable and critical
process. This process includes estimating the size of
the software product to be developed, assessing the
complexity of the functions to be included,
estimating the effort required – usually measured in
person months – developing preliminary project
schedules, and finally, estimating the overall cost of
the project.

In the mid ‘90s, the Standish Group surveyed
over 8000 software projects and the results showed
that for every 100 projects that start there are on
average 94 restarts. Also, an average of 189% of
projects exceed their original cost estimate, their

original time estimate or schedule by 239%, whereas
more than 25% of the projects were completed with
only 25%-49% of the originally-specified features
and functions. In addition, an average of more than
50% of the completed projects had less than 50% of
the original requirements (Standish Group, 1995).
Another survey performed by the Standish Group in
2001 shows that 23% of all software projects are
cancelled before completion, of those projects
completed only 28% are delivered on time, within
budget and with all originally specified features and
the average software project overruns budget by
45% (Laird and Brennan, 2006). In the same year,
the British Computer Society Review revealed that
after surveying 1027 projects, found only 130
successful, and of 500 development projects only 3,
with success being defined as delivering every
functional aspect originally specified, to the quality
agreed on, within the time and costs agreed on
(Coombs, 2003). Reviews on surveys until today
indicate that most projects (60-80%) encounter
effort and schedule overruns (Aggarwal et al., 2005).
The above statistics reveal and underline the
inherent problems the software process faces and
justify the difficulties observed with project
management activities.

398
Papatheocharous E. and S. Andreou A. (2007).
SOFTWARE COST ESTIMATION USING ARTIFICIAL NEURAL NETWORKS WITH INPUTS SELECTION.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - DISI, pages 398-407
DOI: 10.5220/0002380803980407
Copyright c© SciTePress

The accurate and reliable software cost
prediction can significantly increase the productivity
of an organisation and can facilitate the decision
making process (Briand et al., 1999), while, at the
same time, it is highly important to both developers
and customers (Leung and Fan, 2002). Project
managers commonly stress the importance of
improving estimation accuracy and the need for
methods to support better estimates, as these can
help diminish the problems concerning the software
development process and contribute to better project
planning, tracking and control, thus paving the way
for successful project delivery (Lederer and Prasad,
1992). Once a satisfactory and reliable software cost
model is devised, it can then be used for efficiently
developing software applications in an increasingly
competitive and complex environment. The model
may thus constitute the basis for contract
negotiations, project charging, classification of tasks
and allocation of human resources, task progress
control, monitoring of personnel and other resources
according to the time schedule, etc.

The parameters anticipated to affect software
development cost are not easy to define, are highly
ambiguous and difficult to measure particularly at
the early project stages. The hypothesis here is that
if we manage to detect those project characteristics
that decisively influence the evolution of software
cost and assess their impact then we may provide
accurate estimations. Therefore, finding the
fundamental characteristics of the software process
is critical, as these can lead to the creation of various
computational models that aim at measuring or
predicting certain factors affecting this process, such
as software development effort, quality and
productivity. The work presented in this paper aims
to provide accurate predictions of software
development cost by utilising computational
intelligent methods along with Input Sensitivity
Analysis (ISA) to find the optimal set of input
parameters that seem to describe better the cost of a
software project, especially in early phases of the
software development life-cycle (SDLC).

The rest of the paper is organised as follows:
Section 2 presents a brief overview of the relevant
software cost estimation literature and outlines the
basic concepts of artificial neural networks, the latter
constituting the basis of our modelling attempt.
Section 3 introduces the dataseries used for
experimentation and describes in detail the cost
estimation methodology suggested. Section 4
provides the application of the methodology and
discusses the experimental results obtained,
commenting on the factors that mostly affect
software cost. Finally, Section 5 draws the

concluding remarks and suggests future research
steps.

2 COST ESTIMATION MODELS:
A THEORETIC BACKGROUND

During the end of the 50s and 60s, researchers and
software engineers began focusing on software cost
estimation. Since then various estimation techniques
and models have been proposed in order to achieve a
better and more accurate cost prediction. Software
cost estimation is conceived in this paper as the
process of predicting the amount of effort required
to develop software. The success of this process lies
with the quality of the data and the selected
parameters used for performing the estimation.

A considerable amount of the models used for
software cost estimation are either cost-oriented,
providing direct estimates of effort, or constraint
models, expressing the relationship between the
parameters affecting effort over time. COCOMO
(Constructive Cost Model), an example of a cost
model, has a primary cost factor (size) and a number
of secondary adjustment factors or cost drivers
affecting productivity. Since its first publication
(Boehm, 1981) it has been revised to newer versions
called COCOMO II (Boehm et al., 1995) and later in
(Boehm, 1997), mixing three cost models, each
corresponding to a stage in the software life-cycle:
Applications Composition, Early Design, and Post
Architecture, appearing to be more useful for a
wider collection of techniques and technologies.

SLIM (Software Life-cycle Model), an example
of a constraint model, is applied on large projects,
exceeding 70000 lines of code and assumes that
effort for software projects is distributed similarly to
a collection of Rayleigh curves (Putnam and Myers,
1992). It supports most of the popular size
estimating methods including ballpark techniques,
function points (Boehm et al., 2000), component
mapping, GUI (object) sizing, sizing by module etc.
(visit the Quantitative Software Management
website: http://www.qsm.com, for more information
on recently developed SLIM tools). A stepwise
approach, utilising software and manpower build-up
equations, is used and the necessary parameters that
must be known upfront for the model to be
applicable are the system size, the manpower
acceleration and the technology factor.

 Software cost models are evaluated considering
certain error criteria, with the most common method
comparing the estimated with the actual effort.
Existing software cost models experience

SOFTWARE COST ESTIMATION USING ARTIFICIAL NEURAL NETWORKS WITH INPUTS SELECTION

399

fundamental problems based on the criteria results,
especially if we consider the suggestion that a model
is acceptable if 75% of the predicted values fall
within 25% of their actual values (Fenton, 1997).
The difficulty lies with specifying which metrics to
use as inputs in a cost model and obtaining sample
values rated with high quality in terms of reliability,
objectivity and homogeneity (MacDonell and Gray,
1997). Unfortunately, in most of the models there is
not an agreement on which parameters to use to
provide better estimates. Since for many metrics the
actual value is never known with certainty before the
project is completed, they are often given values that
managers or experts anticipate, or may be created
using past project data samples. While the former
case suffers from subjectivity, in the latter case the
difficulty in having metric values increases as there
is lack of publicly available, reliable and
homogenous data. Homogenous project data sets
may become available only if they are carefully
collected, under the same conditions (similar
processes, technologies, environments, people and
requirements) and as long as a consistent measuring
mechanism is used. In addition, collaboration
between the industry and research institutions is
relatively narrowed and confined only to certain
parts of the world, while at the same time historical
databases of cost measurements are limited and
scattered due to the difficult, costly and time-
consuming nature of the data gathering procedure.

While various studies attempted to predict
development effort, results reported indicate high
dependence on data and input parameters. In
MacDonell and Gray (1997) Artificial Neural
Networks (ANN) and Fuzzy Models were used on
the Desharnais dataset. The performance of the
ANN (measured using the Correlation Coefficient
(CC) and the Mean Relative Error (MRE) measures)
was not overly impressive, with 7 out of the 27
validation cases not being predicted even within
50%, while the best result obtained marked
CC=0.7745 and MRE=0.4586. Idri et al. (2002)
attempted to estimate software cost using
backpropagation trained Multi Layer Perceptrons
(MLP) on the COCOMO ’81 dataset and their best
results reached MREs equal to 1.5%, 203.66%,
84.35%, while the main conclusion was that
accuracy increases as the number of projects in the
training process rises. In Finnie and Wittig (1997) , a
back-propagation trained MLP was used on the
Desharnais and ASMA datasets presenting
encouraging results, with MRE=27% and
MRE=17% respectively. Jeffery et al. (2000)
compared three estimation techniques, Ordinary
least-squares (OLS) Regression and analogical and

algorithmic cost estimation on company-specific
(Megatec) and multi-organisational (ISBSG) data
and the results showed Median MRE=0.38,
pred(0.25)=0.21 and Median MRE=0.66 and
pred(0.25)=0.05 respectively. The need for
qualitative and consistent datasets is revealed once
again as the estimations produced using data
measured in the same development environment
(Megatec) seem more accurate than with scattered
information (ISBSG). Recently, efforts have been
made to extract and analyse a subset of important
variables to provide more effective and complete
analysis in terms of both quality and quantity
(Santillo et al., 2005).

Summarising the above, the use of computational
intelligent techniques for software cost estimation is
quite rich. Nevertheless, the results obtained thus far
are not satisfactory, and, moreover, not consistent in
terms of prediction accuracy and type of cost factors
used in the models. In this work we attempt to cover
this gap and achieve on one hand high cost
prediction accuracy and on the other propose a
systematic way to select the most appropriate cost
factors in the context of ANN. ANN consist of
interconnected nodes able to deal with complex
domains, perform intelligent computations and are
utilised for forecasting sample data to generalise
knowledge learned through examples without
requiring an a priori mathematical expression of the
output in terms of the inputs used. Further details
may be found in (Haykin, 1999).

3 DATA AND METHODOLOGY

We move now to describing firstly the available
datasets and the necessary pre-processing activities,
and secondly our methodology for identifying the
most critical factors within the datasets which
determine software cost through the application of
sensitivity analysis on selected ANN.

3.1 Description of Datasets

The Desharnais dataset (Desharnais, 1988) includes
observations for more than 80 systems developed by
a Canadian software development house at the end
of 1980 and describes 9 features. The basic
characteristics of the Desharnais dataset account for
the following: project name, development effort
measured in hours, team’s experience, project
manager’s experience, both measured in years,
number of transactions processed, number of
entities, unadjusted and adjusted Function Points,

ICEIS 2007 - International Conference on Enterprise Information Systems

400

length of development, scale of the project and
development language.

The second dataset called ISBSG (International
Software Benchmarking Standards Group;
Repository Data Release 9) contains an analysis of
software costs for a group of projects. The projects
come from a broad cross section of industry and
range in size, effort, platform, language and
development technique data. These projects undergo
a series of quality checks for completeness and
integrity and then they are rated in order to achieve
the grade of usefulness of the data for various
analyses. The ISBSG reports that this dataset
represents the more productive projects in the
industry, rather than industry norms, because
organisations are considered to be among the best
software development houses and also, they may
have chosen to submit only their best projects rather
than typical ones. Therefore, the projects have not
been selected randomly and the dataset most
probably is subject to biases. The main issue that is
being raised here is the homogeneity of the
dataseries which stems by the fact that the recorded
projects come from different companies all over the
world. Therefore, the variety in people, processes,
practices, tools, etc. suggest that there is significant
heterogeneity in fundamental parameters affecting
the measurements.

3.2 Data Pre-processing

The aforementioned datasets were used in a stepwise
approach aiming firstly either to limit the number of
inputs used for software development cost
estimation, or define the relationship among certain
parameters affecting effort over time; secondly, to
provide better accuracy to software cost prediction.
The process suggested in this paper for achieving the
above, begins with data pre-processing, performed
on the initial dataseries in order to prepare them for
the next steps. The data pre-processing included the
subtraction of projects with null values in the
attributes from the two datasets, whereas from the
ISBSG dataset we also subtracted certain parameters
with incomplete data, or alphanumeric data
(containing categorical variables instead of
numerical) or parameters with no direct or apparent
affect on software cost. After data sampling, we
chose representative subsets from the whole
populations, 78 projects and available attributes (10
in number as described before) for the Desharnais
dataset and 739 projects and 19 attributes for the
ISBSG dataset. The latter attributes are: project
name, functional size (A1), adjusted function points
(A2), reported PDR (afp) (A3), project PDR (ufp)

(A4), normalized PDR (afp) (A5), normalized PDR
(ufp) (A6), project elapsed time (A7), project
inactive time (A8), resource level (A9), input count
(A10), output count (A11), enquiry count (A12), file
count (A13), interface count (A14), added count
(A15), changed count (A16) and deleted count
(A17). Additionally, normalization in the range [-1,
1] was performed on the data since learning was
based on the gradient descent with momentum
weight / bias learning function which works with
neuron transfer functions operating in this value
range. Thus, normalization on the data would
prevent the loss of information encapsulated in
values with small numerical differences.

3.3 Neural Networks and Data Input
Sensitivity Analysis

As previously mentioned, our methodology utilises
ISA performed on ANN to define which attributes
from the available datasets mostly affect and
ultimately define the value of software cost. The
main argument here is that software cost analysis
methods and models would be safer if we can isolate
the important underlying parameters more likely to
cause critical cost differences from the metrics
population in the datasets. The importance of the
project attributes is measured via sensitivity analysis
and more specifically by the input weights
associated in each network created and trained,
provided that the network yielded high prediction
ability. The latter is assessed using specific error
metrics that compare the actual sample values to the
predictions outputted by the network. Sensitivity
analysis is a good method to assure that results are
robust, ensure that the relationship and influence
among factors and cost are comprehended correctly
and remove outlying parameters from the model. As
also pointed out by Saltelli (2004) sensitivity
analysis’ scope should be specified beforehand. In
our case we use ANN and then perform sensitivity
analysis on their inputs describing software cost data
to identify the relevant factors and their degree of
dependence with the output factor which is effort. In
this way, we attempt to simplify the model and
prioritise factors in an order of importance so as to
guide further research and future software cost
estimations. Our main effort is centralised on
whether we can minimise the number of factors used
for cost prediction to only those factors that can be
evaluated from the early software development
cycle, having relatively easier, lower cost and time
data gathering processes and also ensuring as
accurate cost estimates as possible.

SOFTWARE COST ESTIMATION USING ARTIFICIAL NEURAL NETWORKS WITH INPUTS SELECTION

401

3.4 Design of the Experiments

The core architecture utilised in our experiments
consists of a feed-forward MLP network, with a
single hidden layer. Several network topologies are
created comprising different number of hidden
neurons: We start with networks having the number
of hidden neurons (NHN) equal to the number of
inputs (NI) and we proceed producing new ANN
architectures by increasing HN by one until it
doubles NHN. Each network is trained to learn and
predict the behaviour of the available datasets and
characterise the relationship among the inputs and
the output, the latter being the development effort.
The data is divided into training, validation and
testing sets. The training set is used during the
learning process, the validation set is used to ensure
that no overfitting occurs in the final result and that
the network was able to generalise the knowledge
gained. The testing set is an independent dataset, i.e.,
does not participate during the learning process and
measures how well the network performs with
unknown data. The extraction is made randomly
with 70% of the data samples used for training, 20%
for validation and 10% for testing. During training
the inputs are presented to the network in patterns
(inputs/output) and corrections are made on the
weights of the network according to the overall error
in the output and the contribution of each node to
this error. After training we take the best 20% of our
ANN in terms of accuracy and apply the ISA as an
extension to the whole process, according to which
the weights of each input to the hidden layer are
summed up, thus developing an order of significance
for the input parameters. The higher the sum of
weights for a certain parameter is the highest the
contribution of that parameter in defining the final
output of the network. Using this significance values
we move to filtering parameters, i.e. some of the
inputs are accepted as important software cost
factors while others are rejected, according to two
different criteria: a Strict (S) and a Less Strict (LS)
method. Each method identifies as significant those
inputs for each network whose sum of weights is
above a certain threshold. The threshold for the strict
method is defined in equation (1), while that the less
strict method in equation (2).

2
)min()max(11 nnS

th
wwwww −−−

= (1)
25,0)max(1 ∗−= n

LS
th www (2)

The threshold for the strict method is specified as
such to consider significant those inputs whose sum
of weights is higher than half the difference between
the corresponding maximum and minimum weight

sums among the inputs of the network. Whereas, the
threshold for the less strict method is more flexible,
characterizing as significant those inputs whose
summed weights value is higher than the 25% of the
corresponding ANN’s maximum value. The final
criterion to decide which inputs to keep and perform
new experiments (final runs) is equation (3).

%
__

_ ,

ANNsnumbertotal
WANNsofnum

totalrate
LSorS

ith
i =

(3)

Equation (3) simply calculates for each input
parameter i the percentage to which it was rated
significant using each method (S or LS) Therefore,
we practically enhance the specified thresholds with
a second criterion, i.e., the input should appear as
important parameter in more than half of the best
ANN trained. In this way, not only the weights
define which inputs to accept as important factors to
cost estimation, but also whether these variables are
also considered important to more than half of the
best ANN is investigated for enhancing the
assessment of their overall significance.

Using the results obtained according to equation
(3) the inputs considered more significant and thus
safer to use for software cost prediction are isolated
for including them in the final set of experiments;
we will call this the Final Parameters (FP) set. It
should be noted at this point that the whole process
(starting from ANN creation and training and ending
to the formation of the FP set) is repeated 10 times,
each time picking randomly the order of the projects
from the datasets. This accounts for the random and
heuristic nature of ANN and yields more reliable,
robust and unbiased results. The leading variables
for the final runs are selected according to how
many times during the experiments they were
selected as important by both the ISA and the S and
LS threshold, i.e., how many times they were
present in the FP sets of the 10 repetitions.

4 EXPERIMENTAL RESULTS

The performance of the ANN is evaluated using the
following error metrics:

)(

)()(1

)(1

ix

ixix
nnRMAE

act

n

i
predact∑

=

−
=

 (4)

() ()[]

() () ⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
−

−−−
=

∑∑

∑

==

=

n

i
npredpred

n

i
nactact

n

i
npredprednactact

xixxix

xixxix
CC

1

2
,

1

2
,

1
,,

)()(

)()(

(5)

[]
2

1
)(1

)()()(

∑
=

Δ
−

==
n

i
nact xix

n

nRMSEnRMSEnNRMSE
σ

(6)

ICEIS 2007 - International Conference on Enterprise Information Systems

402

where []∑
=

−=
n

i
actpred ixix

n
nRMSE

1

2)()(1)(
 (7)

n
klpred =)((8)

In equations (4) to (8) xact represents the actual
value of the data sample and xpred the predicted one.
The Relative Mean Absolute Error (RMAE) given
by (4) shows prediction error by focusing on the
actual sample being predicted (normalization). The
Correlation Coefficient (CC) between the actual and
predicted series, given by (5), measures the ability of
the predicted samples to follow the upwards or
downwards of the original series. An absolute CC
value equal or near 1 is interpreted as a perfect
follow up of the original series by the forecasted
one. A negative CC sign indicates that the
forecasting series follows the same direction of the
original with negative mirroring, that is, with 180o
rotation about the time-axis.

The Normalized Root Mean Squared Error
(NRMSE) detects the quality of predictions: if
NRMSE=0 then prediction is perfect; if NRMSE=1
then prediction is no better than taking the mean of
the actual values as the predicted one.
Equation (8) defines how many data predictions k
out of n (total number of data points predicted)
performed well, i.e., their RE metric given in
equation (9) is lower than level l. In our experiments
the parameter l was set equal to 0.25.

)(

)()(
)(

ix

ixix
nRE

act

predact −
=

(9)

Additionally, the well known error metrics Mean
Square Error (MSE) and Mean Absolute Error
(MAE) were used to evaluate the ANN’s
performance. Although both metrics suffer from
scaling dependence, their results will be reported in
this paper, as well so as to make comparisons with
relevant work feasible.

In Table 1 we summarise the results from the
best ANN in one of the ten iterative experiments
performed with the Desharnais dataset, reporting the
training and testing errors, while Table 2 shows the
corresponding results with the ISBSG dataset. In the
middle part of these tables we present the average
weights of the input parameters and at the lower part
the leading inputs for cost estimation are indicated
by each of the two thresholds (S and LS).

Commenting on the results of both tables, based
on the error figures we can observe a very successful
modelling and forecasting of development effort
data samples as the RMAE and NRMSE values are
quite low, while CC and pred(l) are more than
adequately high. These findings indicate accurate

predictions of software cost based on historical data
of the selected input parameters.

The ISA performed on the networks suggested a
first order of significance for the inputs (average
weights of 10 repetitions). This significance was
then refined using the S and LS approaches which
indicated the important parameters (marks on
tables). These indications were combined with
equation (3) and the important parameters marked in
more than 50% of the best networks (in our case
having more than 2 marks) were selected for the
final experiments (FP set).

The final runs included the training and testing of
a feed-forward MLP network, with a single hidden
layer comprising once again a varying number of
neurons and using the inputs included in the FP set
resulted from the S approach and the LS approach.
Additionally a third approach was followed based on
which we used as inputs those parameters that
appeared more frequently in the results of the ISA
alone and can be measured during the early
development phases. With the latter approach (called
“ideal”) we attempt to minimise the prediction
complexity by diminishing its dependence on many
factors which are difficult to measure at the early
project stages and increase the time and cost
overheads of the measuring procedure.

Tables 3 and 4 list the results of the best
performed ANN conducted for the Desharnais and
ISBSG datasets respectively using the FP parameters
set and the ideal approach. More specifically, the
inputs used for the final runs with the Desharnais
dataset as suggested by the S approach were Points
Adjusted and Points Non Adjusted, while those of
the LS approach were Team Experience,
Transactions, Points Adjusted, Envergure and Points
Non Adjusted. The “ideal” approach for early phase
estimation used Team Experience, Manager
Experience, Points Adjusted and Points Non
Adjusted. The FP set for Desharnais appears
consistent in creating a strong relationship among
work effort and software size measured with
function points. The inputs used for the final runs of
the ISBSG dataset as suggested by the S approach
were the Normalised PDR (afp), File count and the
Added count, while the LS approach suggested
Normalised PDR (afp), Enquiry count, File count,
Added count, Changed count as the important ones
The “ideal” estimation used as inputs the Functional
Size, the Adjusted Function points and the
Normalised PDR (afp). One may observe here the
following: (i) predictions of the effort in both
datasets are equally successful as with the original
experiments with the whole spectrum of the

SOFTWARE COST ESTIMATION USING ARTIFICIAL NEURAL NETWORKS WITH INPUTS SELECTION

403

Table 1: Desharnais dataset ANN Experimental Results.

ANN Experimental Results / Training And Testing Errors (Indicative runs – out of 10 iterations)
TRAINING TESTING ANN. NRMSE CC MSE RMAE MAE pred(l) NRMSE CC MSE RMAE MAE pred(l)

9-20-
1 0.2328 0.9720 0.0058 0.1012 0.0592 0.9811 0.3289 0.9552 0.0026 0.0470 0.0366 1

9-16-
1 0.2489 0.9682 0.0066 0.1033 0.0597 1 0.3666 0.9325 0.0033 0.0610 0.0440 1

9-10-
1 0.3055 0.9514 0.0100 0.1235 0.0729 0.9811 0.3777 0.9215 0.0035 0.0634 0.0504 1

9-19-
1 0.1797 0.9834 0.0034 0.0709 0.0453 1 0.4661 0.8997 0.0053 0.0735 0.0600 1

ANN Experimental Results / Average Weights for each Input
ANN Team Exp. Manager Exp. Length Transactions Entities Points adj. Envergure Points non adj. Language
9-20-

1 0.0658 0.0910 0.0238 0.0606 0.2068 0.0790 0.0577 0.1495 0.0658

9-16-
1 0.1232 0.0109 0.0354 0.2124 0.0633 0.4583 0.0290 0.0300 0.1232

9-10-
1 0.1096 0.1718 0.0699 0.0845 0.2855 0.3958 0.0698 0.1939 0.1096

9-19-
1 0.0855 0.0176 0.1947 0.0951 0.2519 0.1112 0.1179 0.0312 0.0855

ANN Experimental Results Input Sensitivity Analysis / Strict (S) and Less Strict (LS) Approach
Team Exp. Manager Exp. Length Transactions Entities Points adj. Envergure Points non adj. Language ANN S LS S LS S LS S LS S LS S LS S LS S LS S LS

9-20-1
9-16-1
9-10-1
9-19-1

Table 2: ISBSG dataset ANN Experimental Results.

ANN Experimental Results / Training And Testing Errors (Indicative runs – out of 10 iterations)
TRAINING TESTING

ANN NRM
SE CC MSE RMAE MAE pred(l) NRMSE CC MSE RMAE MAE pred(l)

18-22-1 0.385
7 0.9237 0.0020 0.0349 0.0294 1 0.3761 0.9381 0.0044 0.0642 0.0474 1

18-23-1 0.430
7 0.9026 0.0026 0.0355 0.029 0.9980 0.3764 0.9509 0.0048 0.0541 0.0430 0.9932

18-35-1 0.493
4 0.8727 0.0034 0.0434 0.0373 0.9980 0.3587 0.9482 0.0044 0.0532 0.0432 0.9932

18-19-1 0.329
4 0.9452 0.0015 0.0300 0.0256 1 0.2616 0.9675 0.0025 0.0409 0.0328 1

ANN Experimental Results / Average Weights for each Input
NHN

* A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A
17

22 0.1
17

0.0
53 0.10 0.02 0.086 0.01 0.06 0.03 0.05 0.05 0.014 0.14 0.056 0.016 0.11 0.05 0.

08

23 0.0
62

0.0
79 0.09 0.18 0.153 0.13 0.02 0.01 0.03 0.05 0.009 0.07 0.010 0.131 0.06 0.04 0.

01

35 0.0
03

0.0
38 0.04 0.03 0.013 0.01 0.05 0.10 0.13 0.08 0.128 0.06 0.075 0.088 0.11 0.05 0.

01

19 0.0
59

0.1
73 0.00 0.15 0.185 0.18 0.09 0.03 0.05 0.11 0.027 0.18 0.079 0.011 0.15 0.01 0.

22
ANN Experimental Results Input Sensitivity Analysis / Strict (S) and Less Strict (LS) Approach

N
H
N
*

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17

 S L
S S L

S S L
S S L

S S L
S S L

S S L
S S L

S S L
S S L

S S L
S S L

S S L
S S L

S S L
S S L

S S L
S

2
2

2
3

3
5

1
9

* NHN denotes the number of hidden neurons in the ANN topology at the upper part of the table

ICEIS 2007 - International Conference on Enterprise Information Systems

404

Table 3: Desharnais dataset ANN Final Runs.

Strict (S) Approach
TRAINING TESTING ANN

Arch. NRMSE CC MSE RMAE MAE pred(l) NRMSE CC MSE RMAE MAE pred(l)
2-3-1 0.8147 0.5697 0.0608 0.6006 0.1807 0.9245 0.6916 0.6999 0.0169 0.1956 0.0907 1
2-4-1 0.8254 0.5621 0.0624 0.6018 0.1878 0.9245 0.7172 0.6762 0.0181 0.2089 0.1027 1
2-5-1 0.8413 0.5490 0.0648 0.6276 0.1980 0.9245 0.8602 0.5801 0.0261 0.2431 0.1125 1
2-6-1 0.7892 0.6044 0.0570 0.5872 0.1762 0.9245 0.7202 0.6759 0.0183 0.2026 0.0905 1

Less Strict (LS) Approach
TRAINING TESTING ANN

Arch. NRMSE CC MSE RMAE MAE pred(l) NRMSE CC MSE RMAE MAE pred(l)
5-7-1 0.7008 0.7111 0.0449 0.4937 0.1554 0.9245 0.6550 0.8330 0.0151 0.1844 0.0806 1
5-8-1 0.6155 0.7846 0.0347 0.3681 0.1298 0.9434 0.6967 0.7719 0.0171 0.1875 0.0767 1
5-11-

1
0.6742 0.7338 0.0416 0.4528 0.1603 0.9245 0.6104 0.8410 0.0131 0.1718 0.0826 1

5-12-
1

0.7655 0.6350 0.0536 0.5377 0.1649 0.9245 0.6414 0.8040 0.0145 0.1780 0.0781 1

“Ideal” (Early Phase) Approach
TRAINING TESTING ANN

Arch. NRMSE CC MSE RMAE MAE pred(l) NRMSE CC MSE RMAE MAE pred(l)
4-6-1 0.8767 0.4702 0.0704 0.7095 0.1987 0.9245 0.8772 0.4852 0.0272 0.2463 0.1108 1
4-7-1 0.7294 0.6769 0.0487 0.6134 0.1637 0.9245 0.7052 0.7405 0.0175 0.2044 0.0932 1
4-8-1 0.7556 0.6466 0.0523 0.5851 0.1755 0.9245 0.7419 0.6769 0.0194 0.2095 0.0945 1
4-10-

1
0.8014 0.5885 0.0588 0.5983 0.1819 0.9245 0.8390 0.5076 0.0248 0.2370 0.1349 1

whole spectrum of the available parameters
acting as inputs, something which leads to infer that
we actually managed to identify those parameters
that describe best the cost in terms of ANN learning,
(ii) the “ideal” case is also quite successful, although
a very small and in some cases negligible prediction
accuracy degradation may be observed, a fact that
leads us to conclude that if we are confined to those
variables that can indeed be measured early we can
produce accurate cost estimations.

Overall, the results appear to be more than
promising indicating high predictive power, good
estimates and very low error rates with the use of
ANN. With the use of the FP set, after the ISA, the
error rates appear slightly worse but this is
considered minimal trade-off since we managed to
minimise the number of the contributing factors to
software cost. The approach resulted in slight
deterioration in terms of predictive power;
nevertheless, it was able to disengage the cost
estimation process from the difficult and time-
consuming process of gathering values for a large
variety of metrics, something which enables the
production of cost estimations from the first phases
of the project using cost factors that are available
early in the development process. The stepwise
approach we proposed resulted in devising a
satisfactory and reliable software cost model that can
be afterwards used as a basis for efficiently
assessing software development cost.

4 CONCLUSIONS

This work proposed a stepwise process that utilises
Artificial Neural Networks (ANN) and Input
Sensitivity Analysis (ISA) to create a software cost
prediction model based on historical samples.
Firstly, different topologies of ANN were trained
with the Desharnais and ISBSG datasets and then
ISA was applied on the best performed networks to
calculate the weights of each input parameter fed
using a Strict (S) and a Less Strict (LS) threshold
approach. This led to the definition of the significant
inputs that determine the course of estimating
development cost. We observed a relative
consistency in the selected parameters by each
approach, with inputs such as the Points Adjusted
for the Desharnais and the Normalised PDR (afp) for
the ISBSG being universally considered as
important cost drivers in all experiments conducted.

Finally, the significant parameters were isolated
and used separately for new experiments The
performance of the model was assessed through
various error measures, with the results indicating
highly accurate effort estimates. Therefore, we
achieved to minimise the number of parameters used
for software cost prediction and concluded that only
an average of 3 to 5 specific parameters is enough to
provide good effort estimates.. Moreover, we
succeeded in identifying a small set of parameters,
which can be measured early in the software life
cycle, that result in equally successful estimates as
with using all the available input parameters.

SOFTWARE COST ESTIMATION USING ARTIFICIAL NEURAL NETWORKS WITH INPUTS SELECTION

405

Table 4: ISBSG dataset ANN Final Runs.

Strict (S) Approach
TRAINING TESTING ANN

Arch. NRMS
E

CC MSE RMAE MAE pred(l) NRMSE CC MSE RMAE MAE pred(
l)

3-4-1 0.6982 0.7227 0.0059 0.0464 0.0399 0.9980 0.5246 0.8523 0.0077 0.0374 0.0350 0.99
32

3-5-1 0.5063 0.8621 0.0031 0.0382 0.0322 1 0.2195 0.9766 0.0013 0.0260 0.0242 1
3-6-1 0.6783 0.7378 0.0055 0.0499 0.0425 0.9980 0.4290 0.9086 0.0052 0.0418 0.0390 0.99

32
3-7-1 0.6342 0.7749 0.0048 0.049 0.0419 1 0.3564 0.9386 0.0035 0.0390 0.0360 1

Less Strict (LS) Approach
TRAINING TESTING ANN

Arch. NRMS
E

CC MSE RMAE MAE pred(l) NRMSE CC MSE RMAE MAE pred(
l)

5-6-1 0.5721 0.8243 0.0039 0.0462 0.0394 1 0.3031 0.9565 0.0026 0.0384 0.0355 1
5-7-1 0.6942 0.7251 0.0058 0.0499 0.0427 0.9980 0.5229 0.8617 0.0077 0.0445 0.0418 0.99

32
5-11-

1
0.6718 0.7402 0.0054 0.0400 0.0343 0.9980 0.5984 0.8055 0.0101 0.0389 0.0360 0.99

32
5-12-

1
0.8378 0.5570 0.0085 0.0563 0.0482 0.9980 0.6938 0.7178 0.0136 0.0495 0.0457 0.99

32
“Ideal” (Early Phase) Approach

TRAINING TESTING ANN
Arch. NRMS

E
CC MSE RMAE MAE pred(l) NRMSE CC MSE RMAE MAE pred(

l)
4-6-1 0.6151 0.7880 0.0045 0.0495 0.0419 1 0.2968 0.9559 0.0024 0.0392 0.0363 1
4-7-1 0.4826 0.8755 0.0028 0.0333 0.0280 1 0.2355 0.9731 0.0015 0.0258 0.0239 1
4-8-1 0.3924 0.9197 0.0018 0.0293 0.0250 1 0.1962 0.9805 0.0010 0.0232 0.0218 1
4-9-1 0.4774 0.8785 0.0027 0.0323 0.0270 1 0.2805 0.9602 0.0022 0.0276 0.0257 1

The overall benefit of our approach is a faster, less
complex and accurate cost estimation model, even
from the early development phases, which, among a
variety of well known and used parameters, traces
and addresses only those factors that decisively
influence the evolution of software cost.

Future work will include further investigation of
the proposed approach focusing on the use of other
datasets and examining the consistency of the
significant cost factors derived. Our goal is to
incorporate in our model enterprise or organization
dependent factors and assess the degree to which a
set of inputs measured under the same software
development conditions, team and project
characteristics, may be used for real situation
software cost estimation. Furthermore, the results
derived from the “ideal” scenario allow the reuse of
this knowledge in estimating cost for a small-to-
medium software enterprises usually working on
projects of similar size and scale. Finally, we plan to
conduct experiments on the basis of a more
systematic approach, utilising evolutionary methods,
such as Genetic Algorithms, to evolve ANN
topologies and improve their predictive power for
producing reliable cost estimates.

REFERENCES

Aggarwal, K., Singh, Y., Chandra, P. and Puri, M., 2005.
Bayesian Regularization in a Neural Network Model
to Estimate Lines of Code Using Function Points.
Journal of Computer Sciences 1 (4), pp. 504-508.

Boehm, B.W., 1981. Software Engineering Economics.
Prentice Hall.

Boehm, B.W., Abts, C., and Chulani, S., 2000. Software
development cost estimation approaches – A survey.
In Annals of Software Engineering 10, p. 177-205.

Boehm, B.W., Abts, C., Clark, B., and Devnani-Chulani.
S., 1997. COCOMO II Model Definition Manual. The
University of Southern California.

Boehm, B.W., Clark B., Horowitz E. and Westland C.,
1995. Cost Models for Future Software Life Cycle
Processes: COCOMO 2.0. Annals of Software
Engineering, Vol. 1, pp. 57-94.

Briand, L. C., Emam K. E., Surmann D., Wieczorek I.,
Maxwell K., 1999. An Assessment and Comparison of
Common Software Cost Estimation Modeling
Techniques. Proceedings International Conference
Software Engineering, pp. 313-322.

Coombs, P., 2003. IT Project Estimation: A Practical
Guide to the Costing of Software, Cambridge
University Press.

Desharnais, J. M., 1988. Analyse Statistique de la
Productivite des Projects de Development en
Informatique a Partir de la Technique de Points de
Fonction. Université du Québec: MSc. Thesis,
Montréal.

ICEIS 2007 - International Conference on Enterprise Information Systems

406

Fenton, N.E. and Pfleeger, S.L., 1997. Software Metrics: A
Rigorous and Practical Approach. International
Thomson Computer Press.

Finnie, G. R., Wittig G. E. and Desharnais J. M., 1997. A
comparison of software effort estimation techniques
using function points with neural networks, case based
reasoning and regression models. J. of Systems
Software, Vol. 39, pp. 281-89.

Haykin, S., 1999. Neural Networks: A Comprehensive
Foundation, Prentice Hall.

Idri, A., Khoshgoftaar T. M. and Abran A., 2002. Can
Neural Networks be easily interpreted in Software
Cost Estimation? In Proc. of the 2002 IEEE Intern.

International Software Benchmarking Standards Group,
Repository Data Release 9,t

Jeffery, R., Ruhe M. and Wieczorek I., 2000. A
comparative study of two software development cost
modeling techniques using multi-organizational and
company-specific data. Information and Software
Technology, Vol. 42, No. 14, pp. 1009-1016.

Laird, L. M. and Brennan, M. C., 2006. Software
Measurement and Estimation: A Practical Approach.
John Wiley & Sons, Inc.

Lederer, A. L. and Prasad J., 1992. Nine management
guidelines for better cost estimating. Comm. of the
ACM, Vol. 35, No. 2, pp. 51-59.

Leung, H. and Fan Z., 2002. Software Cost Estimation. In
Handbook of Software Engineering and Knowledge
Engineering, Vol. 2, World Scientific.

MacDonell S. G. and Gray A. R., 1997. Applications of
Fuzzy Logic to Software Metric Models for
Development Effort Estimation. Proc. of 1997:
Annual Meeting of the North American Fuzzy
Information Processing Society – NAFIPS, Syracuse
NY, USA, IEEE, pp. 394-399.

Putnam, L. H. and Myers W., 1992. Measures for
Excellence, Reliable Software on Time, Within Budget.
Yourdan Press, Englewood Cliffs N.J.

Saltelli, A., 2004. Global Sensitivity Analysis: An
Introduction. In Proc. 4th Intern. Conf. on Sensitivity
Analysis of Model Output (SAMO ’04), pp. 27-43.

Santillo, L., Lombardi, S. and Natale D., 2005. Advances
in statistical analysis from the ISBSG benchmarking
database. Proceedings of SMEF, pp.39-48.

The Standish Group, CHAOS Chronicles, Standish Group
Internal Report, 1995, Available at
<http://www.standishgroup.com/>.

SOFTWARE COST ESTIMATION USING ARTIFICIAL NEURAL NETWORKS WITH INPUTS SELECTION

407

