
EXTRACTION AND TRANSFORMATION OF DATA FROM
SEMI-STRUCTURED TEXT FILES USING

A DECLARATIVE APPROACH

R. Raminhos
UNINOVA – Desenvolvimento de Novas Tecnologias

Quinta da Torre, 2829-516 Caparica, Portugal

J. Moura-Pires
CENTRIA/FCT

Quinta da Torre, 2829-516 Caparica, Portugal

Keywords: ETD, ETL, IL, Declarative Language, Semi-Structured Text Files.

Abstract: The World Wide Web is a major source of textual information, with a human-readable semi-structured
format, referring to multiple domains, some of them highly complex. Traditional ETL approaches following
the development of specific source code for each data source and based on multiple domain / computer-
science experts interactions, become an inadequate solution, time consuming and prone to error. This paper
presents a novel approach to ETL, based on its decomposition in two phases: ETD (Extraction,
Transformation and Data Delivery) and IL (Integration and Loading). The ETD proposal is supported by a
declarative language for expressing ETD statements and a graphical application for interacting with the
domain expert. When applying ETD mainly domain expertise is required, while computer-science expertise
will be centred in the IL phase, linking the processed data to target system models, enabling a clearer
separation of concerns. This paper presents how ETD has been integrated, tested and validated in a space
domain project, currently operational at the European Space Agency for the Galileo Mission.

1 INTRODUCTION

ETL stands for “Extraction, Transformation and
Loading" of data from a data source to a normalized
data target, usually applied to the data warehousing
/ integration domains (Caserta and Kimball, 2004).
In the “Extraction” phase, relevant data is identified
and extracted from a data source. Since source data
is usually not in a normalized format, it is required
to “Transform” this data, either using arithmetic,
date conversion or string operations. Finally, in the
“Loading” phase the already converted data is
loaded into a target system model, usually a staging
area database. Considering that data may be
complex depending on the domain it refers to, a
domain expert is usually required during the
“Extraction” and “Transformation” phases in order
to identify which data is relevant and how it must be
transformed in order to be correctly manipulated. In
contrast, the “Loading” phase involves computer-

science expertise, closely related with the target data
model. In order to provide a clear separation of
concerns (Dijkstra, 1972) between these two types
of actions, this paper presents a different approach to
ETL. The known ETL paradigm can be split into:
domain ETD operations (Extraction, Transformation
and Data Delivery) which require domain expertise,
and IL (Integration and Loading) that require
computer science operations, such that ETL = ETD
+ IL. By differentiating domain from computer-
science operations, the development time required
for an ETL solution is reduced and the overall data
quality is improved by a close validation of domain
data performed by a domain-expert (instead of a
computer-science expert). The ETD solution
proposed in this paper has been implemented and
validated in a real-world application, currently
operational as part of a space domain decision
support system.

This paper is organized in seven sections: The
current section describes the ETL problem domain

199
Raminhos R. and Moura-Pires J. (2007).
EXTRACTION AND TRANSFORMATION OF DATA FROM SEMI-STRUCTURED TEXT FILES USING A DECLARATIVE APPROACH.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - DISI, pages 199-205
DOI: 10.5220/0002364201990205
Copyright c© SciTePress

and motivates for the novel ETD approach. Section
2 describes the requirements for the definition of
ETD. This solution is supported by a declarative
language (Section 3) and a graphical application
(Section 4). Section 5 describes the integration of
ETD’s language and application in a complete data
processing implementation, while Section 6
describes how this implementation has been
successfully applied in the construction of an
operational system. Finally, Section 7 draws some
conclusions and presents future work.

2 REDEFINING ETL

The ETL problematic is becoming progressively less
specific to the traditional data warehousing /
integration domains and is being extended to the
processing of textual data. The World Wide Web
appears as a major source of textual data, referring
to multiple domains, some of them highly complex.
These files, containing textual data follow a human-
readable semi-structured format. The term “semi-
structured” refers to the capability to organize and
present information, highlighting the different types
of data available in a file (e.g. descriptive metadata
area, informative header, remarks associated to the
data area, numeric values or final remarks).

A traditional ETL approach, e.g. (Caserta and
Kimball, 2004), follows the development of specific
source code for each data source. Such approach is
not the most appropriated, specially in the context of
retrieving data from the World Wide Web due to the
huge quantity of text files that follow heterogeneous
format / presentation rules. Since the data present in
the text files is closely related to the domain it refers
to, it is fundamental to involve a domain-expert
(usually without programming skills) in the
selection, extraction and preparation of the relevant
data present in the text. Thus, the classical ETL
process follows a three-phase iterative procedure: (i)
the domain expert identifies the relevant data and a
set of procedures to be implemented by a computer-
science expert; (ii) the computer-science expert
codifies this knowledge and (iii) the solution is
presented to the domain-expert for validation. This
approach has several drawbacks. First, the time
required for the correct processing of one file
increases dramatically depending on the domain and
data complexity present in the file. According to the
number of interactions / corrections to the initial file
processing solution, the overall time for setting up a
single file may increase substantially. Second, since
the logic definition for the file processing is
performed by an individual outside the domain it is
common that wrong assumptions are performed (e.g.

data types / validation rules) that may not be
detected by the domain expert during the validation
phase and thus propagated to an operational
environment. Third, by representing the extraction
and transformation knowledge using a declarative
language instead of making it hard-coded in the
source code, makes this knowledge easily auditable
by external domain-experts and shareable with the
scientific community. Fourth, since knowledge is
represented in a computable way, external analysis
programs may derive some metrics regarding the
language expressiveness, for future use in the
language refinement and improvement.

Considering these drawbacks, this paper
proposes a clear separation of ETL in ETD and IL
parts. In order to accomplish ETD a set of high-level
requirements has been defined: (i) all ETD
procedures and definitions shall be represented using
a high-level declarative language; (ii) source-code
development shall not be required; (iii) a graphical
application shall be available, making the use of the
declarative language, transparent to the end user; (iv)
data quality mechanisms shall be available
incrementally in all ETD steps; (v) the solution shall
focus mainly on the Extraction and Transformation
steps. A generic interface shall be proposed for data
delivery since the Loading process is highly coupled
with the target database / application that shall
receive the data; (vi) after performing the ETD
specifications for the base file, its generality shall be
tested with a set of samples of the same type.

For accomplishing such requirements, a solution
based on a declarative language and a graphical
application is presented in the next two sections.

3 THE FFD DECLARATIVE
LANGUAGE

The proposed ETD solution relies on declarative
definitions that identify which operations are
required during the ETD process, instead of
specifically implement this logic at code level.
These declarative definitions are stored in ETD
scripts named File Format Definition (FFD). FFD
contents are directly dependent on the text file
format, such that a one-to-one association exists
between a text file and a FFD. XML Schema and
XML technologies have been selected for the
definition of the declarative language and FFD
instances, respectively, since they are highly known
World Wide Consortium (W3C) standards for which
exist computational efficient tools. The FFD
language is divided into eight distinct sections:

ICEIS 2007 - International Conference on Enterprise Information Systems

200

General Information: Identification metadata as
name, description and authoring.
Versioning Control: Text files formats may change
without any kind of previous notification. To resolve
this issue, each FFD contains a pair of date values
defining a time frame in which the FFD is valid.
Processing: Thread priority to be applied during the
ETD process.
Sectioning: The first step for the extraction of data
consists in the partition of the text file into non-
overlapping sections that identify different areas of
data within the text file. Generally these sections are
easily identified since they usually share some
common property (e.g. all line starting with a given
prefix or following a start / end delimiter condition).
Each section is identified by a name and can be
either delimited (where two boundary conditions
determine the beginning and end of the section) or
contiguous (defined by a common property, shared
by a contiguous set of text lines). Delimited sections
can be defined through absolute conditions as “file
start”, “file end”, “line number” or the first line that
“starts”, “contains” or “ends” a given string pattern.
Besides absolute conditions, delimited sections can
also be defined using relative conditions as “Start
section after previous section end” or “End section
before next section start”. Contiguous sections can
be defined through one of three conditions: group of
lines that “start”, “contain” or “end” a given string
pattern. A simple BNF grammar is present in Figure
1 for the proposed sectioning scheme.

Sectioning-Spec -> (Section-Spec)*
Section-Spec -> (Contiguous | Delimited)
Contiguous -> LinesStartingWith(pattern) |

LinesContaining(pattern)|
LinesEndingWith(pattern)

Delimited -> (Start, End)
Start, End -> Relative |

Line(number) |
LineStartingWith(pattern) |

 LineContaining(pattern) |
 LineEndingWith(pattern)
Relative -> AfterPreviousSectionEnd |
 BeforeNextSectionStart

Figure 1: A BNF grammar for sectioning.

A set of validation rules can also be imposed to
each section in order to detect (as early as possible)
a change in the file’s format: if the section can be
optional, minimum and / or maximum number of
lines present in the section, existence of a given
pattern in the section start, middle or end.
Fields: Contains the definition for all fields that can
be extracted from the contents of a section. Two
types of fields are available “single fields” and
“table fields”. Single fields refer to individual values
present in a text file. These can be captured in one of

two ways: specifying prefix and / or suffix values or
through a regular expression. Table fields contain
one or more table columns, which can be defined
through fix-width length, a regular expression or by
specifying a column delimiter character that
separates the columns. Both single and tabular fields
can be defined from the start of the section or given
a specific offset of lines within the section.

Data quality mechanisms are available for both
types of fields. To each single value or table column
it is possible to associate a data type, a set of
validation rules (e.g. minimum / maximum numeric
value or text length) and a missing value
representation (usual in scientific data files).

Independent from the type of section and field
definition, both object specifications are represented
internally as regular expressions. This representation
is transparent to the end-user that only requires
knowledge on a set of gestures for interacting with
the graphical application. Using regular expressions
increases substantially the text processing
performance due to their pattern matching
capabilities and efficient supporting libraries.
Transformations: Contains a set of transformation
pipelines (i.e. a directed set of computational
elements handled in sequence), to be executed,
transforming raw data into a suitable format for data
delivery. Two types of transformations are available:
column / single field and table oriented. In the first
case the transformation will affect only one table
column / single value (e.g. append a string to the end
of each value of a selected column). In the second
case the transformation will affect multiple table
columns (e.g. deleting a set of rows from a set of
table column given a matching criteria).

Each transformation pipeline can be mapped to
a direct acyclic graph. Each start node from the
pipeline refers to an extracted field, while the
remaining nodes represent transformation
operations. Connections between transformation
nodes represent that an output of a source
transformation node is being used as input by a
target transformation node. Since the required
transformations are closely related with the domain
and structure in which data is presented, new
transformations can be inserted as needed, according
to a plugin architecture. Some examples of
transformations are: AppendConstant, CreateDate,
DateConvert, DeleteStringRows, Distribute,
Duplicate, GetElement, Join, Map, and Split.
Data Delivery: A Data Delivery consists in a XML
file containing as contents some descriptive
metadata header and a data area organized in tabular
format. In order to specify a data delivery, two types

EXTRACTION AND TRANSFORMATION OF DATA FROM SEMI-STRUCTURED TEXT FILES USING A
DECLARATIVE APPROACH

201

of information must be available: (i) Structural
Metadata: Structure definition of the data delivery
XML file. Specifies multiple pairs (field name, data
type) to be used in the data delivery’s interpretation
phase in the IL layer. The order in which data is
delivered is also specified as metadata; (ii) Data
References: The actual data values (extracted fields
or transformation outputs) to be delivered.

Data Delivery acts as a generic interface
between ETD and IL components. Depending on the
specific file format, data contents and the amount of
data to be delivered, during runtime a single data
delivery may be split into multiple packages in a
transparent way, due to performance issues.

For each text file and associated FFD, an ETD
engine shall perform the following sequence of
operations: (i) section splitting; (ii) field extraction;
(iii) field transformation and (iv) data delivery.

4 FFD EDITOR

The FFD Editor is a graphical application for the
creation, edition and debug of FFDs. With this
graphical interface the FFD XML language is made
transparent to the domain-expert. The creation of a
new FFD is based on annotations over an example
text file, following four main phases (that may be
iterative if required): Extraction, Transformation,
Data Delivery and Validation.

4.1 Extraction

Specific user interaction schemes – gestures –
applied to the sectioning and field definition enable
a simple interactive way of human-machine
communication. All file sections are initially created
by a “default section creation” gesture, where the
user selects a set of text lines that are marked as a
section. A “default section” is delimited by nature
and has its start and end delimiters following a “line
number” condition based on the first and last line
selected by the user. Dragging the section
boundaries interactively, it is possible to link a
section boundary either to a “file start / end” or
“section start after previous section end / section end
before next section start” relative conditions.
Sectioning can also be performed via specific
wizards for defining pattern dependent conditions
like “line starting / containing / ending with a
pattern string” or “lines starting / containing / ending
with a pattern string”, for delimited and contiguous
sections respectively. During the wizard, the user
may express a set of validation rules that the defined
sections must comply in order to be valid. Based on

the sectioning type (delimited or contiguous),
different types of symbols are presented to the user
in order to identify pictorially the section’s
characteristics. Independent from the section type,
clicking on the section symbol will highlight the
corresponding text at the base text file. Figure 2
presents the sectioning symbols for a delimited
upper boundary section: a) line number; b) relative
to previous section; c) relative to file start; d) line
starting with a string pattern; e) containing a string
pattern and f) ending with a string pattern. Symbols
are also applied to contiguous sectioning: g) lines
starting with a string pattern; h) containing a string
pattern and i) ending a string pattern.

Figure 2: Example of delimited and contiguous sectioning
symbols.

The definition of fields, either single value or
tabular, is initiated by a “default field creation”
gesture and completed via a specific wizard, since
field definition is usually more complex than
sectioning definition. For each single value or table
column the user may define a data type, a missing
value representation and a set of validation rules
(e.g. “Maximum value” or “Minimum value”).

Internally, all gestures are codified as regular
expressions (some of them quite complex), before
performing the file sectioning and extraction steps.
Regular expressions enable a good performance, due
to their pattern matching capabilities that can be
applied to the entire text, when compared to
traditional string operations that would require
breaking the text into a set of lines and deal with
each line individually.

4.2 Transformation

The transformation area (Figure 3) follows a
classical approach based on possible multiple
transformation pipelines that are represented as
graphs (2). Each graph node represents a
transformation that is part of an internal library,
depicted in the transformations toolbar (1). Having
selected a specific transformation in a graph it is
possible to verify its correctness by visual inspection
of its data inputs and outputs (3).

ICEIS 2007 - International Conference on Enterprise Information Systems

202

Figure 3: FFD Editor’s "Transformation" step.

Transformations require specific “tuning”
metadata defined by the user (e.g. for an
appendConstant the user must define the constant to
be appended and if this shall be placed as a prefix or
suffix). For example, in Figure 3 an appendConstant
transformation has been selected, appending to an
extracted field the “20” value as prefix, forming a
four digit year value that is placed in the “Complete
Year Output” column. Since transformations are
highly dependent on the domain data structure, these
have been implemented as independent plugins,
making the transformation library easily expanded.
Associated to each transformation plugin, exists a
descriptive metadata file where inputs and outputs
data types can be defined enabling some data quality
control during the transformation step.

4.3 Data Delivery

The first step in defining a data delivery consists in
selecting the parameters to which the data delivery
refers. Depending on the parameters nature, a
structure for the data delivery must be defined in the
form of (field name, data type) pairs, where the user
will drag-and-drop either references to extracted
fields or transformation outputs. Figure 4 depicts the
“Data Delivery” panel: (i) Extract Tree: A tree with
all the extracted fields in the “Extract” step; (ii)
Visible Outputs Tree: A tree with all the
transformation outputs in the “Transform” step; (iii)
Data Delivery Tree: A tree with all the created data
deliveries; (iv) Toolbar: Creation, edition and
saving operations for a data delivery; (v) Template
Area: A tabular template for the data delivery
definition. While the left column contains the
column name for the data delivery field the right

column receives a data reference “drag-and-drop” by
the user; (vi) Preview Area: Contains a tabular
preview of the data to be delivered.

Figure 4: FFD Editor's "Data Delivery" step.

4.4 Validation

As a final step the user should apply the FFD
definition to a set of other files in order to verify if
the definition is general enough. If an error is
detected, then the user can correct the FFD
(iteratively if required), analyzing the impact of the
change over the ETD steps. Otherwise, the FFD can
be saved locally into the file system or uploaded
directly to a Metadata Repository.

5 DATA PROCESSING MODULE

In this section, a general architecture for a Data
Processing Module (DPM) is proposed that strongly
supports the declarative assertions present in the
FFD language (Figure 5). Although the declarative
language and FFD Editor are the key technologies
presented in this work, in order to have an
operational data processing solution, two other
software components must be introduced: (i) File
Retriever (FR) engine: responsible for the
acquisition of data files from external data service
providers and (ii) DPM Console: A graphical tool
that enables the monitoring and control of download
and processing actions. The application enables to
manage the downloaded files and checking all
logging information. The FR and ETD engines
execute continuously and are responsible for the
download / ETD chain. All metadata required by the
FR or ETD engines is stored in a centralized
Metadata Repository (Ferreira and Moura-Pires,
2007).

EXTRACTION AND TRANSFORMATION OF DATA FROM SEMI-STRUCTURED TEXT FILES USING A
DECLARATIVE APPROACH

203

FR Engine ETD Engine

FFD Editor

Data Delivery Interface

Compressed
Cache Metadata Repository

IL

DPM Console

(source file,
FFD reference)

DSP

DSP

...

Figure 5: Data Processing Module Architecture.

The FR Engine downloads text files according to
a schedule and places them in a compressed
directory for backup purposes. For each Data
Service Provider, the user can specify the type of
connection for reaching the Data Service Provider.
Four types of connections are available: HTTP, FTP,
Web Service or Database (through a JDBC
connector). Metadata is required depending on each
connection specifics (e.g. “username”, “password”
or “database name”).

Each Data Service Provider hosts multiple data
files, commonly known as Provided Files. For these
files the user can define the source file path / SQL
query / or web service arguments (depending if the
related Data Service Provider has a HTTP or FTP,
database or web service connection, respectively).
For each Provided File it is also possible to specify
the path for the target file to be stored in the local
cache and which type of schedule shall be used for
retrieving the file: by user request; from a specific
set of dates; every X seconds; at a specific (minute),
(hour / minute), (day / hour / minute) or (month /
day / hour / minute) tuple. Further, each Provided
File has a reference to the FFD associated for
processing that type of file. Finally, each Provided
File may have a set of relations to a pool of
dedicated ETD engines for processing. If no ETD
engine instance is specified, text files shall be
processed in a round-robin fashion through all the
ETD engine instances that have been declared in a
Metadata Repository.

The ETD Engine is responsible for the actual
ETD processing. After download, FR sends to the
ETD engine the text file contents and a FFD
reference to be applied. If an error is detected (e.g. a
file format has changed causing a data type
violation), the system administrator is notified by
email, receiving in attach the file that caused the
error and the FFD that raised the exception. After
processing the file, the ETD engine delivers all data
to the IL layer using the generic Data Delivery
interface, where all processed data is delivered in
XML format.

Finally, the FFD Editor application enables the
creation, debug and test of FFDs, as well as their
submission to a supporting Metadata Repository, for
posterior use by the ETD engine.

Both the ETD engine and FFD Editor component
share the same code for processing each provided
file. This way the results accomplished while using
the FFD Editor application will be the same during
the processing phase with the ETD engine. In order
to improve scalability and performance it is possible
to have multiple ETD engines that serve one or more
FR engines. With this file-partitioning scheme, load
balancing is attained during processing.

Further details and screenshots can be found at
http://centria.di.fct.unl.pt/~jmp/DMP.

6 SESS CASE STUDY

The space domain term “Space Weather” (S/W)
(Daily, 2002; Schmieder, Vincent et al., 2002) can
be defined as the combination of conditions on the
sun, solar wind, magnetosphere, ionosphere and
thermosphere. Space Weather, affects not only
Earth’s environment, but specially all Spacecraft
(S/C) systems orbiting the planet. The degradation
of solar panels is an example of a S/W effect.

The integration of both near real time and
historical S/W and S/C data for analysis, is
fundamental in the decision-making process during
critical Spacecraft control periods and in order to
extend the mission life-time to its maximum.
Analysis of the current solar activity together with
the internal S/C sensors measures may force /
prevent the execution of manoeuvres in order to
protect S/C equipments or even human lives.

The Space Environment Support System (SESS)
(ESA, 2006) is a multi-mission decision support
system, capable of providing near real-time
monitoring (Moura-Pires, Pantoquilho et al., 2004)
and visualization, in addition to historical analysis
(Pantoquilho, Viana et al., 2005) of S/W and S/C
data, events and alarms. The main goal of the system
is to provide S/C and S/W data integration. The Data
Processing Module is responsible for the download
and ETD processing for each text file containing
scientific data made available by the different public
and / or private data service providers.
Communication with the data service providers is
performed via well-know protocols like HTTP and
FTP or through a Web-Service interface. After
processed, data is delivered to the Data Integration
Module that comprises two databases: an
Operational Data Storage for the parameters values
within the last five days (sliding-window) and a

ICEIS 2007 - International Conference on Enterprise Information Systems

204

Data Warehouse for storing historical data. Data
present in the Operational Data Storage can be
monitored through the Monitoring Tool while
historical data can be analysed through the
Reporting and Analysis Tool. Crosscutting to all
system components is a Metadata Repository
(Ferreira and Moura-Pires, 2007) that contains all
domain and technical metadata.

In the scope of the SESS project a set of 63
Provided Files have been selected from a total of 10
different Data Service Providers. For each Provided
File a specific FFD has been created with the FFDE
tool. At nominal operational execution DPM
downloads around 4000 files per day representing an
average storage load of 140 MB of text per day
(average of 35KB per text file). The performance of
the ETD engine based on FFDs declarative language
presented very good results, considering the 5
minute “near real-time” requirement imposed by
ESA for performing all ETD tasks. Processing times
range from a 1 second average for small files to 30
seconds average for 3.5 MB telemetry files. The
overall average per file processing is around 2
seconds.

7 CONCLUSIONS AND FUTURE
WORK

This paper presented a new approach to the ETL
problem, based on an ETD declarative language.
This novel approach supports a clear separation of
concerns between the Extraction and Transformation
steps (domain related) from the Loading step
(technical related). A new Data Delivery interface is
proposed for abstracting all details regarding the
target application that will receive the processed
data. A graphical application is proposed for
interacting with the domain expert in order to define
an ETD script based on graphical interaction,
making the supporting language transparent to the
end user. The data processing solution has been
implemented, tested and validated in the scope of the
SESS system and is currently operational for the
Galileo Mission. Feedback from the end users has
been positive regarding user interactivity, language
expressiveness, scalability and performance for the
ETD solution.

As future work we intend to keep improving the
user interaction with the FFD Editor application and
explore two new features. First, enable the FFD
Editor application for proposing a possible
transformation pipeline (P) based on a user
declaration of an output result (O) - including the
field value and data quality metrics like data type
and validation rules – given the available input set

(I) as the defined transformation library (L), such
that P(I, L) = O. Second evaluate the practical
impact of including a filtering cache for dealing with
repeated input data prior to the ETD process
execution (e.g. a duplicated text line or database
record). With the current solution all data filtering
must be performed either by the source data service
provider, that guaranties by itself no data repetition,
or by processing all data (even repeated) and
perform the data filtering at the IL layer, resulting in
unnecessary processing.

REFERENCES

Caserta, J. and R. Kimball (2004). The Data Warehouse
ETL Toolkit: Practical Techniques for Extracting,
Cleaning, Conforming and Delivering Data, John
Wiley & Sons.

Daily, E. (2002). Space Weather: A Brief Review.
SOLSPA: The Second Solar Cycle and Space Weather
Euroconference, Napoli, Italy.

Dijkstra, E. (1972). Notes on Structured Programming. A.
Press.

ESA. (2006). "Space Environment Support System for
Telecom/Navigation Missions (SESS)." from
http://telecom.esa.int/telecom/www/object/index.cfm?
fobjectid=20470.

Ferreira, R. and J. Moura-Pires (2007). Extensible
Metadata Repository for Information Systems and
Enterprise Applications. ICEIS 2007 - 9th
International Conference on Enterprise Information
Systems, Funchal, Portugal.

Moura-Pires, J., M. Pantoquilho, et al. (2004). Space
Environment Information System for Mission Control
Purposes: Real-Time Monitoring and Inference of
Spacecrafy Status. 2004 IEEE Multiconference on
CCA/ISIC/CACSD, Taipei, Taiwan.

Pantoquilho, M., N. Viana, et al. (2005). SEIS: a decision
support system for optimizing spacecraft operations
strategies. IEEE Aerospace Conference, Montana,
USA.

Schmieder, B., B. Vincent, et al. (2002). Climate and
Weather of the Sun Earth System: CAWSES.
SOLSPA: The Second Solar Cycle and Space Weather
Euroconference, Napoli, Italy.

EXTRACTION AND TRANSFORMATION OF DATA FROM SEMI-STRUCTURED TEXT FILES USING A
DECLARATIVE APPROACH

205

