
SECURE KNOWLEDGE EXCHANGE BY POLICY ALGEBRA AND
ERML

Steve Barker
Dept Computer Science, King’s College, London, U.K.

Paul Douglas
Westminster University, London, U.K

Keywords: Database, Security, Logic Programming.

Abstract: In this paper, we demonstrate how role-based access control policies may be used for secure forms of knowl-
edge module exchange in an open, distributed environment. For that, we define an algebra that a security
administrator may use for defining compositions and decompositions of shared information sources, and we
describe a markup language for facilitating secure information exchange amongst heterogeneous information
systems. We also describe an implementation of our approach and we give some performance measures, which
offer evidence of the feasibility of our proposal.

1 INTRODUCTION

We address the problem of securely exchanging
knowledge modules in the context of the Semantic
Web. The approach that we propose involves using a
form of Role-based Access Control (RBAC)(Barker,
2003), a module algebra, and a new form of markup
language. RBAC provides us with a way of defining
access control requirements to help to ensure the se-
curity of information sources that are represented as
identifiable modules, which can be composed using
algebraic operators; the markup language that we in-
troduce provides a way of securely exchanging acces-
sible information modules.

In related work, Bonatti et al (2002) describes an
approach for composing sets ofauthorization facts.
However, the advocated approach is applicable only
to “simple Horn clause” programs where composi-
tion of the least fixed point of programs is possi-
ble. The work of Wijesekera and Jajodia (2001) is
similar to Bonatti et al’s but Wijesekera and Jajodia
use a state transformation-based approach on(s,a,o)
triples, rather than using Horn clauses, to derive au-
thorization atoms. In both approaches, policy alge-
bras for discretionary access control policies are con-
sidered.

In our algebra, non-Horn specifications of policies
are possible and rather than viewing policy compo-

sition at the level of authorizations, composition op-
erators are defined on shareable information sources.
Moreover, our emphasis is on the use of RBAC poli-
cies represented by using rule-based specifications
with a meta-program used to process access requests.
The use of rule-based representations of access poli-
cies is well known in the security literature (see, for
example, Jajodia (2001), Barker (2000), and Barker
(2003)). Our work is also related to work on secure
XML (see Bhatti (2003), and Bertino (2004)), and to
work on RuleML (Boley, 2001). However, our ap-
proach is concerned with secure information sharing
amongst heterogeneous information systems, rather
than XML documents; for this, we propose an exten-
sion of RuleML.

The approach that we describe is based on a con-
cept that we call security filtering. That is, when a
user requests to access a set of information sources or
a subset of a information source then only the frag-
ment of knowledge that the user is authorized to see
is made available to them. The different informa-
tion systems that we consider in this paper are strat-
ified normal deductive databases (Baral, 1994), con-
straint databases (Marriott, 1998), and null-free and
aggregate-free SQL databases (Date, 2003).

The rest of the paper is organized thus. In Sec-
tion 2, preliminary notions are described. In Sec-
tion 3, we present an algebra for policy composition.

212
Barker S. and Douglas P. (2007).
SECURE KNOWLEDGE EXCHANGE BY POLICY ALGEBRA AND ERML.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - DISI, pages 212-217
DOI: 10.5220/0002358402120217
Copyright c© SciTePress

In Section 4, we describe our markup language. In
Section 5 we describe a candidate implementation and
performance measures. Finally, in Section 6, conclu-
sions are drawn, and further work is suggested.

2 PRELIMINARIES

In this section, we briefly describe background ma-
terial to help to make the paper self-contained. Fur-
ther details on the databases that we consider may be
found in, for example, Abiteboul (1995) and Kuper
(2000).

Definition 2.1 A normal database is a finite set of
formulas of the form:

A← A1,A2, . . . ,Am,not Am+1,not Am+2, . . . ,not Am+n.

The headA of the clause in Definition 2.1 is a sin-
gle atom. In thebodyof a clause

A1,A2, . . . ,Am,not Am+1,not Am+2, . . . ,not Am+n

A1,A2, . . . ,Am is a conjunction of atoms, and
not Am+1,not Am+2, . . . ,not Am+n is a conjunction of
atoms negated bynot wherenot is negation-as-failure
(Baral, 1994). Aliteral is an atom or its negation.
A clause with an empty body (i.e.,A← /0) is a fact.
In the discussion that follows, we represent the fact
A← /0 by A, and we use the termrule to refer to a fact
or a clause with a non-empty body.

Definition 2.2 A constraint database (CDB) consists
of a finite set of rules of the following form (an
extended form of normal deductive rules):

A←C1,C2, . . . ,Cm | L1,L2, . . . ,Ln (m≥ 0,n≥ 0).

The elements of the set{L1,L2, . . . ,Ln} are liter-
als, A is an atom, and C1,C2, . . . ,Cm is a conjunction
of constraints.1

Definition 2.3 A primitive constraint c has the form
p(t1, . . . , tn) where p is a (predefined) constraint rela-
tion of arity n and t1, . . . , tn are terms.

Definition 2.4 A constraint C is a conjunction of
primitive constraints c1∧ ·· ·∧ck where∧ is the logi-
cal ‘and’ operation.

In the normal databases that we use later, variables
appear in the upper case and using characters from the
end of the alphabet; constants appear in the lower case
and using characters from the start of the alphabet.

1The| symbol is simply used to separate the conjunction
of constraints from the conjunction of literalsL1,L2, . . . ,Ln;
the translators we describe later may be modified for use
with specific CDB systems.

We assume that the reader is familiar with basic
SQL, and recognises that a normal clause and a nor-
mal rule in the CDBs that we consider may be equiv-
alently represented in SQL and conversely.

In this paper, we restrict attention to theRBACF
model that is formally defined in Barker (2003) (i.e.,
flat RBAC as described by Sandhu (2001)).2

From Barker (2003), we recall that, in formula-
tions ofRBACF policies, users are assigned to a role
by using definitions of a 2-placeura predicate (where
ura is short for “user role assignment”). The assign-
ment of an access privilege on an object to a role is ex-
pressed by using definitions of a 3-placepra predicate
in RBACF policy specifications (wherepra is short for
“permission role assignment”).

Example 2.5 Suppose that the users u1 and u2 are
assigned to the roles r2 and r1 respectively, and that
write (w) permission on object o1 is assigned to r1
and read (r) permission on o1 is assigned to r1 and
r2. Then, the following set of facts may be used to
represent the RBACF policy in force:

{ura(u1, r2),ura(u2, r1), pra(w,o1, r1),
pra(r,o1, r1), pra(r,o1, r2)}.

A useru has thea access privilege on an objecto
(i.e., theauthorization(u,a,o) holds) from anRBACF
policy specification if a useru is assigned to a roler,
and r has been assigned thea access privilege ono.
In terms of normal clauses, authorization triples are
defined thus:

access(U,A,O)← ura(U,R), pra(A,O,R).

Example 2.6 By inspection of the user-role and
permission-role assignments that are specified in Ex-
ample 2.5, it follows that the following set of au-
thorizations apply (the extension of the predicate
access/3):

{access(u1,w,o1),access(u1, r,o1),access(u2, r,o2)}.

As a final point on preliminaries, in our proposal
each information source to be protected is uniquely
identifiable. We use the notation,υ≡ I (whereυ may
be subscripted) to denote that the information source
I is identified byυ (e.g., in a Web context,υ is a
uniform resource identifier).

3 A POLICY ALGEBRA

In this section, we describe an algebra for information
source definition and manipulation. Our algebra is in-
dicative of the type of algebra that security adminis-
trators may use to define access control requirements.

2Extending our approach to allow for richer RBAC mod-
els is a straightforward matter.

SECURE KNOWLEDGE EXCHANGE BY POLICY ALGEBRA AND ERML

213

The algebra may be extended to permit other forms of
policy to be defined.

3.1 Grammar

The grammar that we propose for the algebra of infor-
mation sources that are identified byυi andυ j may be
expressed thus:

| υi | υi ∪ υ j | υi ∩ υ j | υ∗i | υi ◦ υ j |

The operators in our algebra are defined next. In
these definitions,B (possibly subscripted) denotes the
body of a rule in normal database, a CDB, or the SE-
LECT clause in a view definition.

Definition 3.1 Letυi andυ j be the identifiers for two
information sources, then:

υi ∪ υ j
de f
= {L← B : L← B∈ υi ∨ L← B∈ υ j}.

The∪ operator is used to combine the rules in dif-
ferent databases. For example, givenυ10≡ p(X)←
q(X) andυ11≡ p(X)← r(X), for υ10 ∪ υ11 we have:

p(X)← q(X).
p(X)← r(X).

Definition 3.2 Letυi andυ j be the identifiers for two
information sources in a universe, then:

υi ∩ υ j
de f
= {L← B : Li ← B1 ∈ υi ∧ L j ← B2 ∈ υ j ∧

θ = mgu(Li ,L j) ∧ L = Liθ ∧ B = {B1,B2}θ}

where mgu(Li ,L j) is the most general unifier of Li
and Lj (see Apt, 1997).

The∩ operator is used when rules that are com-
mon to a information source need to be included in a
composite information source. As a simple example,
{p(a,b),q(a,b)} ∩ {p(a,b)} generates{p(a,b)}.

Definition 3.3 Let υi denote an information source
in a universe and letβ(υi) be the closure of the infor-
mation source identified byυi under a consequences
operator |= (i.e., β(υi) is the set of all literal con-
sequences of the information source identified byυi)
then:

υ∗i
de f
= {L : L ∈ HBASE(υi) ∧ L ∈ β(υi)}

where HBASE(υi) is the Herbrand Base ofυi (see
Abiteboul, 1995).

The ∗ operator is useful from a security view-
point for restricting a information sourceK to just
the atomic consequences ofK .

Definition 3.4 Letυi andυ j be the identifiers for two
information sources, in a universe, let LIT(L) denote
the predicate symbols of literals in HBASE(υi) ∪
HBASE(υ j), and letγ(υi) be the literals defined in

the information source identified byυi , then:

L υi ◦ υ j
de f
= υi ∪
{L← B : L← B∈ υ j ∧ LIT (L) 6∈ γ(υi)}.

The algebraic expressionυi ◦ υ j is used to specify
that the definitions inυi override the definitions inυ j
when common predicates are defined. For example,
for υ10 ≡ p(X)← q(X) ◦ υ11 ≡ p(X)← r(X), we
haveυ10≡ p(X)← q(X).

To understand the use of our algebra, we present
some examples of its use. For the examples, we con-
sider the following normal database

υ1≡

{

p(X,Y)← q(X,Y).

q(a,2).

the constraint database

υ2≡

{

p(X,Y)←Y < 2 | r(X,Y).

r(b,2).

and the SQL database, identified byυ3, that includes
the view definition

create view s as select * from v
where v.A 6= b;

together with the SQL table, calledv, in Figure 1.

A B
a 1
b 2

Figure 1: The SQL table v inυ3.

Example 3.5 Consider υ1 and υ2 from the set of
databases above. Then,υ1 ∪ υ2 defines the following
information source:

p(X,Y)← q(X,Y).
p(X,Y)←Y < 2 | q(X,Y).
q(a,2).
r(b,2).

Example 3.6 The algebraic expression

∪(υ∗3,◦(υ1,υ2))

defines the following information source:

p(X,Y)← q(X,Y).
q(a,2).
r(b,2).
s(a,1).

whereυ∗3 = s(a,1).

ICEIS 2007 - International Conference on Enterprise Information Systems

214

3.2 Access Request Evaluation

To process a user’s access request, we use the follow-
ing meta-program (in whicha is short for “access”):

a(U, read,X)← ura(U,R), pla(read,X,R).
a(U, read,∪(X,Y))← a(U, read,X),a(U, read,Y).
a(U, read,∩(X,Y))← a(U, read,X),a(U, read,Y).
a(U, read,◦(X,Y))← a(U, read,X),a(U, read,Y).

The following points should be noted about the
meta-program:

• We restrict attention to retrieval/read requests.
However, any number of access privileges may be
supported in our approach.

• Request evaluation is always performed with re-
spect to propositional theories because the meta-
program processes module identifiers.

• The meta-program may be used to process access
requests in the case where an agent requests to ei-
ther retrieve a knowledge module that a security
administrator has predefined, by using the secu-
rity algebra, or to retrieve a specific knowledge
module that the agent wishes to retrieve.

• We adopt a file-oriented semantics for our alge-
bra (not a consequence-oriented semantics). This
is because we do not restrict attention to informa-
tion sources that are categorical; our approach is
file-based rather than rule-based because the lat-
ter raises a number of semantic and practical is-
sues relating to rule identification. Although, at
first sight, it may be argued that file level access
is overly blunt, it must be noted that the security
administrator can use the algebra to define very
fine-grained information sources.

Example 3.7 Consider the user-role and permission-
role assignments from Example 2.5 together with the
following expression:

access(bob, read,∪(υ1,∩(υ2,◦(υ∗3,υ4)))).

Theaccess/3 expression represents a request by an
agent Bob to access the information source that is
specified by:

∪(υ1,∩(υ2,◦(υ∗3,υ4))).

Conversely, suppose that a security administrator
has included the following expressions in an access
policy specification:

υ8≡ ∪(υ1,∩(υ2,◦(υ∗3,υ4))).
pla(read,υ8, r1).

Then, access(bob, read,υ8) may be used to gen-
erate (for Bob) the information source defined by
∪(υ1,∩(υ2,◦(υ∗3,υ4))).

4 ERML

In this section, we describe the markup language that
we propose for use for secure knowledge exchange
between heterogeneous information sources. Our
markup language, called ERML (see Barker, 2004),
is an extended form of RuleML (version 0.9) that
enables, amongst other things, the set of operators
{+,−,÷,×,<,≤,=, 6=,≥,>} to be represented in:
the body of a normal clause, the specification of a
WHERE clause in an SQL view definition, and for
constraint formulation in a CDB. In the ensuing dis-
cussion, we useΦ to denote the set of comparison
operators{<,≤,=, 6=,≥,>}, andΓ to denote the set
of arithmetic operators{+,−,÷,×}.

The general format for a rule in ERML is as
follows:

<imp>
< head> conc</ head>

< body>
< constraint>

<and>
<builtin>

<cop> φ < /cop>
< /builtin >
< builtin >

< aop> γ < /aop>
< /builtin >

</and>
</ constraint>

<and>
<atom>

.. .
</atom>

<builtin>
<cop> φ < /cop>

< /builtin >
< builtin >

< aop> γ < /aop>
< /builtin >

</and>
</ body>

</imp>

Here,< imp > is a tag that is used to denote an
implication i.e., a normal rule, a rule in a CDB, or
a view definition in SQL. The< head> tag is used
to represent the head of a normal rule, the head of a
rule in a CDB (with arguments if any), or the name of
the view definitionvde f together with the attributes of
vde f. The< body> tag, as the name suggest, is used
to represent the body of a normal rule, a CDB rule,
or the SELECT statement that defines a view. The

SECURE KNOWLEDGE EXCHANGE BY POLICY ALGEBRA AND ERML

215

tag< cop> is used to refer to a comparison operator
φ ∈ Φ, and< aop> is a tag for markup that refers
to an arithmetic operatorγ ∈ Γ. We use strings of
characters to denote the operators inΦ ∪ Γ when
these operators are used in ERML documents. For
example,gteq is used for≥; all of the operators in
Φ ∪ Γ can be assigned a literal value that may be
used in ERML documents.

The negation of an atom is expressed by using a
<not> A </not> element wherenot is interpreted
as negation-as-failure andA is an atom.3

The general format for a fact in ERML is as
follows:

<fact>
< head> conc</ head>

< body>
<atom>

.. .
</atom>

</ body>
</fact>

Thevar value in the tag< var > is short for vari-
able. To represent constants,< ind > is used e.g.,
< ind > 10< /ind > denotes the constant 10.

A user’s request to access a knowledge sourcerk
is handled by a 2-phase process:

• In the initial phase, evaluation of an access request
is performed using the meta-program and a speci-
fication of an RBAC policy to determine whether
ui is permitted to exercise thep j privilege onrk.

• In the second phase, the authorized actions involv-
ing rk are performed. If permitted by the access
policy in force, rk (and DTDs or XML Schema
declarations, as appropriate) is transmitted to the
requester in ERML form.

The information, in ERML form, returned to a re-
quester can be manipulated using the rule engines that
are available on the requester’s machines. To enable
this, we have developed XSLT stylesheets to trans-
form ERML into XSB, SQL, and CDBs. For the
translation of SQL view definitions, we adopt a 2-
step approach that involves converting SQL to normal
clause form and then calling the XSB to ERML trans-
lator to generate the ERML form of the SQL view
definition. Our conversion software converts facts in
a base tableT to ERML by converting each row in

3We do not consider ERML with a<neg> A </neg>
element, for explicit negation, because the information
sources that we consider are normal databases, CDBs and
SQL databases. However, our DTD includes a<not> A
</not> element to accommodate a classical negation op-
erator.

T to an ERML fact (see above). We have chosen
the 2-step approach to implementation, rather than us-
ing Eberhardt’s OntoSQL translator (see Eberhardt,
2002), for a number of reasons. For instance, our ap-
proach enables arbitraryn-ary relations to be manipu-
lated (not just binary relations) and our approach en-
ables SQL, with arithmetic, to be translated into CDB
form for efficient processing. Our two-stage approach
imposes no significant overhead relative to the pro-
cessing costs incurred using a single phase translator
like OntoSQL.

Example 4.1 Consider the request
access(bob, read,∪(υ14,υ15)) such that Bob is
permitted read access onυ14 and υ15 and where
υ14 ≡ {q(a,2)} and υ15 ≡ {p(X,Y) ← r(X,Y)}.
Then, the following ERML code is what Bob is
permitted to have delivered to his machine:

<rulebase>
<fact>
<atom>
<_opr><rel>q</rel></_opr>
<ind>a</ind>
<ind>2</ind>

</atom>
</fact>

<imp>
<_head>
<atom>
<_opr><rel>p</rel></_opr>
<var>X</var>
<var>Y</var>

</atom>
</_head>
<_body>
<atom>
<_opr><rel>r</rel></_opr>
<var>X</var>
<var>Y</var>

</atom>
</_body>

</imp>
</rulebase>

5 PRAGMATICS

In this section, we describe implementation issues and
some performance measures.

We note that one of the first declarative transla-
tors was GEDCOM (Dean, 2001), which (in alter-
native versions) uses XSLT to produce output suit-
able for use with either XSB Prolog or Jess (Grosof,
2002). However, we have tested the XSB version of
GEDCOM and found it rather unreliable when used
with real-world marked-up Prolog programs. More-
over, as XSLT only works on tags embedded within

ICEIS 2007 - International Conference on Enterprise Information Systems

216

an XML document, and as these are necessarily ab-
sent from, for example, a Prolog program, a declar-
ative translator in the style of GEDCOM is not pos-
sible. SweetJess (Grosof, 2002) offers robust proce-
dural, bi-directional translation from RuleML to XSB
Prolog; however, it is significantly more cumbersome
to deploy than a declarative system.

For our implementation, we have written a parser
in C (for the details, seewww.cscs.wmin.ac.uk/ ∼
douglap/translator.c). Our parser is able to trans-
form Prolog and various CDB forms into ERML,
and can generate ERML from XSB Prolog, SQL or
ECLIPSE. We have tested our translator on a infor-
mation source containing 3,000 facts and rules (in
normal clause form). The C translator took an av-
erage (over 10 runs) of 0.043 seconds to convert the
information source into a ERML format. We used
the Saxon XSLT processor (Kay, 2001) to convert
the ERML file back into normal clause form/Prolog,
which took an average of 2.455 seconds.4 Thus, the
bidirectional translator for ERML-SQL conversion
adds no appreciable computation costs to access re-
quests. The time taken by our meta-program to eval-
uate access requests is of the order of a few millesec-
onds; the size of the access control program has very
little affect on the timings. It follows that access re-
quest checking and authorized knowledge base gener-
ation can be performed in a time of the order of a few
seconds (for large information sources).

6 CONCLUSIONS

The principal contributions of our work have been: to
specify an algebra that may be used by security ad-
ministrators to define information sources that may
be securely exchanged between agents using hetero-
geneous systems; to define a small but powerful ac-
cess control program that determines what a user is
permitted to access given anRBACF policy specifica-
tion; and to introduce a markup language that permits
secure forms of information sources to be exchanged
between heterogeneous information systems.

In future work, we wish to investigate implemen-
tations of our approach with more expressive alge-
bras. AlthoughRBACF policies are adequate for the
work that we have carried out, we intend to experi-
ment with more expressive forms of RBAC policies in
future work. The approach that we describe may be
applied to problems in secure business rule process-
ing, secure e-commerce, and secure e-contracting. A

4These results were obtained on a Sun Sparc Ultra 10
machine with a 440MHz CPU and 1Gb RAM running So-
laris 10.

matter for further work is to investigate these applica-
tions.

REFERENCES

Abiteboul, S., Hull, R. and Vianu, V. 1995.Foundations of
Databases. Addison-Wesley.

Apt, K. 1997.From Logic Programming to Prolog. Prentice
Hall.

Baral, C. and Gelfond, M. 1994.Logic Programming and
Knowledge Representation. JLP, vol 19/20, pp73-148.

Barker, S. 2000.Data Protection by Logic Programming.
Proc. 1st International Conference on Computational
Logic. Springer-Verlag.

Barker, S. and Stuckey, P. 2003.Flexible Access Control
Policy Specification with Constraint Logic Program-
ming. ACM Trans. on Information and System Secu-
rity, vol 6, number 4, pp501–546.

Barker, S. 2004.Labeled Logic Programs.Springer-Verlag.

Bhatti, R., Joshi, J., Bertino, E. and Ghafoor, A. 2003.
Access Control in Dynamic XML-Based Web-Services
with X-RBAC.In ICWS 2003, pp243-249.

Bonatti, P., Vimercati, S. and Samarati, P. 2002.An algebra
for Composing access control policies. TISSEC 2002,
vol 5, number 1, pp1-35.

Date, C. 2003.An Introduction to Database Systems.
Addison-Wesley.

Dean, M. 2001.RuleML Experiments with GEDCOM.
www.daml.org/2001/02/gedcom-ruleml/

Eberhardt, A. 2001.Prolog2RuleML Parser. www.i-
u.de/schools/eberhart/prolog2ruleml

Eberhardt, A. 2001. OntoSQL. www.aifb.uni-
karlsruhe.de/WBS/aeb/ontosql/

Grosof, B., Gandhe, M. and Finin, T. 2002.
SweetJess: Translating DAMLRuleML
to JESS. SunSITE.Informatik.RWTH-
Aachen.DE/Publications/CEUR-WS/Vol-
60/grosof.pdf

Jajodia, S., Samarati, P., Sapino, M. and Subrahmaninan,
V. 2001.Flexible Support for Multiple Access Control
Policies. ACM TODS, vol 26, number 2, pp214-260.

Kay, M. 2001.The SAXON XSLT and XQuery Processor.
http://saxon.sourceforge.net/

Kuper, G., Libkin, L. and Paredaens, J. 2000.Constraint
Databases. Springer.

Marriott, K. and Stuckey, P. 1998.Programming with Con-
straints: an Introduction. MIT Press.

Sandhu, R., Ferraiolo, D. and Kuhn, R. 2001.The NIST
Model for Role-Based Access Control: Towards a
Unified Standard. Proc. 4th ACM Workshop on Role-
Based Access Control, pp47–61.

Wijesekera, D. and Jajodia, S. 2001.Policy algebras for ac-
cess control: the propositional case.Proc. ACM Con-
ference on Computer and Communications Security
pp38-47.

SECURE KNOWLEDGE EXCHANGE BY POLICY ALGEBRA AND ERML

217

