
MODELLING OF MESSAGE SECURITY CONCERNS WITH
UML

Farid Mehr and Ulf Schreier
Faculty of Information Systems, Furtwangen University, Robert-Gerwig-Platz 1, Furtwangen, Germany

Keywords: UML Security, Security Modelling, Security Design, Security Integration, Secure Software Engineering,
SOA Security, Model-Driven Security.

Abstract: Service oriented computing is increasingly accepted as a cross-disciplinary paradigm to integrate distributed
application functionality through service interfaces. Integration through services as entry points for inter-
organisational collaboration can be achieved by exchanging data in messages. In this architectural style, the
security of sensitive exchanged data is essential. Security needs to be carefully considered during the entire
life-cycle (Devanbu, 2000). Unfortunately, current UML-based modelling approaches do not support the
adequate integration of message security concerns. In this paper, we investigate various integration options
with UML systematically. The evaluation encompasses most of the options that are proposed today in
science and industry as UML profiles. We conclude that neither of those approaches is sufficient for the
systematic and comprehensive treatment of message security during modelling. To this end, we propose a
new approach that is based on UML and very minor extensions of OCL.

1 INTRODUCTION

This section provides a brief review followed by a
description of the contribution of this paper.
Afterwards, a sample scenario that is used
throughout this paper as well as the organisation of
this paper is explained.

1.1 Status Quo

Basic services and composite services, their
descriptions as well as operations that utilise or
produce those descriptions constitute the foundation
of Service-Oriented Architectures (Papazoglou,
2003). Unfortunately, most work on SOA is
focusing on the operations at runtime while design
methodologies and engineering principles
underlying the services have not been considered
sufficiently (Papazoglou, 2002).

Due to the abundance of Web Service
technologies, Model-Driven Engineering (MDE)
approaches are increasingly gaining momentum in
the area of service-based applications. One
fundamental assumption in MDE is the
consideration of models as first-class artefacts
(Bézivin, 2005). If security is considered in a MDE
approach adequately, the most important security

enforcement artefacts as the glue code, such as
AspectJ code, and the security deployment
descriptors, such as a WS-SecurityPolicy document
and other files that are specific to the target
middleware, can be generated automatically as well.
This is important for security because
communication links in, for instance, B2B value
chains can be based on varying security
implementation and/or deployment technologies.
Unfortunately, the integration of message security
concerns into UML models has not been addressed
adequately.

1.2 Contribution

We investigate various approaches for including
message security into application models that are
expressed in the Unified Modeling Language
(UML), version 2.0. UML can be used to model any
type of a system under study for which it is
reasonable to make statements about the data
maintained and the behaviour exhibited by the
system (Seidewitz, 2003). It is the de facto standard
modelling language, and it is supported by a plenty
of modelling tools.

Most of the work that is addressing message
security at the model layer is based on the UML
profile approach. We conclude that neither of the

365
Mehr F. and Schreier U. (2007).
MODELLING OF MESSAGE SECURITY CONCERNS WITH UML.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - ISAS, pages 365-374
DOI: 10.5220/0002355703650374
Copyright c© SciTePress

approaches supported by UML is sufficient for the
systematic treatment of message security during
modelling, including UML profiles. To this end, we
propose a new approach that is based on UML and
very minor extensions of the Object Constraint
Language (OCL).

This paper focuses on one aspect of security,
namely the confidentiality and integrity protection of
data that are exchanged between distributed services
(Ross, 2001). Hence the term message security
because data is carried in messages. Sample
messages are SOAP envelopes if a Service-Oriented
Architecture is realised with Web Service
technologies. Security concerns of data during their
processing or of data in storage are not addressed in
this paper. Furthermore, other life-cycle phases than
modelling, such as implementation, publishing,
discovery, selection, enactment, monitoring and
adaptation, are not considered in this paper.

1.3 Sample Scenario

We have chosen a well-known order scenario. It is
used throughout this paper. An excerpt of the
scenario is depicted in Figure 1. Note that the design
of the sample scenario in Figure 1 does not yet
contain the model of security.

Figure 1: Sample scenario.

A service provider offers the service OrderEntry.
A sample service provider selling products might be
Amazon. OrderEntry is offered through the ports
OnlineServices and Back-OfficeServices. It is
modelled as an UML interface with the additional
stereotype service. It provides a single public
operation named createOrder(..). The exact
signature of this operation is not important in this
context. Sample input messages are credit card

information, order and shipment information. Credit
card data are modelled in a class named
CreditCardInfo. This class is annotated with the
stereotype message.

1.4 Organisation

The remainder of this paper is organised as follows.
Section 2 introduces different message security
integration approaches with UML systematically. It
begins with the easist approach and ends with the
discussion of the most flexible approach that is
supported by UML. Section 3 presents the proposed
approach. Sections 4 and 5 conclude with discussion
on related work.

2 SECURITY INTEGRATION
OPTIONS

This section scrutinises different, and mostly
complimentary, techniques for integrating message
security into application models that are expressed in
UML (see also Figure 1).

2.1 UML and OCL as is

In this section, we examine how message security
concerns can be modelled with UML and OCL as is.
Suppose that the integrity and confidentiality are
required for credit cards numbers. To this end, the
attribute CreditCardInfo::number has to be
annotated with message security. In this paper,
double colons are used to identify composed names.
Figure 2 illustrates a sample message security
model. It is not complete yet sufficient to delineate
the concepts.

Integrity and Confidentiality are message
security requirements. MessageSecurityRequirement
is realised by a cryptographic mechanism.
Symmetric cryptography may be used to encrypt
data. Digital signatures are used to ensure the
integrity of data. Asymmetric cryptography is
required in order to generate or validate digital
signatures.

Cryptography utilises keys. The number of keys
that are used depends on the specific cryptraphic
mechanism. For instance, symmetric cryptography is
based on a shared symmetric key. Additionaly, the
number of keys can also depend on the usage
context. For instance, during the digital signature
creation process, the private key of an entity, such as
of a service provider, is required. However, if

ICEIS 2007 - International Conference on Enterprise Information Systems

366

validating a signature, the private key of the
verifying entitiy as well as the public key of the
signer is required. Key classes are not depicted in
the figure except of the structure of the symmetric
key.

Figure 2: Excerpt of a security model.

An autogenerated key is a symmetric key which
is created at runtime. The attribute
AutogeneratedKey::transfer is used to specify
whether a symmetric key has to be transferred to the
target service. If true, one can specify security
requirements on that key as well. For instance, it
might be necessary that an autogenerated key must
itself be kept confidential during transmit too.

CompositeRequirement is a composed message
security requirement as it consists of more than one
requirement. Sequencing is used to specify the
ordering of computation. For instance, if integrity
and confidentiality are required for the same data,
IntegrityFirst can be used to indicate that the digital
signature of that data must be created before its
encryption. At the receiver side, the corresponding

data are decrypted followed by the verification of
the signature of the data.

OCL can be used to restrict the way in which the
security model may be utilised. For instance, with
the following OCL expression it is formalised that
symmetric cryptography is based on one key only
(line 4). It has to be of type SymmetricKey (lines 5-
6). Additionally, it is specified in lines 7-8 that only
the algorithms defined in lines 2-3 are allowed.

1 context SymmetricCryptography:
2 def: supportedAlgorithms : Set
3 (‘Twofish’, ‘AES’,…)
4 inv: self.usedKey->size() = 1 and
5 self.usedKey-> first().
6 oclIsTypeOf(SymmetricKey) and
7 supportedAlgorithms.includes
8 (self.algorithm)
Now suppose that confidentiality is required for

CreditCardInfo::number. The following code
excerpt illustrates how OCL can be used to integrate
parts of the security model defined previously into
CreditCardInfo::number.

1 context CreditCardInfo inv:
2 self.number.oclIsTypeOf
3 (Confidentiality) and
4 self.number.
5 realisedBy.oclIsTypeOf
6 (SymmetricCryptography) and
7 self.number.realisedBy.
8 algorithm = ‘AES’ and
9 self.number.realisedBy.
10 usedKey->first().oclIsTypeOf
11 (AutogeneratedKey) and
12 self.number.realisedBy.
13 usedKey->first().transfer = true
14 and
15 self.number.realisedBy.
16 usedKey->first().
17 securityRequirement.
18 oclIsTypeOf(Confidentiality)
19 and
20 self.number.realisedBy.usedKey
21 ->first().securityRequirement.
22 realisedBy.oclIsTypeOf
23 (AsymmetricCryptography)
24 …
It is defined in lines 2-3 that

CreditCardInfo::number must be of type
Confidentiality. The specification expressed in OCL
constitutes the security view on the model element
CreditCardInfo::number. As depicted in Figure 1, it
is also of type Integer. In order to model explicitly
that CreditCardInfo::number is an Integer and
confidential, one can apply the multiple inheritance
technique. For instance, a type named Both can be
defined. It specialises Integer as well as
Confidentiality. Both may now be assigned to

MODELLING OF MESSAGE SECURITY CONCERNS WITH UML

367

CreditCardInfo::number equally as Integer is
assigned to it in Figure 1.

CreditCardInfo::number has to be realised by
symmetric cryptography (lines 4-6), and the
algorithm AES has to be applied (lines 7-8). The
symmetric key has to be generated at runtime (lines
9-11), and it has to be transferred to the target entity
(lines 12-13). The confidentiality of the key has to
be ensured as well (lines 15-18). The confidentiality
of the key must be realised through asymmetric
cryptography (lines 20-23). Equally as illustrated in
this example, one can specify the integrity as well as
both requirements (see class CompositeRequirement
in Figure 2).

The advantage of this approach is that it is based
on standard UML and OCL. Hence, this approach
can be applied with any modelling tool that supports
UML 2 and OCL. As depicted previously, one can
specify composite message security policies as well.
For instance, in lines 15-18, confidentiality is
specified for the transient symmetric key which in
turn is used to ensure the confidentiality of some
data.

However, as UML and OCL lack any types of
security semantics, the security model in Figure 2 as
well as the OCL expression cannot be validated
semantically. This is true because the security model
in Figure 2 constitutes a security domain model that
is not expressed in a security Domain Specific
Language (DSL). It is expressed in UML instead.
Futhermore, the model in Figure 2 together with the
OCL statements cannot be used in transformation
rules to generate the security artefacts out of the
integrated models in a MDE process. This is true
because transformation rules should be written
against metamodels and applied to models. The
security model and the OCL code are expressed in
languages that suffer security constructs.
Consequently, this approach can only be used to
document software.

2.2 UML Profiles

UML profile is a standard extension mechanism. It
facilitates the definition of new dialects. Any
metaclasses from the UML metamodel can be
extended toward a particular domain, platform or
method. This is not a first-class extension
mechanism because it does not allow a metamodel
to be modified. The referenced metamodel is present
in read-only mode instead.

Profiles are specific types of packages carrying
limited kinds of metaclasses (called stereotypes) and
metaatributes (named tag definitions or stereotype

properties). Figure 3 depicts the application of an
excerpt of a message security profile. The
requirements integrity and confidentiality are
attached to CreditCardInfo::number through
corresponding stereotypes. In this example, values
are assigned to stereotype properties in a comment
block. The properties provide detailed instructions
on how to implement the requirements. That is,
stereotypes are used to indicate requirements (what),
whereas properties are used to specify how to
enforce the requirements, but with the operational
data only that are relevant at the modelling stage.

Figure 3: Application of a message security profile.

The main advantage of this approach is that
stereotypes and their properties can drive the
transformation rules. In the industry, there is a broad
tool support for the profile mechanism too. Many
authors have been applying this approach. For
instance, stereotypes that are specific to the Web
Service technology, such as WebServiceCall, and
properties, as portType or wsdl, are proposed in
(Skogan, 2004). The generation of WSDL and XML
schema documents out of stereotyped UML classes
is discussed in (Grønmo, 2004). A few basic security
stereotypes are defined in (UML Working Group,
2006b). For Service-Oriented Architectures, an
UML profile is defined in (Wada, 2006). In this
single profile, fundamental concepts of a SOA, such
as services and messages, are defined together with
message security concerns as encryption algorithm.
This profile is applied during the modelling phase
exactly as described in this section.

However, this meta-modelling technique is very
limited. For instance, it is very hard to model
composition relations between stereotypes. The
composition is especially important for security
because security concerns can be related to non-
functional properties, including security, as well. For
instance, how can the modeller express the
following two security intentions with the UML
profile approach: “the password that is used for
authentication should be encrypted according to a
specific policy”.

ICEIS 2007 - International Conference on Enterprise Information Systems

368

Additionally, the separation of concerns principle
is weakened heavily with this approach because
security specifications are scattered across
application models. For instance, in Figure 3,
CreditCardInfo::number is tangled with integrity
and confidentiality concerns. It is not possible to
specify message security policies separately.
Therefore, a single policy cannot be applied to (i.e.,
reused in) several model elements. As a
consequence, in large application models, the
management of the security policies becomes a
tough problem. For instance, the change of a
security policy can require its alteration at every
place where it is applied through stereotypes and
stereotype properties. Additionally, the modified
model(s) must be regenerated.

The next section investigates a complimentary
approach. It bypasses the problem of tangling as
discussed previously.

2.3 UML Templates

UML’s package Templates provides advanced
(de)composition capabilities for models. This
section investigates the suitability of UML templates
for the integration of message security.

UML templates support the isolated modelling of
any types of concerns such as non-functional or
technological concerns. Templates are composed
into the architecture of an application through
binding. Binding is a task which replaces the
specified parameters of a template with the actual
parameters of an application model. Templates have
in UML a similar function as aspects in Aspect-
Oriented Programming (Clarke, 2001).

Figure 4 illustrates the binding of message
properties. Area A contains the models that form the
functional part of an application. Security is
specified in area B similarly as presented in the
previous sections. However, the model elements in
area B are independent of the model elements in area
A. Consequently, the security specifications in B are
reusable between different application models. To
recapitulate, this is not possible with the UML
profile mechanism which is widely applied today.
The composition into a particular application model
(i.e., reuse) is carried out in area C.

In this example, MessageTemplate represents a
message template. MessageTemplate::attribute1 and
MessageTemplate::attribute2 constitute formal
template parameters. These are annotated with
security stereotypes and stereotype properties in the
same manner as introduced in the previous section.
That is, this approach is complementary to UML

profiles. Area B indicates what to do, such as
“enforce integrity”, and how to achieve it, for
instance “use digital signatures”. In area C, it is
specified where to apply the security model(s). In
this instance, CreditCardInfo::number is bound to
both parameters of the message template.

The sequencing can be specified either explicitly,
for instance as an additional stereotype, or
implicitly. For instance, the binding sequence of the
formal parameters in area C can imply the
sequencing. In this case, integrity must be enforced
first followed by confidentiality.

Figure 4: (De)Composition of structural models.

An advanced application of UML templates for
message security is depicted in Figure 5. It considers
additionally behavioural concerns during the
specification of security in area B such as the flow of
data and execution. The description in this figure is
incomplete but sufficient to impart concepts.
Syntactic details are omitted as well.

SecureService represents a service template. Its
single operation is exposed as a formal template
parameter. The activity BusinessTask specifies the
template flow for the operation. It consists of three
actions. Each action constitutes a call to a behaviour
specification. The second action calls a behaviour
named MainProcess which is exposed as a formal
parameter as well.

MODELLING OF MESSAGE SECURITY CONCERNS WITH UML

369

Figure 5: A service template.

The lower area in Figure 5 represents the two
activities that are connected with the actions of the
same name. PostProcess consists of two concurrent
flows. The upper (lower) flow encrypts (signs) data.
The corresponding sensitive data are obtained
through the actions GetEncryptionData and
GetSignatureData. These represent calls to
operations of the same name. Those operations are
declared as template parameters as well.

The lowest area in Figure 5 depicts parts of the
sample activity Sign. It contains the sequencing of
actions and the flow of data for a signature creation
process. The detailed security properties for each
action can be specified in a flat list through
stereotype properties similarly as described in
section 2.2.

Figure 6 shows the binding of the template
SecureService with the actual data of the service
OrderEntry. Assume that OrderInfo contains some
order information as the ordered items and shipping
address.

OrderEntry::createOrder(..) is bound to the
single operation of the service template. The
behaviour OrderEntry::ProcessOrder is bound to
SecureService::MainProcess. Assume that
ProcessOrder constitutes a behaviour specification
as an activity. It is owned by OrderEntry. The other
two private operations defined in OrderEntry are
used to provide the sensitive data that are required in
the corresponding two activity actions in area B.

Figure 6: Binding of OrderEntry.

The first approach presented in Figure 4 supports
the isolated modelling of (cross-cutting) concerns.
Message security properties are specified in
structural models in area B. This approach is
complementarily in so far as message security can
be modelled in B according to every option
discussed earlier, if needed.

Area B is independent of any application models
because this area is concerned primarily with the
questions what to do and how to enforce security,
but not where and when to enforce security. The
composition is established in area C. It indicates
where to apply security. This is achieved through
parameterisation. In addition, a further dimension
can be defined that governs when a specific
composition of the models is valid. This subject is
not addressed for UML templates in this paper.

The second approach presented in Figure 5 is
more flexible because behavioural elements are
defined as formal template parameters additionally.

The UML templates mechanism facilitates reuse
and evolution of security specifications in area B
because those are maintained in their own space.
However, this approach can lead to more complex
models, especially in area B, as can be inferred from
Figure 5. Consequently, without a systematic
approach that is also supported by tools, the
comprehensibility and manageability of the
application architecture can suffer significantly.

Another disadvantage is that the models in area A
cannot always be isolated completely from the data
in area B. For instance, as illustrated before, the
operations OrderEntry::orderInfo() and
OrderEntry::creditCardInfo() must be designed in
area A explicitly because these are required in area
B. That is, area A has to be designed with security in
mind (i.e., design for security). Consequently, this
approach is not sufficient for the systematic
treatment of message security either.

ICEIS 2007 - International Conference on Enterprise Information Systems

370

3 PROPOSED APPROACH

This section begins with a sample policy followed
by a description of the proposed integration
approach. Afterwards, different integration scenarios
based on this approach are presented.

3.1 A Message Security Policy

This section presents a sample and simple policy in
order to show our integration approach in the
subsequent sections. The policy is presented in UML
2 notation. It is not the purpose of this paper to
introduce a full-fledged policy language as the main
focus here is on the subject of integration.

Figure 7 shows the black-box view of a message
security policy for the domain Payment (see also
Figure 1). The policy resides in area B (according to
the template-based approach). In the next two
figures, colons are placed immediately before the
type of instance specifications. The optional names
of instance specifications are placed before colons.
Equal signs are used to assign values to attributes.
Values that can be defined unrestrictedly are placed
in single quotation marks. Commas are used to
separate values. Semicolons are used to detach
attributes if these are carried in the same line.

Figure 7: Policy Payment.

The policy begins with an identifier (Payment).
Payment consists of the two specifications
Payment::MyIntegrity and
Payment::MyConfidentiality. These can be applied
to application models together.

If Payment is referenced from a model element as
a whole, its integrity has to be enforced followed by
its confidentiality. This information is carried in the
attribute sequence which is displayed in the first
compartment of Payment.

For illustrative purposes, the specification
Payment::MyConfidentiality is depicted in Figure 8.
The specification of Payment::MyIntegrity is not
presented in this paper.

Figure 8: Payment::MyConfidentiality.

The three attributes indicate that confidentiality
has to be enforced through symmetric cryptography
and the algorithm AES.

All instance specifications in
Payment::MyConfidentiality are unnamed because
these are not supposed to be referenced from
elsewhere. Symmetric key data are defined next. A
symmetric key has to be generated at runtime
automatically. It must have a length of 128 bits. The
key has to be transferred to the target entity of the
corresponding message.

As the key must be kept confidential during
transmit, it contains an inner, anonym confidentiality
specification. The nesting mechanism enables to
qualify specific aspects of another assertion. Here,
the symmetric key has to be encrypted by means of
the asymmetric algorithm RSA. The corresponding
certificate data are defined too.

3.2 Integration Approach

Security policies are specified separately as in the
UML template approach. However, compared to
UML templates, security policies do not need to be
modelled. One can leverage a security language for
that purpose instead. For instance, sample textual
policies expressed in XML and WS-SecurityPolicy
can be found in (Nakamura, 2005) and (Tatsubori,
2004). Not all kinds of information related to
security should be specified in the design phase. For
instance, operational level data are relevant as the
security enforcement mechanism. However,
deployment level information should be carried in
the deployment phase such as the filename of a key
store. In section 3.1, we have presented a sample
policy in the UML 2 notation.

The integration of message security policies into
application models is based on OCL with very minor
extensions. The ability to own constraints, including
constraints expressed in OCL, has been considered
thoroughly during the design of the UML

MODELLING OF MESSAGE SECURITY CONCERNS WITH UML

371

metamodel. For instance, the metaclass Namespace
is capable of owning constraints. The constraints can
apply to elements in the Namespace. For instance, as
Class is a Namespace, constraints owned by Class
can apply to its named elements like properties and
operations. Next sections discuss the integration into
some kind of model elements that can be used to
represent concepts in a Service-Oriented
Architecture. Due to space limitations, only a few
examples are given to illustrate the approach. We
will begin with messages.

3.3 Integration into Message Classes

Message security policies can be attached to
messages directly. In this option, the integrated
policies have a global scope; that is, policies are
enforced at each remote interaction point. This
option should be chosen if the message security
policies for the sensitive information carried in a
message class is identical for each interaction point.
This might be the case if the system under study
collaborates with other entities through insecure
protocols only as SOAP and HTTP.

CreditCardInfo contains sensitive attributes.
Suppose that integrity and confidentiality are
required for CreditCardInfo::number. Moreover,
integrity is demanded for CreditCardInfo::validTo.
Integrity and confidentiality are specified in the
policy Payment (see Figure 7 and Figure 8). The
policy and parts thereof are integrated into messages
with OCL as follows.

context CreditCardInfo inv:
self.number.isSecure(“Payment”)
 and
self.validTo.

isInteger(“Payment.MyIntegrity”)
This constitutes the area C of the UML template

approach. The keyword context introduces the
context of this expression which is the message class
CreditCardInfo. The keyword inv indicates that the
following constraints, which are of type Boolean,
must be true for all instances of CreditCardInfo. The
reserved word self refers to the contextual instance.

CreditCardInfo::number is declared to be
“secure” according to the policy Payment. It is
specified in the policy that integrity has to be
enforced followed by confidentiality (see Figure 7).

CreditCardInfo::validTo has to be integer
according to the sub-specification
Payment::MyIntegrity.

The type of enforcement in an interaction point
depends on the current communication path. For
instance, CreditCardInfo::number will be signed
and encrypted on the way from client to server
(output channel). Conversely, when arriving in a
response message (input channel), it has to be

decrypted and the signature needs to be validated.
To recapitulate, in this integration option the
enforcement will be performed globally, namely in
the context of the overall application, independent of
the services that are exchanging credit card
information.

3.4 Integration into Services

Security policies can be attached in the context of a
service operation. This option should be used if the
message security policies for a message vary in
different operations. This is exemplified next.

Suppose that CreditCardInfo is utilised in
OrderEntry::createOrder(oI : OrderInfo) indirectly,
through the message class OrderInfo. Indirectly
means that a type is not specified as an input
parameter of an operation directly but is navigable
from one of the directly declared input parameters.
In this example, OrderInfo contains a property
(association) named creditCardInfo of type
CreditCardInfo.

Additionally, assume that CreditCardInfo is
required in service Payment indirectly, through
Payment::book(..). Furthermore, assume that
Payment is used over secure networks whereas
OrderEntry is provided over insecure networks (see
ports in Figure 1). In this case, message security for
CreditCardInfo in the context of OrderEntry must
be enforced differently than for Payment.

The following OCL expression integrates
message security policies into the same message
class as in the previous section but in the context of
the service operation OrderEntry::createOrder(oI :
OrderInfo) only.

context OrderEntry::createOrder(oI :
OrderInfo)

pre:
oI.creditCardInfo.number.isSecure(“P

ayment”)
 and
oI.creditCardInfo.validTo.

isInteger(“Payment.MyIntegrity”)
The keyword context refers to the classifier

possessing this operation. As the operation is
included in OrderEntry, this service constitutes the
classifier. The keyword pre indicates that the
following two conditions represent pre-conditions.
Message security is integrated into
OrderInfo::creditCardInfo identically as in section
3.3. Hence, it is specified that before the operation
executes, CreditCardInfo::number must be
decrypted, and its digital signature has to be
validated. The integrity of CreditCardInfo::validTo
has to be validated likewise. Post-conditions can be

ICEIS 2007 - International Conference on Enterprise Information Systems

372

specified similarly, by putting the standard label post
before the actual post-conditions.

3.5 Integration into Ports

If a policy is attached in the context of a service,
which is the case in the previous two options, the
security policy is enforced for each entity
implementing that service. However, depending on
the current port, the message security policies can
vary.

As depicted in Figure 1, the service OrderEntry
is provided at two ports. Suppose that
OnlineServices corresponds to the SOAP interface.
All provided (required) services at this port are
offered (demanded) as Web Services. Likewise,
assume that port Back-OfficeServices corresponds to
the protocol RMI/IIOP. Message security for Back-
OfficeServices is not required if this port is used
internally and/or in a secure environment. In this
case, message security policies should be attached in
the context of ports. The next sample code snippet
illustrates how to specify security for
CreditCardInfo as in the previous section but for the
port OnlineServices only.

context OrderProcess inv:
self.OnlineServices.OrderEntry.cI.nu

mber.isSecure(“Payment”)
 and
self.OnlineServices.OrderEntry.cI.va

lidTo.isInteger(“Payment.MyIntegrity”)
The component OrderProcess represents the

context classifier; that is, it owns the expression (see
also Figure 1). The keyword self is utilised as
before; to reference named elements that are owned
by the classifier. The whole policy Payment and the
sub-specification Payment::MyIntegrity are applied
to the two attributes of CreditCardInfo as before.

Ports are not restricted to components, but can be
employed with any model element that is of type
EncapsulatedClassifer. For instance, it is possible to
model classes that provide or require (the same)
services at different interaction points as well.
Hence, our approach is not restricted to the
modelling of components providing and/or requiring
services.

4 RELATED WORK

An UML extension for security called UMLSec is
proposed in (Jürjens, 2002). In this approach, model
elements are annotated with stereotypes and
stereotype properties for capturing security policies,

as introduced in section 2.2. A model centric
approach for specifying and integrating access
control policies is presented in (Lodderstedt, 2002).
From the architecture point of view, a connector-
centric approach is introduced in (Ren, 2005). We
investigate various mechanisms for including
message security concerns into application models
in a systematic way, including UML profiles.

Initial research work toward the modelling of
service-based applications can be found in
(Manolescu, 2005), (Skogan, 2004) and (Baina,
2004). However, these authors disregard any kinds
of security concerns. Consequently, security is
considered as an afterthought mostly. An UML
profile including SOA concepts through stereotypes,
such as message and service, and security aspects
through stereotype properties, as encryption
algorithm, is proposed in (Wada, 2006). We evaluate
the UML profile mechanism in section 2.2 and
conclude that it is not sufficient for the
comprehensive treatment of message security. To
this end, we propose an advanced approach which is
based on OCL. It is complementary to UML profiles
and UML templates.

Recent research results in the area of separation
of concerns on the level of modelling can be
obtained in, among others, (Gray, 2003), (Clarke,
2001), (Katara, 2003) and (Jacobson, 2004). Neither
of them investigates the suitability to message
security as has been done in this paper. Message
security on the level of program code is considered
in (Baligand, 2004).

5 CONCLUSION

The security of sensitive exchanged data has to be
addressed in Service-Oriented Architectures.
Message security needs to be integrated into earlier
engineering phases. Unfortunately, current
approaches do not support this adequately as most
work is focused on UML profiles. In this paper we
investigated several approaches that are applicable
with the UML systematically, by beginning with the
easiest approach and ending with UML templates
combined with UML profiles. Based on the findings
during the evaluation, we conclude that neither of
the approaches provided by UML is sufficient for
the systematic treatment of message security during
modelling.

To this end, we propose a new approach that
leverages the capability of UML model elements to
own constraints expressed in OCL. As the proposed
approach does not entail any proprietary extensions

MODELLING OF MESSAGE SECURITY CONCERNS WITH UML

373

to UML it can be implemented in any modelling
tools that support UML 2. The proposed approach
can be applied complementarily to UML profiles
and UML templates, if necessary.

REFERENCES

Baligand, F., Monfort, V., 2004. A concrete solution for
web services adaptability using policies and aspects. In
Proceedings of the 2nd International Conference on
Service Oriented Computing. ACM Press, NY, USA,
pp. 134-142.

Baina, K., Benatallah, B., Casati, F., Toumani, F., 2004.
Model-Driven Web Service Development. In
Proceedings of the 16th International Conference on
Advanced Information Systems Engineering. Springer,
Berlin/Heidelberg, Germany, pp. 290-306.

Bézivin, J., Devedžić, V., Djurić, D., Favreau, J., Gašević,
D., Jouault, F., 2005. An M3-Neutral infrastructure for
bridging model engineering and ontology engineering.
In Proceedings of the First International Conference
on Interoperability of Enterprise Software and
Applications. Springer, Germany, pp. 159-171.

Clarke, S., Walker, R.J., 2001. Composition patterns: an
approach to designing reusable aspects. In
Proceedings of the 23rd International Conference on
Software Engineering. IEEE Computer Society,
Washington, DC, USA, pp. 5-14.

Devanbu, W.T., Stubblebine, S., 2000. Software
Engineering for Security: a Roadmap. In Proceedings
of Conference on the Future of Software Engineering.
ACM Press, New York, USA, pp. 227-239.

Gray, J., Bapty, T., Neema, S., Schmidt, D.C., Gokhale,
A., Natarajan, B., 2003. An approach for supporting
aspect-oriented domain modelling. In Proceedings of
the second international conference on Generative
programming and component engineering. Springer,
NY, USA, 2003, pp. 151-168.

Grønmo, J., Skogan, D., Solheim, I., Oldevik, J., 2004.
Model-driven Web Services Development. In IEEE
International Conference on e-Technology, e-
Commerce and e-Services, eee, 2004, pp. 42-45.

Jacobson, I., Ng, P., 2004. Aspect-Oriented Software
Development with Use Cases. Addison Wesley, NY,
USA.

Jürjens, J., 2002. UMLSec: Extending UML for Secure
Software Development. In Proceedings of the 5th
International Conference on The Unified Modeling
Language. Springer, London, UK, pp. 412-425.

Katara, K., Katz, S., 2003. Architectural Views of
Aspects. In Proceedings of the 2nd International
Conference on Aspect-Oriented Software
Development. ACM Press, NY, USA, 2003, pp. 1-10.

Lodderstedt, T, Basin, D.A., Doser, J., 2002. SecureUML:
A UML-Based Modeling Language for Model-Driven
Security. In Proceedings of the 5th International
Conference on The Unified Modeling Langauge.
Springer, London, UK, pp. 426-441

Manolescu, I., Brambilla, M., Ceri, S., Comai, S.,
Fraternali, P., 2005. Model-driven design and
deployment of service-enabled web applications. In
ACM Transactions on Internet Technology. ACM
Press, NY, USA, volume 5, issue 3, pp. 439-479.

Nakamura, Y., Tatsubori, M., Imamura, T., Ono, K., 2005.
Model-Driven Security Based on a Web Services
Security Architecture. In Proceedings of the IEEE
International Conference on Services Computing
IEEE Computer Society, NY, USA, volume 1, pp. 7-
15.

Papazoglou, M.P., Yang, J., 2002. Design Methodology
for Web Services and Business Processes. In
Proceedings of the Third International Workshop on
Technologies for E-Services. Springer, London, UK,
pp. 54-64.

Papazoglou, M.P., Georgakopoulos, D., 2003. Service-
Oriented Computing. In Communications of the ACM.
ACM Press, New York, USA, volume 46, issue 10,
pp. 24-28.

Ren, J., Taylor, R., Dourish, P., Redmiles, D., 2005.
Towards an Architectural Treatment of Software
Security: a Connector-Centric Approach. In
Proceedings of the 2005 workshop on Software
engineering for secure systems-building trustworthy
systems. ACM Press, New York, USA, pp. 1-7.

Ross, A., 2001. Security Engineering. A Guide to Building
Dependable Distributed Systems, John Wiley & Sons,
New York, Chichester, Weinheim.

Seidewitz, E., 2003. What Models Mean. In IEEE
Software. IEEE Computer Society Press, Los
Alamitos, CA, USA, volume 20, issue 5, pp. 26-32.

Skogan, D., Gronmo, R., Solheim, I., 2004. Web Service
Composition in UML. In Proceedings of the
Enterprise Distributed Object Computing Conference.
Eight IEEE International, IEEE Computer Society,
Washington, DC, CA, USA, pp. 47-57.

Tatsubori, M., Imamura, T., Nakamura, Y., 2004. Best-
Practice Patterns and Tool Support for Configuring
Secure Web Services Messaging. In Proceedings of
the International Conference on Web Services. IEEE
Computer Society, Washington, DC, CA, USA, pp.
244-251.

UML Working Group, 2006b, UML Profile For Modeling
Quality of Service and Fault Tolerance Characteristics
and Mechanisms. Version 1.0, OMG document
number: formal/06-05-02.

Wada, H., Suzuki, J, Oba, K., 2006: A Service-Oriented
Design Framework for Secure Network Applications.
In Proceedings of the 30th IEEE International
Conference on Computer Software and Applications
Conference. Chicago, IL, USA, volume 00, pp. 359-
368.

ICEIS 2007 - International Conference on Enterprise Information Systems

374

