
TRANSFORMATION OF LEGACY BUSINESS SOFTWARE INTO
CLIENT-SERVER ARCHITECTURES

Thomas Rauber
Department of Computer Science, University of Bayreuth, Germany

Gudula R̈unger
Department of Computer Science, Chemnitz University of Technology, Germany

Keywords: Legacy software, incremental transformation, transformation toolset, client server.

Abstract: Business software systems in use contain specific knowledge which is essential for the enterprise using the
software and the software has often grown over years. However, it is difficult to adapt these software systems
to the rapidly changing hardware and software technologies. This so-called legacy problem is extremely cost
intensive when a change in the software itself or the hardware platform is required due to a change in the busi-
ness processes of the enterprise or the hardware technology. Thus, a common problem in business software
is the cost effective analysis, documentation, and transformation of business software. In this paper, we con-
centrate on the transformation issue of software systems and propose an incremental process for transforming
monolithic business software into client-server architectures. The internal logical structure of the software
system is used to create software components in a flexible way. The transformation process is supported by a
transformation toolset which preserves correctness and functionality.

1 INTRODUCTION

Software systems implement business processes of
an enterprise and capture essential expert knowledge
built up over decades. Due to changes in software and
hardware technologies, many enterprises need to con-
sider a change of their business software. Also, the
process of changing within an enterprise requires its
business software to be adapted or enriched with addi-
tional functionality. Thus, enterprises have to face the
fact of modernizing their software systems in order
to guarantee full functionality. The changes may con-
cern aspects of security, performance, usability, main-
tainance, as well as interactions with other software
systems or cost of the hardware platform used. Of-
ten the software also lacks features such as distributed
components, adaptivity to heterogeneous platforms or
scalability, whose current importance has been un-
known when the software systems were built. How-
ever, it is extremely difficult to incorporate these fea-
ture in today’s running business software. The inte-
gration of distributed and adaptive behavior may re-
quire a complete restructuring of a software system
and might effect many aspects of an enterprise and its

business process.
In this paper we consider the generation of dis-

tributed business software starting from a mono-
lithic legacy software system. The implementation
of effective distributed software has been studied in
many different ways, including management decision
strategies for software replacement, business process
modeling or software design principles comprising
framework approaches (Lewandowski, 1998), dis-
tributed objects (Emmerich, 2000), distributed com-
ponents (Emmerich, 2002), and middleware integra-
tion (Bernstein, 1996). Distributed software design
for the legacy problem has been treated with wrapper-
and middleware approaches. Both approaches do not
meet the requirements of highly complex business
software in use. Therefore, distributed and adaptive
aspects are lacking in most business software sys-
tems although managers and software experts are well
aware of these deficiencies.

The contribution of this paper lies in the area
of transforming business software systems into dis-
tributed software systems with extended functionality.
The specific approach comprises the following novel
issues in treating legacy software:

36
Rauber T. and Rünger G. (2007).
TRANSFORMATION OF LEGACY BUSINESS SOFTWARE INTO CLIENT-SERVER ARCHITECTURES.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - DISI, pages 36-43
DOI: 10.5220/0002348400360043
Copyright c© SciTePress



• The transformation of legacy software into dis-
tributed software takes the internal logical soft-
ware structure into account. This results in an
explicit representation of the modular structure
which can be exploited as distributed component
structure.

• The modular structure can be used to enrich the
functionality by including configurative features
and explicit workflow integration. This is sup-
ported by the creation of configuration files or ex-
plicit workflows, depending on the specific needs.

• The transformation of software is performed in an
incremental transformation process organized in
several steps. The incremental approach enables
a separation of different concerns such as logical
and modular structure, component building and
efficiency. Also the transformation process al-
lows interactive decisions during the transforma-
tion process concerning the distributed target ar-
chitecture and/or the logical configuration level.

• The incremental transformation implements as-
pects from model driven software development.
The model driven architectures (MDA) approach
proposes an incremental development of dis-
tributed software for different middleware plat-
forms. This paper applies the idea of MDA to
legacy software.

• The transformation process is supported by a
transformation toolset for transforming mono-
lithic legacy software into client-server architec-
tures. The transformation toolset uses compiler
based methods which is possible due to separa-
tion of different concerns and the incremental ap-
proach. Specification languages are used to spec-
ify module and component structures on several
levels.

The entire transformation approach brings to-
gether recent technology from software engineering,
distributed systems, compiler design, and software
development of modern business software. The de-
sign and implementation of the transformation pro-
cess proposed in this paper is performed as part of
the TransBS1 project by researcher and practitioners
in these areas including software development com-
panies.

The rest of the paper is organized as follows: Sec-
tion 2 presents background information about dis-
tributed systems, workflow technologies, and MDA.
Section 3 discusses requirements of effective software
transformation. Section 4 outlines the transforma-
tion process and the architecture of the transformation
toolset. Section 5 concludes.

1http://www.transbs.de

2 BACKGROUND

The design and implementation of the transformation
process combines several different areas, including
distributed systems, component based software de-
sign, transformation approaches, MDA, and workflow
technology.

2.1 Component-based Software Design

Different approaches have been proposed to support
the communication between distributed objects in
heterogeneous distributed environments. An exam-
ple is the Common Object Request Broker Architec-
ture (CORBA) defined by the Object Management
Group (OMG). For the development of solutions that
are independent from a specific programming lan-
guage, an Interface Definition Language (IDL) can be
used which allows the definition of interfaces of ob-
jects and data structures to be exchanged. Based on
CORBA and the remote procedure call (RPC) mech-
anism, the remote method invocation (RMI) of Java
has been developed. A distributed execution of the
Component Object Model (COM) can be obtained by
the DCOM extension. These approaches are useful
for the implementation of the distributed framework
into which the generated components can be mapped.

Distributed interacting componentscan be real-
ized with different systems:

• COM+ from Microsoft supports the execution of
COM components;

• Enterprise Java Beans (EJB) from Sun allows the
distributed execution of Java components;

• the CORBA component model (CCM) extends
the EJB approach to other programming lan-
guages.

These systems provide a general framework for dis-
tributed components, but they do not provide support
for a specific application area. Moreover, these ap-
proaches are not primarily intended for the distributed
execution of workflows and there is no direct support
for such an execution.

The development ofcomponent-based software
systemsis considered by Component-based Software
Engineering (CBSE) approaches (Crnkovic and Lars-
son, 2002). CBSE approaches are mainly based on
component approaches like COM+, EJB or CORBA,
and provide techniques for developing modular soft-
ware systems. These approaches often comprise tech-
niques for an incremental development of software
systems (Mehta and Heineman, 2002) and for com-
posing existing components according to given re-
quirements and specification (Cao et al., 2005; Zhao

TRANSFORMATION OF LEGACY BUSINESS SOFTWARE INTO CLIENT-SERVER ARCHITECTURES

37



et al., 2003). Techniques of Generative Program-
ming (Czarnecki and Eisenecker, 2000) and Aspect-
Oriented Programming (AOP) (Kiczales et al., 1997)
can also be integrated. The re-use of software
components is especially important for long-running
projects. CBSE techniques can be used as a gen-
eral framework to support the distributed execution
of workflows.

2.2 Business Software Transformation

The transformation of legacy software has been con-
sidered by many research groups. Most approaches
concentrate on the transformation of legacy software
into modular or object-oriented systems or on the
extraction of the business logics. New approaches
also consider distributed solutions, e.g. by providing
middleware for data integration (Akers et al., 2004;
Menkhaus and Frei, 2004). For distributed systems,
performance aspects play an important role (Litoiu,
2004), since additional latency and transfer times may
be necessary, e.g., when replacing legacy software by
web services using protocols like SOAP (Simple Ob-
ject Access Protocol) (Brunner and Weber, 2002). For
the transformation of software systems, approaches
like DMS (Baxter et al., 2004) have been developed
and have been applied to large software systems (Ak-
ers et al., 2004). Graph-based visualization tools are
often useful for the transformation (Balmas, 2004).
Clustering methods can be applied for identifying
modules of the legacy software and will be one choice
for providing modules in the TransBS project (Al-
Ekram and Kontogiannis, 2004; Lung and Zaman,
2004; Andritsos and Tzerpos, 2003).

Although there are many different approaches,
there exists no generally accepted method for the in-
cremental transformation of software systems. An
important reason for this lies in the fact that there
are many different distributed platforms like CORBA
or EJB that cannot be combined in an arbitrary way.
Therefore, a distributed realization often requires a
new implementation of the business logics.

The Model Driven Architecture (MDA)2 approach
(Siegel, 2005) addresses this problem and uses a
model-based approach for the step-wise generation
of distributed, component-based software. The step-
wise generation starts with an UML specification of
the static interfaces and the dynamic behavior of the
components in a platform-independent model (PIM).
A series of mappings that are given as UML exten-
sions like CORBA profiles or Enterprise Application
Integration (EAI) profiles leads to the generation of a
platform-specific model (PSM). Based on this, MDA

2http://www.omg.org/mda

tools are used for generating program code for a spe-
cific platform.

Another important aspect of distributed business
software is the transparency of the distributed execu-
tion and the integration of explicit workflow defini-
tions. The usual feature of transparency of distributed
execution seems to be un-appropriate for business
software systems, since expensive remote requests
may be generated if there is no knowledge of the dis-
tributed nature of execution.

The workflow technology for the formal descrip-
tion of the execution of business processes consti-
tutes an important contribution for developing flexi-
ble business software. Many workflow management
systems have been realized, but few of these consider
distributed workflows. The Workflow Management
Coalition (WFMC)3 defines standards for workflow
architectures also comprising aspects of a distributed
execution. A direct integration of workflows in the
technology of distributed components has not been
considered often (Emmerich, 2002). The TransBS
project described in this paper addresses this defi-
ciency and combines technologies for the transfor-
mation of legacy software, distributed platforms and
workflow execution.

3 TRANSFORMATION
REQUIREMENTS

The transformation of an existing business software
systemS into a distributed software systemDS can
be done in many different ways, depending on the re-
quirements on the resulting software systemDS. In
our approach the requirements are determined by the
goal to keep the given functionality but to increase
the flexibility of the code so that it can be adapted to
different distributed or heterogeneous platforms and
enterprise requirements.

We concentrate on business software as it is used
in services and commercial enterprises, but our ap-
proach is not limited to this line of business. The typ-
ical method is to modify and to extend big standard
software packages such that the needs of the specific
company are met. This is the most cost effective way
to create specific business software but still requires
a great deal of programming effort since typical soft-
ware packages in use are of monolithic character. A
more flexible standard software package could ease
software adaptation for specific enterprises tremen-
dously. This leads to the following main requirements
for a transformed software productDS.

3http://www.wfmc.org

ICEIS 2007 - International Conference on Enterprise Information Systems

38



• The resulting software systemDSshould be exe-
cutable on different distributed or heterogeneous
platforms in an efficient way. This includes that
remote method or function calls are made explicit
in contrast to most distributed software, but that
the software can also be adapted easily to a dif-
ferent distributed structure. We call this property
hardware flexibility.

• The resulting software systemDSshould be flex-
ible such that business software for a specific en-
terprise with reduced or enriched functionality
can be built easily. This kind ofsoftware flexibility
is another goal for the resulting software system.

• The transformation into a software system with
hardware and software flexibility should preserve
functionalityandcorrectnessof a given systemS.

• The resulting software system should beefficient
in the sense that remote method and function calls
are implemented with low communication and
packing overhead.

To meet these requirements for the resulting software
system we propose a transformation process which
transforms a given software systemS into a flexible
distributed software systemDS.

• An intermediate representation given as auxiliary
program structure is used to support the transfor-
mation process. This representation is language
independent and appropriate for the transforma-
tion goals. The auxiliary program structure is a hi-
erarchical structure which captures the static soft-
ware structure. The highest level of the hierarchi-
cal structure is the coordination structure. This
level calls specific modules which encapsulate the
original functionality and which can exhibit a fur-
ther hierarchical structure. The hierarchical pro-
gram structure is the basis for a module structure
which decomposes the given monolithic program
code. This module structure is exploited to create

a) a flexible program structure which can be used
for enterprise specific software (software flexi-
bility) and

b) for deciding about explicit distributed heteroge-
neous execution (hardware flexibility).

• Starting with this program representation an in-
cremental transformation process transforms the
given software systemS into a modular system
and then into specific distributed software sys-
tem. The transformation steps are syntax based
and guarantee correctness. Interactive decisions
guide the transformation process.

• Efficiency in the resulting software system and its
specific derivations is achieved by the possibility

to design the specific functionality and distributed
execution in an explicit way.

To support the transformation process we propose a
transformation toolset to interactively transform soft-
ware. The next section describes this toolset in more
detail. The transformation process starts with the in-
put program and the specification of the module struc-
ture, which is essential and has to be provided by soft-
ware experts, e.g. by a clustering method and interac-
tive design. The software experts are also responsible
for making the business processes explicit by using a
workflow description as described in the next section.

4 TRANSFORMATION PROCESS

In this section, we describe software modes of the re-
sulting software system, give an overview of the trans-
formation process, and sketch the different compo-
nents of the framework into which the transformed
components are included.

4.1 Software Modes

The transformation process for creating modular flex-
ible distributed software from a given monolithic soft-
ware package is based on an intermediate software
representation which we callFlexible Software Rep-
resentation(FSR). This representation is the starting
point for a stepwise transformation of the given soft-
ware packageSinto a software package with the same
execution behavior but different properties concern-
ing the mode of execution.

We distinguish three software modes:

• The Software Subsystem mode(SSu) has an ex-
plicit modular structure derived fromS from
which subsystems can be built easily. SSu mode
systems are executed on the same platform in the
same way asS. SSu allows the selection of sub-
systems representing parts of the execution behav-
ior of S. The goal is to extract specific functional-
ities provided bySas a separate subsystem.

• TheExplicit Workflow mode(ExW) describes spe-
cific business processes by explicit workflows (in
a workflow description language such as XML).
ExW captures the business logics ofS in the form
of an explicit workflow. This is the basis for a
modification of the workflow to adapt the result-
ing system to the needs of different enterprises. It
also allows the generalization of the workflows to
configurable workflowsthat can easily be adapted
to different situations. ExW is executed on the
same platform in the same way asS.

TRANSFORMATION OF LEGACY BUSINESS SOFTWARE INTO CLIENT-SERVER ARCHITECTURES

39



Explicit
Workflow

Software Software

with as
configurable

Flexible Software Package
FSP

Subsystem Subsystem 

Distributed
SystemWorkflow

FSR

Software
Subsystem

Distributed
Software

 Distributed
Software
guided by
explicit
Workflow

Flexible Software Representation

Figure 1: Transition diagram for Flexible Software Repre-
sentation (FSR).

• The Distributed Software mode(DS) has an ex-
plicit structure of cooperating components which
can be mapped onto a specific distributed system.
The structure of DS is based on the modular struc-
ture of S as expressed by SSu. Additionally, DS
allows the mapping of modules to the entities of
a distributed system in the form of components.
The execution behavior of DS can be expressed
implicitly within the components or by explicit
workflows.

All three representation modes are created from
the FSR. A mixture of these three representation
modes results in software representations with en-
riched properties. The coarse structure of the trans-
formation from the FSR into SSu, ExW, or DS and
then into the mixed formats is depicted in Figures 1.
For example, the SSu style with explicit workflows
leads to a software package which can useconfig-
urable workflowsto easily specify specific software
subsystems for a specific enterprise. A combination
of ExW and DS, on the other hand, describes an exe-
cution mode with explicit workflows that are executed
by components in a distributed system. All three fea-
tures together result in the most flexible software rep-
resentation calledFlexible Software Package(FSP),
from which a distributed software subsystem can eas-
ily be specified by configurable workflows.

The advantage to distinguish the three software
modes and to transform the FSR in incremental steps
is that not all software products have needs for all fea-
tures. Due to efficiency reasons only those features
which are really needed should be incorporated, since
more advanced software features have higher comput-

Table 1: Software parts for the three specific software
modes SSu, ExW, DS resulting from FSR.

Flexible Software Representation – FSR
Software Explicit Distributed
Subsystem Workflow Software
SSu ExW DS

upper coordination Workflow component
level program description cooperation
lower Modules/ Modules Components
level Functions
static Programming Workflow Distributed
supportEnvironment Engine Runtime

System

ing demands.
The transformation of the FSR into SSu, ExW,

DS, or their mixed forms is done on the intermedi-
ate representation level. The intermediate representa-
tion consists of an upper level and a lower level. The
upper level describes the cooperation and coordina-
tion of software parts, thus specifying the possible dy-
namic behavior of the software. The lower part con-
tains software parts incorporating specific functional-
ities of the business software. Both together specify
the software in an internal format. The transforma-
tion process translates both levels separately into a
software representation including the newly created
features. Upper and lower level constitute the final
software (still in an intermediate format) and requires
additional static software products to be executable.
Upper level, lower level, and static software products
for SSu, ExW, and DS are summarized in Table 1.

4.2 Transformation Decisions

The entire transformation is organized in an incre-
mental transformation process including (interactive)
transformation decisions. Figure 2 illustrates the
coarse structure of the transformation process and
the decision tree. One path along the transformation
direction corresponds to one specific transformation
process producing one business software system us-
ing a specific software mode. These software sys-
tems can be implemented based on different tech-
niques like EJB or Corba. The transformation process
is performed in the flavor of the MDA approach.

The transformation process starts with aspecifi-
cation levelthat exposes the logical structure of the
given software system and partitions it into code frag-
ments that are intended to be used as modules in
later transformation steps. Currently, the specification
level cannot be performed fully automatically. It can

ICEIS 2007 - International Conference on Enterprise Information Systems

40



E
xW

D
S

Specification

Level

Intermediate

Represenation

Execution 
Mode Software

Modular
StructureStructure

ModulesCode
Fragments

Logical 

Program

 Workflow 
Description
Coordination 

Structure

Compontents/
Services

Components

Business
Software
System

Coordination

Modules
Set of

f
i
l
t
e
r

s
e
l
e
c
t

t
r
a
n
s
f
o
r
m

t
r
a
n
s
f
o
r
m

c
r
e
a
t
e

c
r
e
a
t
e

Executable ExecutableExecutable
Software Software

Environment
Programming Workflow

Engine SystemRuntime
Distributed

i
n
c
l
u
d
e

i
n
c
l
u
d
e

i
n
c
l
u
d
e

S
S

u

FSR

Figure 2: Transformation decision and transformation process.

be supported by clustering techniques and data depen-
dence analysis tools, but still requires manual interac-
tion. In the intermediate representation, the logical
structure is represented explicitly and the code frag-
ments are represented as modules. Based on the mod-
ular structure, theexecution modecreates a suitable
description depending on the software mode selected.
This can be a coordination program for the SSu mode,
a workflow description for the ExW mode, or a coor-
dination structure for the DS mode. This representa-
tion is the basis for the filter transformation which de-
termines which of the components should be prepared
for a remote execution. Correspondingly, the modules
are transformed into executable modules for the SSu
mode or components for the ExW or DS modes. De-
pending on the subsystem selected, a selection of the
modules or components is built and included into the
framework for the specific mode.

4.3 Resulting Software Systems

Figure 3 shows the software system generated in the
SSu mode. The subsystem has been selected by the
transformation process and has been included in the
form of modules. The control is provided by a coordi-
nation program that contains a part of the functional-
ity of the software package S. The modules can issue
data accesses that can be directed to the local database
or can be directed to non-local databases in the form
of remote accesses. Remote accesses are supported by
a data consistency service that is responsible for keep-

ing the database entries in different databases consis-
tent. Further support for remote accesses is provided
by a security service and a communication service.
All three services are provided as a static part of the
framework into which the modules are embedded.

Figure 4 depicts the software system generated for
the ExW mode. The difference to the SSu mode con-
sists in the use of a workflow engine which is able
to execute workflows comprising the business log-
ics of the software system S. The modules of S are
transformed into components that are activated by the
workflow engine according to the workflow. Each
component can issue data accesses which are per-
formed as local or remote accesses similar to the SSu
mode. The workflow engine is able to activate remote
components via a remote execution service that is pro-
vided as a static part of the software system. Remote
execution is managed via the communication service.

Figure 5 shows the distributed software system
DS generated by the transformation system for the
case that the execution is controlled by a coordina-
tion component which realizes a fixed workflow in
the simplest case. This component orchestrates the
execution of the components. All data accesses of the
components are performed via the coordination layer
which transfers the accesses to the corresponding ser-
vices provided by the DS framework. Remote execu-
tion of components can be performed via the remote
executor service. All remote accesses are done via
the communication service that can be performed in
different ways.

TRANSFORMATION OF LEGACY BUSINESS SOFTWARE INTO CLIENT-SERVER ARCHITECTURES

41



database
local...

coordination

remote access
communication

service

service
security consistency

service

network

local
accessprogram

module module

activate

Software Subsystem SSu

data access

activate

Figure 3: Software Subsystem SSu generated by the trans-
formation process.

component component

remote access

executor
remote

communication
service

service
security consistency

service

network

local
access

Explicit Workflow system ExW

activate

workflow engine

...
activate

use
use useactivate

workflow

local
database

Figure 4: Explicit Workflow system ExW generated by the
transformation process working with a workflow engine.

4.4 Transformation Toolset

The incremental transformation process is performed
by an interactive toolset providing compiler-based
transformation tools and interactive decision tools.
The transformation tools work on internal representa-
tions of the software product to be transformed. The
toolset comprises the following functionalities:
• Build-intermediate-representationbuilds a hierar-

chical graph structure from a given description of
the logical structure in a specification language.

• Create-coordination-programcreates a complete
description of a coordination program calling and
coordinating the modules of the software.

• Create-workflowcreates a complete description of
an explicit workflow.

• Create-coordination-structurecreates a complete
description of the most general distributed coordi-
nation of components.

• filter-for-subsystemextracts a subsystem based on
a description of the required subsystem. This de-
scription can be provided interactively based on
the representation of the coordination structure.

• filter-for-workflow selects a workflow which de-
scribes the functionality of the resulting business
software. Only instances of this workflow will be

component component
database

local...

component
coordination coordination layer

controls

remote access

executor
remote

communication
service

service
security consistency

service

network

access

distributed software DS

access
local
access

Figure 5: Distributed software system DS generated by the
transformation process using a coordination component.

executable by the resulting business software.
• filter-for-distribution creates a representation of

the upper level of the distributed software which
will be incarnated in the final software. This is a
restriction of the most general distributed execu-
tion. The restriction is specified by the software
expert guiding the transformation process.

The results of the incremental transformation phase is
a complete description of the business software to be
created, its modes and its functionality in the FSP for-
mat. This description is created in an internal format
on which transformations can be executed. The final
executable business software is created by the follow-
ing compiler tools:

• Compile-into-subsystem,

• Compile-workflow-subsystem, and

• Compile-distributed-system.

Also the toolset comprises the static programming en-
vironments for SSu, ExW, and DS.

4.5 Status of the Implementation

The transformation environment is developed in the
TransBS project comprising tool developers and de-
velopers of business software products. Both, the de-
sign of the transformation process and environment
as well as the resulting business software modes, is
done incrementally with strong cooperation between
the different groups such that the final tool will meet
the requirements for creating modern business soft-
ware. The design of the requirements of the resulting
transformed software is finished and the coarse struc-
ture of the transformation environment has been de-
veloped as described in this paper. The next step is to
implement the complete toolset and to conduct a large
scale validation using a complex business software
system provided by a participating software company.
Parts of the transformation process and runtime sys-
tems are currently being implemented. This includes

ICEIS 2007 - International Conference on Enterprise Information Systems

42



prototype versions of a transformation tool with upper
and lower level leading to a complete frame program
for parallel or distributed (sub)software, a workflow
management system for executing distributed work-
flows specified in XPDL (for the ExW mode), and a
distributed runtime system for modular applications
in distributed environments. Another important issue
is the integration of those prototype versions which is
done concurrently with testing the resulting business
software systems created by the transformation pro-
cess. Feedback loops in the implementation process
will adapt the prototype versions and its integration.
Also, the structure of the transformation, select, filter,
create, and include functions has to be refined to yield
a flexible and interactive transformation environment.

5 CONCLUSIONS

We have proposed an interactive toolset to incremen-
tally transform existing monolithic business software
into a modular system that can be distributed and
workflow-based. This leads to a flexible software sys-
tem that can be adapted to the characteristics of a spe-
cific environment and meets the needs of software de-
velopers and specific end user enterprises.

ACKNOWLEDGEMENTS

The research presented is funded by the German min-
istry BMBF 01 ISF 10 A/B/C.

REFERENCES

Akers, R., Baxter, I., and Mehlich, M. (2004). Re-
Engineering C++ Components Via Automatic Pro-
gram Transformation. InProc. of ACM Symposium on
Partial Evaluation and Program Manipulation, pages
51–55. ACM Press.

Al-Ekram, R. and Kontogiannis, K. (2004). Source Code
Modularization Using Lattice of Concept Slices. In
Proc. of Euromicro Working Conference on Software
Maintenance and Reengineering (CSMR’04), pages
195–203.

Andritsos, P. and Tzerpos, V. (2003). Software Cluster-
ing based on Information Loss Minimization. In
Proc. of Working Conference on Reverse Engineering
(WCRE2003), pages 334–344.

Balmas, F. (2004). Displaying dependence graphs: a hi-
erarchical approach.J. of Software Maintenance and
Evolution: Research and Practice, 16(3):151–185.

Baxter, I., Pidgeon, C., and Mehlich, M. (2004). DMS: Pro-
gram Transformations for Practical Scalable Software

Evolution. InProc. of the 26th Int. Conf. on Software
Engineering, pages 625–634. IEEE Press.

Bernstein, P. (1996). Middleware - A Model for Distributed
System Services.Commun. of the ACM, 39(2).

Brunner, R. and Weber, J. (2002).Java Web Services. Pren-
tice Hall.

Cao, F., Bryant, B., Burt, C., Raje, R., Olson, A., and
Auguston, M. (2005). A Component Assembly Ap-
proach Based On Aspect-Oriented Generative Do-
main Modeling.Electronic Notes in Theoretical Com-
puter Science, 114:119–136.

Crnkovic, I. and Larsson, M. (2002). Challenges of
component-based development.Journal of Systems
and Software, 61(3):201–212.

Czarnecki, K. and Eisenecker, U. (2000).Generative Pro-
gramming: Methods, Tools, and Applications. Addi-
son Wesley.

Emmerich, W. (2000). Engineering Distributed Objects.
John Wiley & Sons.

Emmerich, W. (2002). Distributed Component Technolo-
gies and their Software Engineering Implications. In
Proc. of Int.Conf.Software Engineering, pages 537–
546. ACM Press.

Kiczales, G., Lamping, J., A.Mendhekar, Maeda, C., Lopes,
C., Loingtier, J.-M., and Iwin, J. (1997). Aspect-
oriented programming. InProc. Conf on Object-
Oriented Programming (ECOOP’01), LNCS 1241,
pages 327–353.

Lewandowski, S. (1998). Frameworks for component-
based client/server computing.ACM Comput. Surv.,
30(1):3–27.

Litoiu, M. (2004). Migrating to Web Services: a perfor-
mance engineering approach.Journal of Software
Maintenance and Evolution: Research and Practice,
16:51–70.

Lung, C. and Zaman, M. (2004). Applying Clustering Tech-
niques to Software Architecture Partitioning, Recov-
ery and Restructuring.Journal of Systems and Soft-
ware, 73(2):227–244.

Mehta, A. and Heineman, G. (2002). Evolving Legacy Sys-
tem Features into Fine-Grained Components. InProc.
of Int. Conf. on Software Engineering, pages 417–427.

Menkhaus, G. and Frei, U. (2004). Legacy System Integra-
tion using a Grammar-based Transformation System.
CIT - Journal of Computing and Information Technol-
ogy, 12(2):95 – 102.

Siegel, J. (2005). Why use the Model Driven Architecture to
Design and Build Distributed Applications. InProc. of
Int.Conf.Software Engineering, page 37. ACM Press.

Zhao, W., Bryant, B., Gray, J., Burt, C. C., Raje, R. R., Au-
guston, M., and Olson, A. (2003). A Generative and
Model Driven Framework for Automated Software
Product Generation. InProc. 6th ICSE Workshop on
Component-Based Software Engineering: Automated
Reasoning and Prediction, pages 103–108.

TRANSFORMATION OF LEGACY BUSINESS SOFTWARE INTO CLIENT-SERVER ARCHITECTURES

43


